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ABSTRACT Despite FPGAs rapidly evolving to support the requirements of the most demanding emerging
applications, their high static power consumption, concentrated within the routing resources, still presents a
major hurdle for low-power applications. Augmenting the FPGAs with power-gating ability is a promising
way to effectively address the power-consumption obstacle. However, the main challenge when implement-
ing power gating is in choosing the clusters of resources in a way that would allow the most power-saving
opportunities. In this paper, we take advantage of machine learning approaches, such as K-means clustering,
to propose efficient algorithms for creating power-gating clusters of FPGA routing resources. In the first
group of proposed algorithms, we employ K-means clustering and exploit the utilization pattern of routing
resources. In the second group of algorithms, we enhance the power-gating efficiency by minimizing the
power overhead introduced by power-gating logic and by taking into account the size of routing multiplexers,
which influences the power-gating efficiency. Finally, we enhance and further develop the baseline FPGA
routing algorithm to be aware and take advantage of power gating opportunities. The experimental results on
Titan benchmark suite and the latest Intel Stratix-IV FPGA architecture in VTR 8.0 show that our approaches
achieve an improvement of about 70%, on average, in reducing the FPGA static power consumption over
the best power-gating approaches proposed in the previous studies.

INDEX TERMS Field-programmable gate arrays, static power consumption, power gating, routing algo-
rithm, machine learning.

I. INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) have become an
ubiquitous alternative to Application-Specific Integrated Cir-
cuits (ASICs), thanks to their compelling advantages such
as reduced nonrecurring engineering costs, almost unlim-
ited design flexibility, fast time-to-market, and inexpensive
design updates. However, the penetration of FPGAs in the
power-limited applications and devices (e.g., mobile phones)
is lagging due to their relatively high static power consump-
tion in comparison with ASICs [1]. Therefore, it is crucial
to timely develop new techniques that could help shrink the
FPGA static power consumption and enable them to compete
with ASICs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xinyu Du .

Previous research has shown that power gating can lead
to significant power saving in the FPGA routing and logic
resources [2]–[7]. These so-called power-gating regions can
be controlled statically (using the FPGA configuration bits
at configuration time) or dynamically (using an on-chip spe-
cialized circuitry at run-time). Given that the most significant
part of the FPGA static power is consumed by nothing else
but FPGA routing resources (70% up to 90% of the total
static power consumption [8], [9]), it is the most advanta-
geous to apply power-gating techniques to the FPGA routing
resources.

Although power gating may seem to be a straight-
forward approach, the benefits of using it come with
inevitable area and power overheads [10], [11]. Pre-
vious studies proposing fine-grained [3], [7], [12]–[16]
or coarse-grained [6], [17] power-gating architectures, have
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mainly focused on granularity—determined by the number of
resources in a power gating region—and employed relatively
simple heuristics to find power-gating solutions [3]–[7], [16],
[17]. These studies show that the probability of providing an
optimal clustering through heuristic approaches is relatively
low.

An entirely different approach to designing the power-
gating regions is employing Machine Learning (ML) to
enhance FPGA design automation. Several pioneering work
attempted to enhance FPGA design-automation algorithms
through optimizing their parameters with the help of
ML approaches [18]–[22]. Furthermore, several studies
employ ML techniques to improve the quality of congestion
estimation in the placement and routing steps of the design
automation process [23]–[26]. To the best of our knowledge,
none of the previous studies have attempted to apply an
ML-inspired approach to design power gating regions for the
FPGA routing network in order to reduce the FPGA static
power consumption.

In this paper, we introduce several new notions: similarity
metric, cluster pattern, and power gating efficiency, with the
goal of proposing a set of novel power-gating algorithms.
These algorithms are all based onK-means clustering, a well-
known ML approach that aims at grouping objects based on
their similarity and can be adapted to the clustering problem
at hand.

