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ABSTRACT Spiking neural networks (SNNs) represent a promising alternative to conventional neural net-
works. In particular, the so-called Spike-by-Spike (SbS) neural networks provide exceptional noise robust-
ness and reduced complexity. However, deep SbS networks require a memory footprint and a computational
cost unsuitable for embedded applications. To address this problem, this work exploits the intrinsic error
resilience of neural networks to improve performance and to reduce hardware complexity.More precisely, we
design a vector dot-product hardware unit based on approximate computing with configurable quality using
hybrid custom floating-point and logarithmic number representation. This approach reduces computational
latency, memory footprint, and power dissipation while preserving inference accuracy. To demonstrate our
approach, we address a design exploration flow using high-level synthesis and a Xilinx SoC-FPGA. The
proposed design reduces 20.5× computational latency and 8× weight memory footprint, with less than
0.5% of accuracy degradation on a handwritten digit recognition task.

INDEX TERMS Artificial intelligence, spiking neural networks, approximate computing, logarithmic,
parameterisable floating-point, optimization, hardware accelerator, embedded systems, FPGA.

I. INTRODUCTION
The exponential improvement in computing performance and
the availability of large amounts of data are boosting the use
of artificial intelligence (AI) applications in our daily lives.
Among the various algorithms developed over the years,
neural networks (NNs) have demonstrated remarkable perfor-
mance in a variety of image, video, audio, and text analytics
tasks [1], [2]. Historically, artificial neural networks (ANNs)
can be classified into three different generations [3]: the
first one is represented by the classical McCulloch and Pitts
neuronmodel using discrete binary values as outputs; the sec-
ond one is represented by more complex architectures as
multi-layer perceptrons (MLPs) and convolutional neural net-
works (CNNs) using continuous activation functions; while
the third generation is represented by spiking neural networks
using spikes as means for information exchange between
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groups of neurons. Although the AI research is currently
dominated by deep neural networks (DNNs) from the second
generation, the SNNs belonging to the third generation are
receiving considerable attention [3]–[6].

SNNs offer advantageous robustness and the potential
to achieve a power efficiency closer to that of the human
brain. SNNs operate reliably using stochastic elements that
are inherently non-reliable mechanisms [7]. This provides
superior resistance against adversary attacks [5], [8]. Beside
robustness, SNNs have further advantages like the possi-
bility of a more efficient asynchronous parallelization and
higher energy efficiency than DNNs. For example, Loihi [9],
a SNN developed by Intel, can solve LASSO optimiza-
tion problems with an over three orders of magnitude
better energy-delay product than conventional approaches.
These advantages are motivating large research programs
by major companies (e.g., Intel [9] and IBM [10]) as
well as pan-european projects in the domain of spiking
networks [4].
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SNNs emulate the real behavior of neurons in different
levels of detail. The more detailed the biological part is emu-
lated, the greater the computational complexity [11], [12].
For example, Leaky Integrate-and-Fire (LIF) is a widely used
model; however, this model is relatively complex for emula-
tion in practical embedded applications with hardware and
energy constraints.

Alternatively, the Spike-by-Spike (SbS) neural network
is a remarkable model for its reduced complexity, which
is on the less realistic side of the SNN scale of biological
realism [5], [13]. Consequently, the hardware complexity of
SbS network implementations is greatly reduced [14], [15].
In spite of this, SbS still uses stochastic spikes as a means of
transmitting information between populations of neurons and
thus retains the advantageous robustness of SNNs.

The conceptual model in SbS (see Sec. III-A for a short
review) differs fundamentally from conventional ANNs since
(a) the building blocks of the network are inference popula-
tions (IP) which are an optimized generative representation
with non-negative values, (b) time progresses from one spike
to the next, preserving the property of stochastically firing
neurons, and (c) a network has only a small number of
parameters, which is an advantageous noise-robust stochas-
tic version of Non-Negative Matrix Factorization (NNMF).
The SbS network is placed between non-spiking NN and
stochastically spikingNN,which offers advantages from both
structures [13]. On one hand, the SbS model incorporates the
inherent robustness of SNNs, which provide the possibility
of more efficient asynchronous parallelization and superior
resilience against disturbances based on the synaptic stochas-
ticity; on the other hand, the SbS model incorporates the
regular flow of information from CNNs, which are expressed
on explicit vector operations.

As computational demanding algorithms, ANNs and
SNNs in particular, must be addressed by special-
ized hardware architectures. A significant research effort
has been performed in SNN accelerators, see e.g.
Ref. [4], [6], [9], [10], [16], [17]. However, hardware accel-
erators that focus on SbS have only been partially inves-
tigated so far [14], [15]. Enhanced SbS accelerators will
have a double impact. From an engineering point of view,
they will contribute to the deployment of robust neural net-
works in small embedded systems [14]; from a scientific
point of view, they will facilitate fundamental research for
neuroscience [5], [18], [19].

A central point that can be optimized in current SbS
accelerators is the use of approximation techniques. Most
SbS models use floating-point numerical representation,
which imposes high complexity of the required circuits for
the floating-point operations. Model quantization has the
potential to improve computational performance; however,
this solution is often accompanied by quantization-aware
training methods that, in some cases, are problematic or even
inaccessible, particularly in deep SNN algorithms [20].
As an alternative, based on the relaxed need for fully
precise or deterministic computation of neural networks,

FIGURE 1. Dot-product hardware module with (a) standard floating-point
(IEEE 754) arithmetic, (b) hybrid custom floating-point approximation,
and (c) hybrid logarithmic approximation.

approximate computing techniques allow substantial
enhancement in processing efficiency with moderated accu-
racy degradation. Some research papers have shown the
feasibility of applying approximate computing to the infer-
ence stage of neural networks [21]–[24]. Such techniques
usually demonstrated small inference accuracy degradation,
but significant enhancement in computational performance,
resource utilization, and energy consumption. Hence, by tak-
ing advantage of the intrinsic error-tolerance of neural net-
works, approximate computing is positioned as a promising
approach for inference on resource-limited devices.

In this paper, we accelerate SbS neural networks with a dot-
product hardware design based on approximate computing
with hybrid custom floating-point and logarithmic number
representation. This hardware unit has a quality configurable
scheme based on the bit truncation of the synaptic-weight
vector. Fig. 1 illustrates the dot-product hardware module
with standard floating-point (IEEE 754) arithmetic, and our
approach with hybrid custom floating-point as well as loga-
rithmic approximation. As a design parameter, the mantissa
bit-width of the weight vector provides a tunable knob to
trade-off between efficiency and quality of result (QoR) [25],
[26]. Since the lower-order bits have smaller significance
than the higher-order bits, truncating them may have only a
minor impact on QoR [27], [28]. Further on, we can remove
completely the mantissa bits in order to use only the expo-
nent of a floating-point representation. Therefore, the most
efficient setup and yet the worst-case quality configuration
becomes a logarithmic representation, which consequently
leads to significant architectural-level optimizations using
only adders and shifters for dot-product approximation in
hardware. Moreover, since approximations and noise have
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qualitatively the same effect [29], we apply noise tolerance
plots as an intuitive visual measure to provide insights into
the quality degradation of SbS networks under approximate
processing effects.