To validate the effectiveness of our proposed clustering
algorithms, we implement them in Verilog-to-Routing (VTR)
open-source toolset [27] and compare them with the previous
work [5]–[7]. We carry out an extensive set of experiments
using the industrial-scale Titan benchmarks [28], as well
as the Intel Stratix-IV FPGA architecture model, the most
advanced FPGA architecture with integrated support in the
VTR 8.0 suite [27]. We exploit the latest version of Circuit
Optimization For FPGA Exploration (COFFE) [29] supplied
with 22nm technology model to extract the transistor sizing
of the target FPGAs, and HSPICE circuit-level simulations
for estimating the area and delay of the FPGA resources.

In this paper, we extend our previous work [30] with the
following novel contributions:
• We propose a new clustering algorithm, which, for the
first time, takes into account the size of the routing
multiplexer as well as the overhead, in terms of area and
the power-consumption, of the power-gating circuitry.
The proposed algorithm aims to minimize the overall
static power consumption of the FPGA routing network.
We demonstrate that the proposed algorithm is signif-
icantly more advantageous than previous approaches,
which are solely focused on maximizing the number of
the candidate multiplexers that can be powered off.

• We design and implement a power-gating aware
FPGA router to improve the utilization of the exist-
ing power-gating regions and further reduce the FPGA
static-power consumption.

We show that employing our most-optimized routing algo-
rithm, called, SiM-IPR-MP, with 32 clusters per switch

matrix and the power-gating aware router can shrink
the FPGA static power consumption by 53%, on aver-
age, whereas the best power-gating approach presented by
Seifoori et al. [7] achieves 31% power reduction, on average;
this presents an improvement of about 70% over the state of
the art.

The remainder of the paper is structured as follows. First,
we present the related work (Section II). Then, in Section III,
we provide necessary background in FPGA routing archi-
tecture and K-means clustering, together with an example
that motivates this work. In Section IV, we present an algo-
rithm based on standard K-means clustering and our four
proposed algorithms, namely, SiM, SiM-PR, SiM-IPR, and
SiM-IPR-MP. In the same Section, we present the modified
FPGA routing algorithm. In SectionV, we focus on the exper-
imental methodology and the results. Section VI concludes
the paper.

II. RELATED WORK
In this section, we survey the related work from two per-
spectives: First, we review the research studies on reducing
the static power. Second, we review the research on applying
machine learning approaches for increasing the efficiency of
FPGA designs, for example by optimizing the area, timing,
and power metric of FPGA designs through FPGA parameter
tuning [18]–[22] or by optimizing the routing and placement
quality of FPGA designs [23]–[26].

A. POWER GATING APPROACHES
To reduce the FPGA power consumption, prior studies sug-
gest applying the power gating techniques in either the
FPGA logic or the routing resources. Here, we will focus
on those studies which implement power gating in the rout-
ing resources, as they are the most related to our proposed
approaches in this paper.

Two distinct power-gating techniques exist: static power
gating (applied during the configuration time to power off the
resources which will not be used) and dynamic power gating
(applied during the runtime, to power off the FPGA modules
during their idle periods of work). Our approaches, discussed
later, fall into the former category.

In one of the first works, Bsoul et al. augment each routing
Switch Matrix (SM) to operate in one of three states of
always-ON, always-OFF, or power controlled. This approach
increases the routing cost of using resources outside the
constrained area of the functional module to reduce the num-
ber of the always-ON SMs. The efficiency of this approach
primarily depends on the number of entirely unused SMs,
as the partially used SMs cannot be always powered off.
The proposed approach decreases the power consumption
by 70% to 84%. Even though the reported power saving
is considerable, since the results are obtained based on the
best number of always-ON SMs and also the experimen-
tal benchmarks are selected from MCNC benchmarks [31],
the results cannot be generalized to commercial-like andmore
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realistic benchmarks. In addition, implementing dynamic
power gating is faced with great challenges such as a) control-
ling inrush current,1 and b) establishing a reasonable trade-off
between the power overhead of controller circuit and control-
ling signals and achieved power saving. Furthermore, extract-
ing the resource idle periods which should be long enough
to justify resource overhead of power gating is challenging,
especially in input-dependent and interactive applications.
Finally, employing dynamic power gating is orthogonal to
static power gating and our focus in this paper is enhancing
the static power gating.