Our main contributions are as follows:

• We develop a hardware component for dot-product
approximation. To perform the sum of pairwise products
of two vectors, this hardware module has the follow-
ing three design features: (1) the pairwise product is
approximated by adding integer exponents and multi-
plying truncated mantissas, and the sum of products
is done by accumulating denormalized integer prod-
ucts with barrel shifters, which increases computational
throughput; (2) the synaptic weight vector uses either
reduced custom floating-point or logarithmic represen-
tation, which reduces memory footprint; and (3) the
neuron vector uses either standard or custom floating-
point representation, which preserves QoR and overall
inference accuracy.

• We address a design exploration with the proposed dot-
product approximation using synaptic weight vectors
with custom floating-point and logarithmic representa-
tion as shown in Fig. 1. We evaluate inference latency,
accuracy degradation, resource utilization and power
dissipation. Experimental results demonstrate 20.5×
latency enhancement versus embedded CPU (ARM
Cortex-A9 at 666MHz), and less than 0.5% of accu-
racy degradation on a handwritten digit recognition task
(MNIST). This machine learning task simply provides
a proof of concept to demonstrate the feasibility of
our approximation technique for SbS neural network
accelerators.

• We propose a noise tolerance plot as quality monitor,
which serves as an intuitive visual model to provide
insights into the accuracy degradation of SbS networks
under approximate processing effects.

• Our proposed design for dot-product approximation is
adaptable as a building block for other error resilient
applications (e.g., image/video processing).

The rest of the paper is organized as follows. Section II
covers the related work; Section III introduces the back-
ground to SbS networks; Section IV describes the system
design and the approximate dot-product hardware module;
Section V presents the experimental results thorough a design
exploration flow; Section VI concludes the paper.

To promote the research on SbS networks, our design
exploration framework is made available to the public as an
open-source project at https://github.com/YaribNevarez/sbs-
framework.git

II. RELATED WORK
A. EFFICIENT COMPUTING IN NEURAL NETWORKS
For efficient neural network computation, twomain optimiza-
tion strategies are used, namely network compression and
classical approximate computing [6].

1) NETWORK COMPRESSION
Researchers focusing on embedded applications started low-
ering the precision of weights and activation maps to shrink
the memory footprint of the large number of parameters
representing ANNs, a method known as network compres-
sion or quantization. This practice takes advantage of the
intrinsic error-tolerance of neural networks, as well as their
ability to compensate for approximation while training.
In this way, reduced bit precision causes a small accuracy
loss [30]–[33].

In hardware development, weight quantization (WQ) has
shown up to 2× improvement in energy consumption with
an accuracy degradation of less than 1% [34], [35]. Some
advanced quantization methods yield to binary neural net-
works (BNNs) allowing the use of XNORs instead of the con-
ventional costly multiply-accumulate circuits (MACs) [33].
In [36], Sun et al. report an accuracy of 98.43% on handwrit-
ten digit classification (MNIST) with a simple BNN. Hence,
quantization is a powerful tool for improving the energy
efficiency and memory requirements of ANN accelerators,
with limited accuracy degradation.

In addition to quantization, network pruning reduces the
model size by removing structural portions of the parameters
and its associated computations [37], [38]. This method has
been identified as an effective technique to improve the effi-
ciency of DNN for applications with limited computational
budget [39]–[41].

These methods can be used for SNNs as well. In [42],
Rathi et al. report up to 3.1× improvement in energy con-
sumption with an accuracy loss of around 3%. Weight quan-
tization allows the designer to realize a trade-off between the
accuracy of the SNN application and efficiency of resources.
Approximate computing can also be applied at the neuron
level, where irrelevant units are deactivated to reduce the
computation cost of the SNNs [43]. This computation skip-
ping can be applied randomly on synapses, training ANNs
with stochastic synapses improves generalization, resulting
in a better accuracy [44], [45]. Such methods are compatible
with SNNs and have been tested both during training [46],
[47] and operation [48], and even to define the connectivity
between layers [49], [50]. Implementations of spiking neu-
romorphic systems in FPGA [51] and hardware [52] demon-
strated that synaptic stochasticity allows to increase the final
accuracy of the networks while reducing memory footprint.

Quantization is therefore a powerful technique to improve
energy efficiency and memory requirements of ANN and
SNN accelerators, with small accuracy degradation. How-
ever, this approach requires quantization-aware training
methods that, in some cases, are problematic or even inac-
cessible, particularly in emerging deep SNN algorithms [20].

2) CLASSICAL APPROXIMATE COMPUTING
Approximate computing has been used in a wide range of
applications to increase the computational efficiency in hard-
ware [26]. This approach consists of designing processing
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elements that approximate their computation by employing
modified algorithmic logic units [26]. In [53], Kim et al.
have shown SNNs using carry skip adders achieving 2.4×
latency enhancement and 43% more energy efficiency, with
an accuracy degradation of 0.97% on a handwritten digit
classification task (MNIST). Therefore, approximate com-
puting provides important enhancement in energy efficiency
and processing speed.

However, as the complexity of the dataset increases, as well
as the depth of the network topology, such as ResNet [54]
on ImageNet [55], the accuracy degradation becomes more
important and may not be negligible anymore [33], especially
for critical applications such as autonomous driving. There-
fore, it is not certain that network compression techniques and
approximate computing are suitable for all applications.

B. SPIKE-BY-SPIKE NEURAL NETWORKS ACCELERATORS
Recently, Rotermund et al. demonstrated the feasibility of
a neuromorphic SbS IP on a Xilinx Virtex 6 FPGA [15].
It provides a massively parallel architecture, optimized to
reduce memory access and suitable for ASIC implemen-
tations. Nonetheless, this design is considerably resource-
demanding if implemented as a full SbS network in today’s
embedded technology.

In Ref. [14], we presented a cross-platform accelerator
framework for design exploration and testing of fully func-
tional SbS network models in embedded systems. As a hard-
ware/software (HW/SW) co-design solution, this framework
offers a comprehensive high level embedded software API
that allows the construction of scalable sequential SbS net-
works with configurable hardware acceleration. However,
this design works entirely with standard floating-point arith-
metic (IEEE 754). This represents a large memory footprint
and inadequate computational cost for error resilient applica-
tions on resource-limited devices. In this article, we will use
this design exploration framework to investigate approximate
computing for efficient deployment of deep SbS networks on
resource-limited devices.

III. BACKGROUND
A. SPIKE-BY-SPIKE NEURAL NETWORKS
Technically, SbS is a spiking neural network approach based
on a generative probabilistic model. It iteratively finds an
estimate of its input probability distribution p(s) (i.e. the
probability of input node s to stochastically send a spike) by
its latent variables via r(s) =

∑
i h(i)W (s|i). where Eh is an

inference population composed of a group of neurons that
compete with each other. An inference population sees only
the spikes st (i.e. the index identifying the input neuron s
which generated that spike at time t) produced by its input
neurons, not the underlying input probability distribution p(s)
itself. By counting the spikes arriving at a group of SbS
neurons, p(s) is estimated by p̂(s) = 1/T

∑
t δs,st after T

spikes have been observed in total. The goal is to generate
an internal representation r(s) from the string of incoming

spikes st such that the negative logarithm of the likelihood
L = C −

∑
µ

∑
s p̂µ(s)log

(
rµ(s)

)
is minimized. C is a

constant which is independent of the internal representation
rµ(s) and µ denotes one input pattern from an ensemble
of input patterns. Applying a multiplicative gradient descent
method on L, an algorithm for iteratively updating hµ(i) with
every observed input spike st could be derived [5]

hnewµ (i) =
1

1+ ε

(
hµ(i)+ ε

hµ(i)W (st |i)∑
j hµ(j)W (st |j)

)
(1)

where ε is a parameter that also controls the strength of
sparseness of the distribution of latent variables hµ(i). Fur-
thermore, L can also be used to derive online and batch learn-
ing rules for optimizing the weights W (s|i). The interested
reader is referred to [5] for a more detailed exposition.

From a practical point of view, SbS provides a mechanism
to obtain a sparse representation of input patterns. Given a set
of training samples {xη}, it learns weights (W ), that allow to
express the input patterns as a linear sparse non-negative com-
bination of features. During inference, it provides a mecha-
nism for expressing each test input xµ as xµ ≈ W hµ where
all entries are non-negative.

The inference procedure consists in generating indices st
distributed according to a categorical distribution of the input
pattern st ∼ Categorical(xµ(0), xµ(1), .., xµ(N−1)). Starting
with a random h and executing iteratively Eq. (1) the SbS
algorithms finds hµ. The fundamental concept of SbS can be
extended from vector to matrix inputs. In this case, the linear
operation W hµ can be replaced by a convolution to obtain
a convolutional SbS layer. A detailed description of the SbS
algorithm is presented in the supplementary material of this
paper.

B. BASIC NETWORK OVERVIEW
SbS network models can be constructed in sequential layered
structures [13]. Each layer consists of many inference pop-
ulations or IPs (represented by Eh), while the communication
between them is organized by a low bandwidth signal – the
spikes.

The SbS layer update is summarized inAlgorithm 1. This is
an iterative algorithm, where we denote the number of spikes
(NSpk ) as the number of iterations. As a generative model,
each iteration updates the internal representation (H ) based
on the input spikes (S int ). A basic SbS network architecture for
handwritten digit classification (MNIST) is shown in Fig. 2
and Tab. 1. Each IP is an independent computational entity,
this allows to design specialized hardware architectures that
can be massively parallelized (see Fig. 3).

C. COMPUTATIONAL COST
The number of multiply-accumulate (MAC) operations
required for inference of an SbS layer is defined by
NOPSMAC = NSpkNXNYKXKY (3 NH + 2), where NSpk is the
number of spikes (iterations), NXNY is the size of the layer,
KXKY is the size of the kernel for convolution/pooling, and
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Algorithm 1 SbS Layer Update
1: for t ← 0 to NSpk − 1 do
2: for x ← 0, y← 0 to NX − 1,NY − 1 do
3: Soutt (x, y) ∼ Categorical(H (x, y, :))
4: for 1X ← 0,1Y ← 0 to KX − 1,KY − 1 do
5: spk ← S int (x +1X , y+1Y )
6: for i← 0 to NH − 1 do
7: 1h(i)← H (x, y, i) ·W (1X ,1Y , spk, i)
8: r ← r +1h(i)
9: end for

10: for i← 0 to NH − 1 do
11: Hnew(x, y, i)← 1

1+ε

(
H (x, y, i)+ ε

r1h(i)
)

12: end for
13: end for
14: end for
15: end for

FIGURE 2. SbS network architecture for handwritten digit classification
task.

TABLE 1. SbS network architecture for handwritten digit classification
task.

NH is the length of Eh. The computational cost of SbS network
models is higher compared to equivalent CNN models and
lower compared to regular SNN models (e.g., LIF) [11].

D. ERROR RESILIENCE
To illustrate the error resilience of SbS networks, we present a
classification performance under positive additive uniformly
distributed noise as external disturbance. Fig. 4 presents a
comparison of the classification performance of an SbS net-
work and a standard CNN, with the same amount of neurons
per layer as well as the same layer structure. We trained
both neural networks for handwritten digit classification
on MNIST dataset [56] (see [13] for details). The fig-
ure shows the correctness for the MNIST test set with its

FIGURE 3. SbS IPs as independent computational entities, (a) illustrates
an input layer with a massive amount of IPs operating as independent
computational entities, (b) shows a hidden layer with an arbitrary amount
of IPs as independent computational entities, (c) exhibits a set of
neurons grouped in an IP.

FIGURE 4. (a) Performance classification of SbS NN versus equivalent
CNN, and (b) example of the first pattern in the MNIST test data set with
different amounts of positive additive uniformly distributed noise.

10000 patterns in dependency of the noise level for positive
additive uniformly distributed noise. The blue curve shows
the performance for the CNN, while the red curve shows
the performance for the SbS network with 1200 spikes (iter-
ations). Beginning with a noise level of 0.1, the respective
performances are different with a p - level of at least 10−6

(tested with the Fisher exact test). Increasing the number
of spikes per SbS population to 6000 (performance values
shown as black stars), shows that more spikes can improve
the performance under noise even more.

IV. SYSTEM DESIGN
In this section, we revise the system design ofRef. [14] where
we presented a scalable hardware architecture composed of
generic homogeneous accelerator units (AUs). This design
works entirely with standard floating-point arithmetic (IEEE
754), which represents an unnecessary overhead for error
resilient applications. Furthermore, this architecture does not
implement stationary synaptic weight matrices in the hard-
ware AUs, resulting in heavy data movement, longer compu-
tational latency, and higher power consumption.

In this publication, we present an enhanced hardware archi-
tecture composed of specialized heterogeneous processing
units (PUs) with hybrid custom floating-point and logarith-
mic dot-product approximation. This approach represents
an advantageous design for error resilient applications in
resource-constrained devices due to the reduced computa-
tional costs andmemory footprint. Furthermore, the proposed
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FIGURE 5. System-level overview of the embedded software architecture.

FIGURE 6. System-level hardware architecture with scalable number of
heterogeneous PUs: Spike, Conv, Pool, and FC.

approach allows the implementation of stationary synaptic
weight matrices. These novelties result in an improved overall
system design.

Regarding the software architecture, this is structured as a
layered object-oriented application framework written in the
C programming language. This offers a comprehensive high
level embedded software application programming inter-
face (API) that allows the construction of scalable sequential
SbS networks with configurable hardware acceleration. Con-
ceptually this design is modular, reusable, and extensible. The
overall structure is depicted in Fig. 5.

A. HARDWARE ARCHITECTURE
As a hardware/software co-design, the system architecture
is an embedded CPU+FPGA-based platform, where the
acceleration of SbS network computation is based on asyn-
chronous1 execution in parallel heterogeneous processing
units: Spike (input layer), Conv (convolution), Pool (pool-
ing), and FC (fully connected). Fig. 6 illustrates the system
hardware architecture as a scalable structure. For hyperpa-
rameter configuration, each PU uses AXI-Lite interface. For
data transfer, each PU uses AXI-Stream interfaces via Direct
Memory Access (DMA) allowing data movement with high
transfer rate. Each PU asserts an interrupt flag once the

1The system is synchronous at the circuit level, but the execution is
asynchronous in terms of jobs.

job or transaction is complete. This interrupt event is handled
by the embedded CPU to collect results and start a new
transaction.