Li et al. proposed using a Power-Control Hard Macro
(PCHM) to implement a coarse-grained power gating of
the FPGA logic blocks and their associated connection
blocks [17]. In addition, they manage to decrease the power
consumption of the clock network, by embedding the clock
gating logic into PCHM. Finally, they modify the cost func-
tion in the FPGA placement algorithm with the aim of min-
imizing the number of used power gating regions and hence
increasing the power gating opportunities in each design. The
proposed enhanced placement algorithm is orthogonal to our
proposed enhanced routing algorithm.

Hoo et al. employed a static coarse-grained power gating
approach [6]. In each SM, they created four power gating
regions, composed of the unidirectional SM buffers of wires
going in the same direction. In addition, they adapted the cost
function in the FPGA routing algorithm tominimize the num-
ber of inactive power gating regions. In the proposed routing
algorithm, the cost of employing each routing resource is
scaled down exponentially with the number of nets through
the power gating cluster associated with the routing resource.
Hoo et al. also dynamically turn off the FPGA modules
during their idle periods, to increase the power savings. They
reported that approximately 40% power gating regions could
be turned off in their experiments.

Gayasen et al. proposed a static power-gating scheme with
various granularities composed of a rectangular array ofCon-
figurable Logic Blocks (CLBs). In addition, they propose the
Region Constraint Placement (RCP) algorithm, whose aim is
placing the FPGA clusters with high logic correlation near
to one another [4]. The proposed placement algorithm places
the design into the restricted contiguous regions. The results
show that RCP can reduce the static power consumption by
19%.

Yazdanshenas et al. employed a static fine-grained power
gating scheme in logic and routing resources to power off
the unused SRAM cells [16]. They dedicate a configuration
cell to control the power consumption of each switch box.
In addition, they investigate the effect of dividing the SRAM
cells of LUTs in power gating regions with various sizes
on power saving. They achieve up to 75% reduction in the
power consumption of logic blocks, however, they could only

1The transient large current, drawn from power lines during the power
state switching.

achieve less than 4% reduction in power consumption of
switch boxes.

The SM multiplexers and their associated buffers and
SRAM cells are equipped with power gating circuit in archi-
tecture proposed by Seifoori et al. [7]. Here, the authors
extract the utilization pattern of routing resources in various
routing architectures and investigate the effect of different
power gating granularities. Based on their observations, they
try to determine the most appropriate power gating granu-
larity for each power gating architecture. Their experiments
show that, by employing proper granularity, the routing power
consumption can be decreased by 57%. However, the under-
lying routing architecture in their work is based on uniform
wire lengths and simple switch patterns, which is not repre-
sentative of modern FPGA routing architectures.

The composition of power gating regions and their uti-
lization pattern considerably affect the obtained power sav-
ing. Utilizing a heuristic approach to compose power gating
regionsmay result in a too few power gating opportunities and
significant power overhead, and hence adverse the expected
result. To alleviate the power overhead and increase the effec-
tiveness of power gating approach in taking advantages of
unused resources opportunities, we analyze the resource uti-
lization patterns and then employ the data driven approaches
to decide the optimum power gating region composition.

B. UTILIZING ML APPROACHES TO INCREASE THE
EFFICIENCY OF FPGA DESIGNS
Previous research for optimizing the FPGA design by lever-
aging the ML approaches can be classified into two cat-
egories: (1) auto-tuning the FPGA design tool parameters
and (2) increasing the quality of congestion estimation and
routability prediction in FPGAs.