The hardware architecture can resize its resource utiliza-
tion by changing the number of PUs instances prior to the
hardware synthesis, this provides scalability with a good
trade-off between area and throughput. The dedicated PUs for
Conv and FC implement the proposed dot-product approx-
imation as a system component. The PUs are written in
C using Vivado HLS (High-Level Synthesis) tool. In this
publication, we illustrate the integration of the approximate
dot-product component on the Conv processing unit.

B. CONV PROCESSING UNIT
This hardware module computes the IP dynamics defined by
Eq. (1) and offers two modes of operation: configuration and
computation.

1) CONFIGURATION MODE
In this mode of operation, the PU receives and stores in
on-chip memory (BRAM) the hyperparameters to compute
the IP dynamics: ε as the epsilon,N as the length of Ehµ ∈ RN ,
K ∈ N as the size of the convolution kernel, and H ∈ N as
the number of IPs to process per transaction.H is the number
of IPs forming a layer or a partition.

Additionally, the processing unit also stores in on-chip
memory (BRAM) the synaptic weight matrix using a
number representation with a reduced memory footprint.
Fundamentally, the synaptic weight matrix is defined
by W ∈ RK×K×M×N with 0 ≤ W (st |j) ≤ 1 and∑M−1

st=0 W (st |j) = 1 [13]. Hence, W employs only positive
normalized real numbers. Therefore, W is deployed using
a reduced floating-point or logarithmic representation as
follows:

• Custom floating-point representation. In this case, W is
deployed with a reduced floating-point representation
using the user defined bit-width for the exponent and
for the mantissa. For example, 4-bit exponent, 1-bit
mantissa; as a result: 5-bit custom floating-point. The
methodology to determine the required bit-width is
described in Section IV-C.

• Logarithmic representation. In this case, the synap-
tic weight matrix is W ∈ NK×K×M×N with posi-
tive natural numbers. Since 0 ≤ W (st |j) ≤ 1 and∑M−1

st=0 W (st |j) = 1, W has only negative values in the
logarithmic domain. Hence, the sign bit is omitted, and
the values are represented in its positive form. Therefore,
W is deployed with a representation using the neces-
sary bit-width for the exponent according to the given
application. For example, 4-bit exponent. The method-
ology to determine the required bit-width is described in
Section IV-C.

In order to deploy different SbS network models, the Conv
processing units can be configured with different synaptic
weight matrices and hyperparameters as required through the
embedded software.
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FIGURE 7. The Conv processing unit and its six stages: (a) receive IP
vector, (b) spike firing, (c) receive spike kernel, (d) update dynamics,
(e) dispatch new IP vector, (f) dispatch output spike matrix.

2) COMPUTATION MODE
In this mode of operation, the PU executes a transaction to
process a group of IPs using the previously given hyperpa-
rameters and synaptic weight matrix. This process operates
in six stages as shown in Fig. 7. In the first two stages, the PU
receives Ehµ ∈ RN , then the PU calculates the emitted spike,
and stores it in Snew ∈ NH (output spike vector). From the
third to the fifth stage, the PU receives St ∈ NK×K (input
spike matrix), then it computes the update dynamics, and then
it dispatches Ehnewµ ∈ RN (updated IP). This process repeats
for H number of loops (for each IP of the layer or partition).
Finally, the Snew is dispatched.
The computation of the update dynamics (see Fig. 7(d))

operates in two modular stages: dot-product and neuron
update. First, the dot-product module calculates the sum of
pairwise products of Ehµ and EW (st ), each pairwise product
is stored as intermediate results. Subsequently, the neuron
updatemodule calculatesEq. (1) reusing previous results and
parameters.

The calculation of the dot-product of Eq. (1) represents
a considerable computational cost using standard floating-
point in non-quantized network models. Fortunately, the pair
product of hµ(j) andW (st |j) was defined by us as an approx-
imable factor in the dot-product of Eq. (1). In the follow-
ing section, we focus on an optimized dot-product hardware
design based on approximate computing.

C. DOT-PRODUCT HARDWARE MODULE
This dot-product hardware module is part of an application-
specific architecture optimized to approximate the
dot-product of arbitrary length, see Eq. (2). For quality

configurability, we parameterized the mantissa bit-width of
EW (st ), which provides a tunable trade-off between resource
utilization and QoR. Since the lower-order bits have smaller
significance than the higher-order bits, removing them may
have only aminor impact onQoR.We designate this as hybrid
custom floating-point approximation (see Fig. 1(b)).

rµ (st) =
N−1∑
j=0

hµ(j)W (st |j) (2)

Further on, we remove the mantissa bits completely in
order to use only the exponent of a floating-point repre-
sentation. Hence, the worst-case quality and yet the most
efficient configuration becomes a logarithmic representation.
Consequently, this structure leads to advantageous architec-
tural optimizations using only adders and barrel shifters for
dot-product approximation in hardware. We designate this as
hybrid logarithmic approximation (see Fig. 1(c)).

In order to determine the required bit-width for the number
representation, we use Eq. (3), Eq. (4), and Eq. (5).

Emin = log2(min
∀i

(W (i))) (3)

NE = dlog2(|Emin|)e (4)

NW = NE + NM (5)

The Eq. (3) obtains the exponent of the minimum entry
value in the synaptic weight matrix. Since 0 ≤ W (st |j) ≤ 1
and

∑M−1
st=0 W (st |j) = 1, W has only negative values in

the logarithmic domain; hence, by searching for the smallest
value, we obtain the biggest negative exponent (Emin). Then,
the Eq. (4) obtains the necessary bit-width to represent the
exponent (NE ). Finally, we obtain the total bit-width by incor-
porating both exponent and mantissa bit-widths in Eq. (5).
NM denotes the mantissa bit-width, this is a knob parameter
that is tuned by the designer to trade-off between resource
utilization and QoR. The bit-width concept is illustrated in
Fig. 1.

In this section, we will present three pipelined hardware
modules with standard floating-point (IEEE 754) computa-
tion, hybrid custom floating-point approximation, and hybrid
logarithmic approximation.

1) DOT-PRODUCT WITH STANDARD FLOATING-POINT
COMPUTATION
The hardware module to calculate the dot-product with stan-
dard floating-point computation is shown in Fig. 8. This
diagram presents the hardware blocks and their clock cycle
schedule. This module loads both hµ(j) and W (s|j) from
BRAM, then the PU executes the pairwise product (Fig. 8(c))
and accumulation (Fig. 8(d)). The intermediate results of
hµ(j)W (st |j) are stored in BRAM for reuse in the neuron
update. The latency in clock cycles of this hardware module
is defined by Eq. (6), where N is the dot-product length.
This latency equation is obtained from the general pipelined
hardware latency formula: L = (N − 1) II + IL, where II is
the initiation interval (Fig. 8(a)), and IL is the iteration latency

VOLUME 9, 2021 80609



Y. Nevarez et al.: Accelerating SbS Neural Networks on FPGA

FIGURE 8. Dot-product hardware module with standard floating-point
(IEEE 754) computation, (a) exhibits the initiation interval of 10 clock
cycles, (b) presents the iteration latency of 19 clock cycles, (c) shows the
pairwise product block in dark-gray, and (d) illustrates the accumulation
block in light-gray.