Optimizing and tuning the parameters of synthesis, map,
and place-and-route design tools can significantly affect the
target design in term of area, timing, and power metrics.
However, due to enormous search space and long time
needed to rebuild the design for different configurations,
manual search for optimal parameters is impractical. Accord-
ingly, the related works in the first category aim to opti-
mize the configuration parameters using ML approaches.
Mametjanov et al. leverage the linear regression and ran-
dom forest to optimize the configuration parameters to tune
the power consumption and performance of design [18].
Using Beysian classifier, Kapre et al. automate optimiz-
ing parameter selection through learning from a series
of preliminary runs [19]. They reduce the FPGA timing
closure by 70%. Xu et al. apply the multi-armed bandit
technique to explore the large design space to autotune
the tool-specific parameters, which control the complete
FPGA design [20]. In addition, a parallelization scheme
is used to parallelize exploring the complex design space.
Yanghua et al. utilize the ML approach to predict the
timing closure in FPGA design with focus on increas-
ing the classification accuracy and decreasing the imple-
mentation iterations necessary in parameter selection [21].
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Ustun et al. also autotune the design tools parameters uti-
lizing the ML approaches [22]. In their proposed approach,
instead of utilizing the extracted feature from the place-and-
route iterations, the feature vector from the primitive steps
of FPGA design flow is applied for learning in autotun-
ing process; hence, the FPGA design closure is accelerated.
Since power prediction is a challenging concern in hardware
design, Lin et al. propose a learning-based power model to
estimate the power consumption of FPGA applications [32].
To this end, a set of representative applications is used
to construct training data in feature construction and their
corresponding power collection, which is used to create a
learning model to map the features to power estimation. The
resource usage and timing reports estimated by high-level
synthesis tools deviate significantly from the real results of
the corresponding implementation on target FPGA. Due to
the considerable importance of the resource usage and timing
estimation in evaluating hardware design, Makrani et al. use
machine learning approaches to achieve the throughput or
throughput-to-area estimation of designs on target FPGA
with high accuracy [33]. They first employ an automated
hardware optimization tool to achieve the optimized metrics
of the register-transfer level code, which is generated by a
high-level synthesis tool, and then compose the training data
set to employ in learning model to estimate the accurate
design metrics. To increase the mapping efficiency of arith-
metic operations on hardened blocks of FPGAs, Usten et al.
propose to use graph neural network to automatically learn
and extract the clustering pattern and operation mapping [34].
The training data is collected using the results of technology
mapping of a set ofmicrobenchmarks composed of arithmetic
operations.

Congestion estimation and routability prediction in the
placement stage can greatly improve the efficiency of place-
ment and routing of the implemented design. By leveraging
the simple regression technique, Qi et al. construct a conges-
tion model for guiding the global router [23]. Applying the
proposed model decreases the violation within design rule
and routing runtime. Grewal et al. apply various clustering
and regressoin techniques to model the relationship between
different stages of FPGA design flow and the underlying
behavior of the circuit to optimize the FPGA design [24].
The required training data is extracted from a broad range
of 372 different benchmarks running on FPGAs with seven
different academic configurations. To estimate the conges-
tion, Pui et al. apply a linear regression model along with
features based on wire length per area, pin count, and a
feature related to the surrounding cells [25]. The results
demonstrate that the accuracy of this model in predict-
ing congestion drops by 30%. The approach presented by
Maarouf et al. increases the estimation accuracy through
utilizing three new congestion related features with shorter
runtime [35]. To estimate the routing congestion in high level
synthesis, Zhao et al. propose an ML model to resolve con-
gestion in source code through utilizing informative physical
features [26].

III. BACKGROUND AND MOTIVATION
In this section, we give the basics of the FPGA architecture
and K-means clustering and motivate our work.