(Fig. 8(b)). Both II and IL are obtained from the high-level
synthesis analysis. The equation for the latency with standard
32-bit floating-point is:

Lf 32 = 10N + 9 (6)

In this design, the high-level synthesis tool infers
computational blocks with considerable latency cost for stan-
dard floating-point. In the case of floating-point multiplica-
tion (Fig. 8(c)), the synthesis infers a hardware block with
a latency cost of 5 clock cycles. Theoretically, this block
would handle exponents addition, mantissas multiplication,
and mantissa correction if needed. Moreover, in the case of
floating-point addition (Fig. 8(d)), the synthesis infers a hard-
ware block with a latency cost of 9 clock cycles. Seemingly,
this block would handle mantissas alignment, addition, and
correction if needed. Therefore, the use of standard floating-
point in high-level synthesis results in high computational
cost, which represents unnecessary overhead in error tolerant
applications.

2) DOT-PRODUCT WITH HYBRID CUSTOM FLOATING-POINT
AND LOGARITHMIC APPROXIMATION
The hardware module to calculate dot-product with hybrid
custom floating-point approximation is shown in Fig. 9.
In this design, hµ(j) uses standard 32-bit floating-point num-
ber representation, andW (s|j) uses a positive reduced custom
floating-point number representation, where the mantissa bit
width is the quality configurability knob. This parameter is
tuned by the designer to trade-off between QoR and resource
utilization, thus, energy consumption.

FIGURE 9. Dot-product hardware module with hybrid custom
floating-point approximation, (a) exhibits the initiation interval of 2 clock
cycles, (b) presents the iteration latency of 13 clock cycles, (c) shows the
pairwise product blocks in dark-gray, and (d) illustrates the accumulation
blocks in light-gray.

As the most efficient setup and yet the worst-case qual-
ity configuration, by completely truncating the mantissa
of W (s|j) leads to a slightly different hardware architec-
ture using only adders and shifters, which computes the
dot-product with hybrid logarithmic approximation. This is
shown in Fig. 10.

Additionally, the exponent bit-width of W (s|j) is a design
parameter for efficient resource utilization and it is defined
based on the application or deployment needs.

The hybrid custom floating-point and logarithmic approx-
imation designs work in three phases: Computation,
Threshold-test, and Result normalization.

• Phase I, Computation:
This phase approximates the magnitude of the dot-
product in a denormalized representation. This is cal-
culated in two iterative steps over each vector element:
pairwise product and accumulation, where pairwise
product is executed either in hybrid custom floating-
point or hybrid logarithmic approximation described
below.
– Pairwise product.

– Hybrid customfloating-point approximation. As
shown in Fig. 9(c) in dark-gray, the pairwise
product is approximated by adding exponents
and multiplying mantissas of both W (s|i) and
hµ(i). If the mantissa multiplication results in
an overflow, then it is corrected by increasing
the exponent and shifting the resulting man-
tissa by one position to the right. Then we get
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FIGURE 10. Dot-product hardware module with hybrid logarithmic
approximation, (a) exhibits the initiation interval of 2 clock cycles,
(b) presents the iteration latency of 9 clock cycles, (c) shows the pairwise
product block in dark-gray, and (d) illustrates the accumulation blocks in
light-gray.

hµ(j)W (st |j) as an intermediate result which is
stored for future reuse in the neuron update cal-
culation. In this design the pairwise product has
a latency of 5 clock cycles.

– Hybrid logarithmic approximation. As shown in
Fig. 10(c) in dark-gray, the pairwise product is
approximated by adding W (s|i) to the exponent
of hµ(i), since W (s|j) values are represented in
the logarithmic domain and hµ(j) in standard
floating-point. In this design the pairwise prod-
uct has a latency of one clock cycle.

– Accumulation. As shown in both Fig. 9(d) and
Fig. 10(d) in light-gray, first, it is obtained the denor-
malized representation of hµ(j)W (st |j) by shifting
its mantissa using its exponent as shifting parameter
(barrel shifter). Then, this denormalized represen-
tation is accumulated to obtain the approximated
magnitude of the dot-product.

The process of pairwise product and accumulation iter-
ates over each element of the vectors. The computation
latency is given by Eq. (7) for hybrid custom floating-
point, and Eq. (8) for hybrid logarithmic, where N is the
length of the vectors. Both pipelined hardware modules
have the same throughput, since both have two clock
cycles as initiation interval.

Lcustom = 2N + 11 (7)

Llog = 2N + 7 (8)

• Phase II, Threshold-test:
The accumulated denormalizedmagnitude is tested to be
above of a predefined threshold, it must be above zero,
since the dot-product is the denominator in Eq. (1). If
passing the threshold, then the next phase is executed.
Otherwise the rest of update dynamics is skipped. The
threshold-test takes one clock cycle.

• Phase III, Result-normalization:
In this phase, the dot-product is normalized to obtain the
exponent and mantissa in order to convert it to standard
floating-point for later use in the neuron update. The
normalization is obtained by shifting the approximated
dot-product magnitude in a loop until it is in the form
of a normalized mantissa where the iteration count rep-
resents the exponent of the dot-product. Each iteration
takes one clock cycle.

The total latency of the hardware module with hybrid
custom floating-point and hybrid logarithmic approximation
is the accumulated latency of the three phases.
The proposed architectures with approximation approach

exceeds the performance of the design with standard floating-
point. This performance enhancement is achieved by decom-
posing the floating-point computation into an advantageous
handling of exponent and mantissa using intermediate accu-
mulation in a denormalized representation and only one final
normalization.

V. EXPERIMENTAL RESULTS
The proposed architecture is demonstrated on a Xilinx Zynq-
7020. This device integrates a dual ARM Cortex-A9 based
processing system (PS) and programmable logic (PL) equiv-
alent to Xilinx Artix-7 (FPGA) in a single chip [57]. The
Zynq-7020 architecture conveniently maps the custom logic
and software in the PL and PS respectively as an embedded
system.
In this platform, we implement the proposed hardware

architecture to deploy the SbS network structure shown
in Fig. 2 for handwritten digit classification task using
MNIST data set. The SbS model is trained in Matlab with-
out any quantization method, using standard floating-point.
The resulting synaptic weight matrices are deployed on the
embedded system. There, the SbS network is built as a
sequential model using the API from the SbS embedded
software framework [14]. This API allows to configure the
computational workload of the neural network, which can
be distributed among the hardware processing units and the
embedded CPU.
For the evaluation of our approach, we address a design

exploration by reviewing the computational latency, inference
accuracy, resource utilization, and power dissipation. First,
we benchmark the performance of SbS network simulation
on the embedded CPU, and then repeat the measurements
on hardware processing units with standard floating-point
computation. Afterwards, we evaluate our dot-product archi-
tecture, addressing a design exploration with hybrid custom
floating-point approximation, as well as the hybrid logarith-
mic approximation. Finally, we present a discussion of the
presented results.