A. FPGA ARCHITECTURE
Modern FPGAs consist of columns of configurable logic
blocks and heterogeneous hardened units such as Digital
Signal Processing (DSPs), external memory interfaces, pro-
cessor cores, and transceivers [36], [37]. Fig. 1 illustrates one
such heterogeneous FPGA architecture.

FIGURE 1. Common FPGA architecture. Besides logic blocks (in blue),
FPGAs contain hard IP blocks (for example, DSPs), embedded memory
blocks, external memory interfaces, transceivers, phased-locked loops,
etc. Connectivity between all these elements is established using a
configurable routing network, composed of horizontal and vertical
interconnects and configurable switches.

The basic units of FPGAs are called Configurable Logic
Blocks (CLBs), in Xilinx terminology, or Logic Array Blocks
(LABs), in Intel terminology. LABs contain:
• Logic Elements (LEs), consisting of programmable
Look-Up Tables (LUTs), flip-flops, and multiplexers
providing additional connectivity.

• Intra-LAB connections between LE inputs, on one side,
and the local feedback LE outputs and inter-LAB wires,
on the other side.

The connections between FPGA building blocks are pro-
vided by the surrounding programmable routing fabric, com-
posed of horizontal and vertical routing wires and switch
matrices. Modern FPGA routing architectures use a mix of
routing wires of various lengths, to balance the trade-off
between area, delay, and flexibility of the routing network.
For instance, the Intel Stratix-IV FPGA routing architecture
has vertical wires spanning four and 12 rows of the FPGA
array (V4 and V12, respectively), and horizontal wires span-
ning four and 20 columns (H4 and H20, respectively). The
short wires are directly accessible by LAB inputs and outputs,
while the long wires are accessible through both short and
long wires, thanks to SM multiplexers.

The routing fabric of the Intel Stratix IV FPGA is illus-
trated in Fig. 2. As depicted in this figure, SMs have hetero-
geneous routing multiplexers: large (40:1) and small (12:1);
these multiplexers drive the long and short wires, respectively
(as illustrated in Fig. 3). Four different types of switch matri-
ces can be identified in the architectural description of the
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FIGURE 2. Connectivity between FPGA elements is achieved using FPGA
routing resources: wires organized in horizontal and vertical routing
channels and routing switch matrices, which enable wires to connect to
each other. This figure illustrates a modern FPGA routing network based
on the Intel Stratix IV FPGA architecture description available in VTR
tool [27].

FIGURE 3. An illustration of a part of a switch matrix inside Stratix IV
FPGA. It shows two multiplexer types (12:1 and 40:1) as well as two types
of connections: (1) between column wires (V4, V12) and LAB inputs and
(2) among LAB outputs, column interconnects, and row interconnects.

Intel Stratix IV FPGA architecture, available as part of the
VTR 8.0 suite [27]. They are listed in Table 1 and shown
spatially distributed in Fig. 4.

B. MOTIVATION
Static power dissipation in FPGA routing network can
be reduced using power gating, by clustering the routing
resources into groups which, if unused, can be disconnected
from the power supply. Clustering can be fine grained or
coarse grained [2]–[7], [16], [17]; both approaches provide
benefits at certain costs: fine granularity brings higher power
gating opportunities at the cost of increased area and
power overhead, while coarse granularity suffers from lower
power gating opportunities, albeit at reduced area and power
overhead. Additionally, for any granularity, clustering can
be done in many different ways, which are not all equally
effective.

Let us illustrate the challenge of clustering routing
resources on an example of a simple FPGA routing archi-
tecture composed of wires of length one, arranged in 32-bit

TABLE 1. Four routing switch matrix types extracted from the Stratix IV
FPGA architecture description provided in VTR [38]. They are composed
of 12:1 and 40:1 multiplexers, but the number of multiplexers per SM
type differs, as the SM topologies are adapted for connecting the wire
segments of nonuniform lengths.

FIGURE 4. Spatial distribution of switch matrices in Stratix IV, shown on a
small part of the FPGA. Horizontal and vertical lines represent routing
channels, which are composed of unidirectional wires of nonuniform
lengths (Fig. 2). Four different types of switch matrices can be identified
(SM1, SM2, SM3, and SM4, listed in Table 1). They differ in the number
of 12:1 and 40:1 multiplexers. A periodic pattern in switch matrix
distribution can be observed, which is expected given that the wire
lengths are all a multiple of four.

wide routing channels and connected to each other through
switch matrices that contain a uniform number and type of
multiplexers. Let us further consider usb-phy circuit, a sample
benchmark from IWLS’05 benchmark suite [39] and use
VTR suite to place and route this circuit. Fig. 5 shows one
randomly chosen switch matrix (SM1), with routing multi-
plexers equally distributed on all fours sides and the multi-
plexers that are occupied by the benchmark circuit shaded in
gray. Table 2 compares the utilization of routing multiplexers
of SM1 and another randomly chosen switch matrix (SM2);
in this table, zero stands for unused and one for in use. Clearly,
the utilization of multiplexers varies among the switch
matrices.

One clustering approach is to group the multiplexers driv-
ing the tracks with the same number (id in the channel)
in all four sides of the switch matrix into a single power
gating region; this strategy has previously been evaluated by
Seifoori et al. [7]. The result is 16 clusters in Table 2: M1 cor-
responds to the multiplexers in the first cluster, which drive
the wire segments of track number one in all four routing
channels. Similarly, M2 is another cluster, which drives the
wire segments of track number two and etc. This clustering
approach can successfully turn off 25% of all clusters of SM1
(M5, M11, M15, and M16, in red); however, it can turn off
only one power gating region in SM2 (M14, in red). This
is equivalent to 36% and 11% of all unused multiplexers
in SM1 and SM2, respectively. Table 3 presents another
possible clustering scheme, in which we name each of the
16 power gating regions as Gi, 1 ≤ i ≤ 16, and assign
to them the routing muxes as shown in Fig. 5. This new
clustering can successfully switch off about 80% and 36%
of all unused multiplexers in SM1 and SM2, respectively.
Although the modified clustering provides considerable and
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TABLE 2. The utilization pattern of multiplexers in two randomly chosen switch matrices inside the FPGA region occupied by usb-phy benchmark. To
place and route the benchmark, VTR [38] and a simplified FPGA architecture illustrated in Fig. 5 are used. In red, we highlight all power-gating clusters
that can be powered off because they are fully unused.

TABLE 3. Clustering labeled Gi in Fig. 5 is superior to clustering in Table 2, as more unused multiplexers are grouped in the same power gating regions.
In red, we highlight all the clusters that can be powered off because they are fully unused.

FIGURE 5. Distribution of used SM multiplexers and power gating groups
(sample SM No. 1 in usb-phy circuit).

acceptable results on this example, we have no guarantee that
such equally acceptable results would be obtained if applied
to all the remaining switch matrices. Therefore, to find a
clustering approach that works well in general, it is crucial
to examine a large set of applications. Given that finding
an optimal clustering scheme is an NP-complete problem,
we employ ML to find a near-optimal solution.

C. K-MEANS CLUSTERING
The growing need of knowledge discovery in the
ever-increasing amount of data has led to the advent of
clustering algorithms; they play an important role in a wide
variety of areas ranging from pattern classification [40]
to knowledge discovery and data mining [41]. K-means
algorithm is a widely acceptable unsupervised clustering
algorithm, which has been extensively studied [42], [43].
K-means clustering partitions the data into a prede-

termined number of clusters so that a similarity metric

(e.g., Euclidean distance) within clusters and between clus-
ters is minimized and maximized, respectively [44], [45].
Generally, the similarity metric and the clustering objective
function is chosen based on the application [46].