A. PERFORMANCE BENCHMARK
1) BENCHMARK ON EMBEDDED CPU
We examine the performance of the CPU for SbS network
simulation with no hardware coprocessing. In this case,
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TABLE 2. Computation on embedded CPU.

FIGURE 11. Computation on embedded CPU.

FIGURE 12. System overview of the top-level architecture with
8 processing units.

the embedded software builds the SbS network as a sequential
model mapping the entire computation to the CPU (ARM
Cortex-A9) at 666 MHz and a power dissipation of 1.658W .
The SbS network computation on the CPU achieves a

latency of 34.28 ms per spike with an accuracy of 99.3%
correct classification on the 10, 000 image test set with 1000
spikes. The latency and schedule of the SbS network compu-
tation are displayed in Tab. 2 and Fig. 11 respectively.

2) BENCHMARK ON PROCESSING UNITS WITH STANDARD
FLOATING-POINT COMPUTATION
To benchmark the computation on hardware PUs with stan-
dard floating-point, we implement the system architecture
shown in Fig. 12. In this case, the embedded software builds
the SbS network as a sequential model mapping the network
computation to the hardware processing units at 200 MHz as
clock frequency.

The layers of the neural network with the most neurons
are partitioned for asynchronous parallel processing. Since
H2_POOL and H3_CONV are the layers with the most neu-
rons, the computational workload is distributed between two
PUs for each one of these layers. The output layer HY_OUT

TABLE 3. Performance of processing units with standard floating-point
(IEEE 754) computation.

FIGURE 13. Performance of processing units with standard floating-point
(IEEE 754) computation.

is fully processed by the CPU, since it is the layer with
fewest neurons. The hardware mapping and the computation
schedule of this deployment are displayed in Tab. 3 and
Fig. 13.

In the computation schedule, the following terms are
defined as follows: ts(n) as the start time for the processing of
the neural network layer (as a compute node) n ∈ L where L
represents the set of layers; tCPU (n) as the CPU preprocessing
time; tPU (n) as the PU latency; and tf (n) as the finish time.
For data preparation, the tCPU (n) is the duration in which the
CPU writes a DRAM buffer with Ehµ (vector of neuron latent
variables) of the current processing layer and St (input spike
matrix) from its preceding layer. This buffer is streamed to
the PU via DMA.

The total execution time of the CPU is defined by Eq. (9).
In a cyclic spiking inference, the execution time of the net-
work computation is the longest path among the processing
units including the CPU. This is denoted as the latency of an
spike cycle and it is defined by Eq. (11). The total execution
time of the network computation is the last finish time (tf ) in
the schedule defined by Eq. (12).

TCPU =
∑
n∈L

tCPU (n) (9)

TPU = max
n∈L

(tPU (n)) (10)

TSC =

{
TPU , if TCPU ≤ TPU
TCPU , otherwise

(11)

Tf = max
n∈L

(tf (n)) (12)

Using standard floating-point requires a high computa-
tional cost. As the largest layer, the computational workload
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FIGURE 14. Performance bottleneck of cyclic computation on processing
units with standard floating-point (IEEE 754) arithmetic, (a) exhibits the
starting of tPU of Conv2 on a previous computation cycle, (b) presents
tCPU of Conv2 on the current computation cycle, (c) shows the CPU
waiting time (in gray color) for Conv2 as a busy resource (awaiting for
Conv2 interruption), and (d) illustrates the tf from the previous
computation cycle, the starting of tPU on the current computation cycle
(Conv2 interruption on completion, and start current computation cycle).

TABLE 4. Resource utilization and power dissipation of processing units
with standard floating-point (IEEE 754) computation.

of H3_CONV is evenly partitioned among two PUs: Conv2
and Conv3. However, in the cyclic schedule, Conv2 causes
the performance bottleneck as shown in Fig. 14. In this case,
the CPU has to await for Conv2 to finish the computation of
the previous cycle in order to start the current computation
cycle. In contrast, as the smallest layer, the computational
workload of HY_OUT is fully processed by the CPU. Tab. 3
and Fig. 13 show 4µs as the processing latency of HY_OUT .
This latency is negligible compared to the overall perfor-
mance assessment. AcceleratingHY_OUT would yield a neg-
ligible gain. Moreover, assigning a dedicated hardware PU to
HY_OUT would add data transfer and hardware interruption
handling overheads, which makes this unprofitable.

Applying Eq. (11), we obtain a latency of 3.18 ms per
spike cycle. This deployment achieves an accuracy of 98.98%
correct classification on the 10, 000 image test set with 1000
spikes.

The post-implementation resource utilization and power
dissipation are shown in Tab. 4. Each Conv PU instantiates
an on-chip stationary weight matrix of 52, 000 entries, wish is
sufficient to store W ∈ R5×5×2×32 and W ∈ R5×5×32×64 for
H1_CONV and H3_CONV, respectively. In order to reduce
BRAM utilization, we use a custom floating-point represen-
tation composed of 4-bit exponent and 4-bit mantissa. Each
8-bit entry is promoted to its standard floating-point represen-
tation for the dot-product computation. The methodology to
find the appropriate bit-width parameters for customfloating-
point representation is presented in Section V-B1.
The implementation of dot-product with standard floating-

point arithmetic (IEEE 754) utilizes proprietary multiplier
and adder floating-point operator cores. Vivado HLS accom-
plishes floating-point arithmetic operations by mapping them

TABLE 5. Resource utilization and power dissipation of multiplier and
adder floating-point (IEEE 754) operator cores.

onto Xilinx LogiCORE IP cores, these floating-point oper-
ator cores are instantiated in the resultant RTL [58]. In this
case, the implementation of the dot-product with the stan-
dard floating-point computation reuses the multiplier and
adder cores already instantiated and used in other compu-
tation sections of Conv and FC processing units. The post-
implementation resource utilization and power dissipation of
the floating-point operator cores are shown in Tab. 5.

3) BENCHMARK ON NOISE TOLERANCE PLOT
The noise tolerance plot serves as an intuitive visual model
used to provide insights into accuracy degradation under
approximate processing effects. This plot reveals inherent
error resilience, and hence, approximation resilience. As an
application-specific quality metric, this plot offers an effec-
tive method to estimate the overall quality degradation of the
SbS network under different approximate processing effects,
since both approximations and noise have qualitatively the
same effect [29].

In order to experimentally obtain the noise tolerance plot,
we measure the inference accuracy of the neural network
with increasing number of spikes. Then we repeat the mea-
surements with uniformly distributed noise applied on the
input images. We gradually ascend the levels of the noise
amplitude, until accuracy degradation is detected. Fig. 15
demonstrates this method using 100 sample images.

As benchmark, the tolerance plot in Fig. 15 revels accu-
racy degradation having 50% noise and convergence with
400 spikes. In this case, the particular SbS network with
precise processing demonstrates a remarkable inherent error
resilience, hence, a great opportunity for approximate pro-
cessing.

B. DESIGN EXPLORATION WITH HYBRID CUSTOM
FLOATING-POINT AND LOGARITHMIC APPROXIMATION
In this section, we address a design exploration to evaluate
our approach for SbS neural network simulation using hybrid
custom floating-point and logarithmic approximation. First,
we examine the synaptic weight matrix of each SbS net-
work layer in order to determine the minimum requirements
for numeric representation and memory storage. Second,
we implement the proposed dot-product architecture using
the minimal floating-point and logarithmic representation as
design parameters. Finally, we evaluate the overall perfor-
mance, the inference accuracy, the resource utilization, and
the power dissipation.

1) PARAMETERS FOR NUMERIC REPRESENTATION OF
SYNAPTIC WEIGHT MATRIX
We obtain information for the numerical representation of
the synaptic weight matrices from their log2-histograms
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FIGURE 15. Noise tolerance on hardware PU with standard floating-point
(IEEE 754) computation (benchmark/reference), (a) exhibits accuracy
degradation applying 50% of noise amplitude, and (b) illustrates
convergence of inference with 400 spikes.

presented in Fig. 16. These histograms show the distribution
of synaptic weight values in each matrix. We observe that the
minimum integer exponent value is −13. Hence, applying
Eq. (3) and Eq. (4) to the given SbS network, we obtain
Emin = −13 and NE = 4, respectively. Therefore, 4-bits
are required for the absolute binary representation of the
exponents.

For quality configurability, the mantissa bit-width is a
knob parameter that is tuned by the designer. This procedure
leverages the builtin error-tolerance of neural networks and
performs a trade-off between resource utilization and QoR.
In the following subsection, we present a case study with
1-bit mantissa corresponding to the custom floating-point
approximation.

2) DESIGN EXPLORATION FOR DOT-PRODUCT WITH
HYBRID CUSTOM FLOATING-POINT APPROXIMATION
For this design exploration, we use a custom floating-point
representation composed of 4-bit exponent and 1-bit man-
tissa. This format is used for the synaptic weight vector
on the proposed dot-product architecture. Each Conv PU

FIGURE 16. log2-histogram of each synaptic weight matrix showing the
percentage of matrix elements with given integer exponent.

instantiates an on-chip stationary weight matrix for 52, 000
entries of 5-bit. The available memory size is large enough to
store W ∈ R5×5×2×32 and W ∈ R5×5×32×64 for H1_CONV
and H3_CONV, respectively. The same dot-product architec-
ture is implemented in the processing unit of the fully con-
nected layer (FC). However, due to lack of BRAM resources,
this PU cannot instantiate on-chip stationary synaptic weight
matrix. Instead, FC receives the EW (st ) (weight vectors) dur-
ing operation as well as Ehµ and St . The hardware mapping
and the computation schedule of this implementation are
displayed in Tab. 7 and Fig. 17.

As shown in the computation schedule in Tab. 7 and
Fig. 17, this implementation achieves a maximum hardware
PU latency of 1.30 ms according to Eq. (10), and a CPU
latency of 1.67 ms. Therefore, applying Eq. (11), we obtain a
latency of 1.67ms per spike cycle as shown in Fig. 17. In this
case, the cyclic bottleneck is in the performance of the CPU.

This configuration achieves an accuracy of 98.97% correct
classification on the 10, 000 image test set with 1000 spikes.
This indicates an accuracy degradation of 0.33%. For output
quality monitoring, the noise tolerance plot in Fig. 18 revels
accuracy degradation for noise higher than 50% on the input
images, and convergence of inference with 400 spikes. Thus,
the particular SbS network implementation under approxi-
mate processing effects demonstrates a minimal impact on

80614 VOLUME 9, 2021



Y. Nevarez et al.: Accelerating SbS Neural Networks on FPGA

TABLE 6. Resource utilization and power dissipation of processing units
with hybrid custom floating-point approximation.

TABLE 7. Performance of hardware processing units with hybrid custom
floating-point approximation.

FIGURE 17. Performance on processing units with hybrid custom
floating-point approximation, (a) exhibits computation schedule,
(b) presents cyclic computation schedule, and (c) shows the performance
of Conv2 from a previous computation cycle during the preprocessing of
H1_CONV on the current computation cycle without bottleneck.

the overall accuracy. This proves an inherent error resilience,
and hence, remaining approximation budget.

The post-implementation resource utilization and power
dissipation are shown in Tab. 6.

3) DESIGN EXPLORATION FOR DOT-PRODUCT WHIT
HYBRID LOGARITHMIC APPROXIMATION
As the most efficient setup and yet the worst-case quality
configuration, we use a 4-bit integer exponent for logarithmic
representation of the synaptic weight matrix. Each Conv pro-
cessing unit implements the proposed dot-product architec-
ture including an on-chip stationary weight matrix for 52, 000
entries of 4-bit integer each one to store W ∈ N5×5×2×32

andW ∈ N5×5×32×64 forH1_CONV andH3_CONV, respec-
tively. The same dot-product architecture is implemented in

FIGURE 18. Noise tolerance on hardware PU with custom floating-point
approximation, (a) exhibits accuracy degradation applying 50% of noise
amplitude, and (b) illustrates convergence of inference with 400 spikes.

the FC processing unit without stationary synaptic weight
matrix. The hardware mapping and the computation schedule
of this implementation are displayed in Tab. 8 and Fig. 19.
As shown in the computation schedule in Tab. 8 and

Fig. 19, this implementation achieves a maximum hardware
PU latency of 1.27 ms according to Eq. (10), and a CPU
latency of 1.67 ms. Therefore, applying Eq. (11), we obtain a
latency of 1.67ms per spike cycle as shown in Fig. 19. In this
case, the cyclic bottleneck is in the CPU performance.

This quality configuration achieves an accuracy of 98.84%
correct classification on the 10, 000 image test set with 1000
spikes. This indicates an accuracy degradation of 0.46%. For
output quality monitoring, the noise tolerance plot in Fig. 20
revels accuracy degradation having 40% noise on the input
images, and convergence of inference with 600 spikes. The
particular SbS network implementation under approximate
processing demonstrates a minor impact on the overall accu-
racy. This exhibits remaining budget for further approximate
processing approaches.

The post-implementation resource utilization and power
dissipation are shown in Tab. 9.
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TABLE 8. Performance of hardware processing units with hybrid
logarithmic approximation.

FIGURE 19. Performance of processing units with hybrid logarithmic
approximation, (a) exhibits computation schedule, and (b) illustrates
cyclic computation schedule.

C. RESULTS AND DISCUSSION
As a reference, the SbS network simulation on embedded
CPU using standard 32-bit floating-point achieves an accu-
racy of 99.3% with a latency of TSC = 34.28ms. As a second
reference point, the network simulation on hardware process-
ing units with standard floating-point achieves an accuracy
of 98.98% with a latency TSC = 3.18ms. As result we get
a 10.7× latency enhancement and an accuracy degradation
of 0.32%. The tolerance plot in Fig. 15 reveals accuracy
degradation having 50% noise on the input images, and con-
vergence of inference with 400 spikes. In this case, the SbS
network deployment with precise computing proves extraor-
dinary inherent error resilience, and hence, this represents a
great potential for approximate processing.

As a demonstration of the proposed dot-product archi-
tecture, the SbS network simulation on hardware PUs with
synaptic representation using 5-bit custom floating-point
(4-bit exponent, 1-bit mantissa) and 4-bit logarithmic (4-bit
exponent) achieve 20.5× latency enhancement and accu-
racy of 98.97% and 98.84%, respectively. This results in
an accuracy degradation of 0.33% and 0.46%, respectively.

TABLE 9. Resource utilization and power dissipation of processing units
with hybrid logarithmic approximation.

FIGURE 20. Noise tolerance on hardware PU with hybrid logarithmic
approximation, (a) exhibits accuracy degradation applying 40% of noise
amplitude, (b) illustrates convergence of inference with 600 spikes.

For output quality monitoring, the noise tolerance plot in
Fig. 18 and Fig. 20 reveal accuracy degradation when having
50% and 40% noise on the input images, and convergence
of inference with 400 and 600 spikes, respectively. There-
fore, the design exploration under the proposed approxi-
mate computing approach indicates sufficient inherent error
resilience for further and more aggressive approximate pro-
cessing approaches.

Regarding resource utilization and power dissipation with
the proposed approach, the Conv processing units have a
43.24% reduction of BRAM, and a 12.35% of improve-
ment in energy efficiency over the standard floating-point
implementation. However, the proposed approach does not
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TABLE 10. Experimental results.

TABLE 11. Platform implementations.

FIGURE 21. Power dissipation breakdown of platform implementations, (a) Ref. [14] architecture with homogeneous AUs using standard floating-point
arithmetic (IEEE 754), (b) reference architecture with specialized heterogeneous PUs using standard floating-point arithmetic (IEEE 754), (c) proposed
architecture with hybrid custom floating-point approximation, and (d) proposed architecture with hybrid logarithmic approximation.

reuse the available floating-point operator cores instantiated
from other computational sections (see Tab. 5). Therefore,
the logic required for the dot-product must be implemented,
which is reflected as additional utilization of LUT and FF
resources. The experimental results of the design exploration
are summarized inTab. 10. The platform implementations are
summarized in Tab. 11, and their power dissipation break-
downs are presented in Fig. 21.

VI. CONCLUSION
In this work, we accelerate SbS neural networks with a
dot-product functional unit based on approximate com-
puting that combines the advantages of custom floating-
point and logarithmic representations. This approach reduces
computational latency, memory footprint, and power dis-
sipation while preserving classification accuracy. For out-
put quality monitoring, we applied noise tolerance plots
as an intuitive visual measure to provide insights into
the accuracy degradation of SbS networks under different

approximate processing effects. This plot revels inherent
error resilience, hence, the possibilities for approximate
processing.

We demonstrate our approach using a design exploration
flow on a Xilinx Zynq-7020 with a deployment of SbS
network for the MNIST classification task. This imple-
mentation achieves up to 20.5× latency enhancement, 8×
weight memory footprint reduction, and 12.35% of energy
efficiency improvement over the standard floating-point
hardware implementation, and incurs in less than 0.5% of
accuracy degradation. Furthermore, with a noise amplitude
of 50% added on top of the input images, the SbS net-
work presents an accuracy degradation of less than 5%.
As output quality monitor, the resulting noise tolerance plots
demonstrate a sufficient QoR for minimal impact on the
overall accuracy of the neural network under the effects of
the proposed approximation technique. These results suggest
available room for further and more aggressive approximate
processing approaches.
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In summary, based on the relaxed need for fully accu-
rate or deterministic computation of SbS neural net-
works, approximate computing techniques allow substantial

Algorithm 2 SbS Network Inference

input: Layers of the network as H l , where
l is the layer index.

input: NL as the number of layers.
input: N l

X ,N
l
Y as the size of layers.

input: NSpk as the number of spikes for inference (itera-
tions).

output: H l .
1: for t = 0 to NSpk − 1 do

Initialization of H l(iX , iY , :) :
2: if t == 0 then
3: for l = 0 to NL − 1 do
4: for iX = 0, iY = 0 to N l

X − 1,N l
Y − 1 do

5: for iH = 0 to N l
H − 1 do

6: H l(iX , iY , iH ) = 1/N l
H

7: end for
8: end for
9: end for
10: end if

Production of spikes :
11: for l = 0 to NL − 1 do
12: if l == 0 then
13: Draw spikes from input // (Algorithm 3)
14: else
15: Draw spikes from H l // (Algorithm 3)
16: end if
17: end for

Update layers :
18: for l = 0 to NL − 1 do
19: Update H l // (Algorithm 4)
20: end for
21: end for

Algorithm 3 Spike Production

input: Layer as Ht ∈ RNX×NY×NH , where
NX is the layer width,
NY is the layer height
NH is the length of Eh (IP vector).

output: Output spikes as Soutt ∈ NNX×NY

1: for iX = 0, iY = 0 to NX − 1, NY − 1 do
Generate spike :

2: th = MT19937PseudoRandom()/(232 − 1)
3: acu = 0
4: for iH = 0 to NH − 1 do
5: acu = acu+ Ht (iX , iY , iH )
6: if th ≤ acu or iH == NH − 1 then
7: Soutt (iX , iY ) = iH
8: end if
9: end for

10: end for

enhancement in processing efficiency with moderated accu-
racy degradation.

VII. SUPPLEMENTARY MATERIAL
A. SBS ALGORITHM
The SbS network inference is described in Algorithm 2,
while spike production and layer update are described in
Algorithm 3 and Algorithm 4, respectably.

Algorithm 4 SbS Layer Update

input: Layer as H ∈ RNX×NY×NH , where
NX is the layer width,
NY is the layer height
NH is the length of Eh (IP vector).

input: Synaptic matrix asW ∈ RKX×KY×MH×NH , where
KX × KY is the size of the convolution/pooling kernel,
MH is the length of Eh from previous layer,
NH is the length of Eh from this layer.

input: Input spike matrix from previous layer as S int ∈

NNXin×NYin , where
NXin is the width of the previous layer,
NYin is the height of the previous layer.

input: Strides of X and Y as strideX and strideY , respec-
tively.

input: Epsilon as ε ∈ R.
output: Updated layer as Hnew

∈ RNX×NY×NH .
Update layer :

1: zX = 0 // X and Y index for S int
2: zY = 0
3: for iY = 0 to NY − 1 do
4: for iX = 0 to NX − 1 do
5: Eh = H (iX , iY , :)

Update IP :
6: for jX = 0, jY = 0 to KX − 1,KY − 1 do
7: st = S int (zX + jX , zY + jY )
8: Ew = W (jX , jY , st , :)
9: Ep = 0

Dot-product :
10: r = 0
11: for jH = 0 to NH − 1 do
12: Ep(jH ) = Eh(jH )Ew(jH )
13: r = r + Ep(jH )
14: end for
15: if r 6= 0 then

Update IP vector :
16: for iH = to NH − 1 do
17: hnew(iH ) = 1

1+ε

(
h(iH )+ ε

Ep(iH )
r

)
18: end for

Set the new H vector for the layer :
19: Hnew(iX , iY , :) = Ehnew

20: end if
21: end for
22: zX = zX + strideX
23: end for
24: zY = zY + strideY
25: end for
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