Let V = {v1, v2, . . . , vN } be a collection of N data
objects and each vi vector denoting the feature vector of
ith object. The purpose of K-means algorithm is clustering
these data objects into K clusters C = {C1,C2, . . . ,CK },
where Cj corresponds to the jth cluster centers. Initially,
the cluster centers are selected arbitrarily. Then, the clustering
algorithm proceeds in an iterative way, where each iteration
is composed of the following steps:

1) Assign each data point xi, 1 ≤ i ≤ N , to the cluster
Cj, 1 ≤ j ≤ K , whose center has the least squared
Euclidean distance to xi [47]–[49].

2) Compute the cluster center as means of all the
members.

The iterations continue until the convergence is reached
(i.e., the cluster centers do not change in consecutive algo-
rithm iterations).
K-means clustering quality strongly depends on three

user-specified parameters: a) the total number of clusters
(i.e., K ), b) the homogeneity metric, and c) the cluster centers
initialization. Decision making on the number of clusters
is often carried out in an ad hoc manner, depending on
the problem definition, prior knowledge, and experiments.
Alternatively, one can run K-means with variable number
of clusters and then select the number of clusters with the
most promising results. The most dominant homogeneity
metric in various versions of K-means clustering algorithm
is the distance measure; however, other homogeneity metrics,
in particular if based on the target application, can replace the
distance metric.

Since the K-means algorithm converges to the local min-
ima, different initial configurations can result in unequally
effective clustering. A large number of techniques have been
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proposed to enhance the robustness of K-means clustering
algorithm against the sensitivity toward the initialization.
To overcome the local minima problem, one can runK-means
for various cluster initialization and select the one with the
least squared error. Employing this approach when dealing
with large data sets incurs a high computation cost. Other
approach is, for instance, global K-means clustering: in each
iteration, deterministically find the optimal candidate for each
cluster center among the data objects through comparing the
clustering results of various K-means runs versus assigning
each data object as the center of the desired cluster [50]. This
algorithm is computationally demanding as well, because it
runs the K-means clustering several times for finding each
cluster center. Yet another approach is to select the center
of the first cluster randomly and the centers of other clusters
based on their distance to the previously selected centers; this
approach is called k-means++ Arthur and Vassilvitskii [51].
The time complexity of this algorithm is acceptable, in com-
parison with other variations. Moreover, Arthur and Vassil-
vitskii [51] guarantee the existence of an approximation of
optimum (i.e., log K ) for k-means++. More precisely, let us
consider the potential function for an arbitrary clustering C ,
defined as the total squared distance between each data point
and its closest center, as follows:

φ =
∑
xεX

mincεC ‖x − c‖2 (1)

and let COPT denote the optimal clustering for a set of data
points. Accordingly, If k-means++ constructs the cluster C ,
one can prove that the corresponding potential function satis-
fies the following:

E[φ] = 8(lnK + 2)φOPT (2)

Hence, in this work, we employ k-means++ approach to
initialize the cluster centers.

IV. OUR CLUSTERING ALGORITHMS
As discussed in Section III-B, obtaining an optimal or
near-optimal multiplexer clustering in one switch matrix
does not guarantee equally acceptable results in other
switch matrices. In addition, looking for the optimal
multiplexer clustering through implementing all possible
clustering solutions and their comparison is impractical, due
to the prohibitively large solution space. The above issues
are common in data-analysis problems, frequently solved
using machine learning techniques [52]–[56]. Hence, instead
of employing empirical approaches to cluster the switch
matrice multiplexers (as done previously), we opt for using
an ML approach (e.g., K-means). Additionally, we derive
here a newML-based algorithm for efficiently addressing the
power-gating challenge.

The first step of our clustering approach is extracting the
training data from the input set of L learning benchmarks,
i.e., building a set of feature vectors as follows:

1) Place and route L learning benchmarks on the target
FPGA architecture.

2) Find all the used switch matrices2 inside the FPGA
region occupied by the learning benchmark. If the
FPGA routing resources employ more than one type of
switch matrices, e.g., some SMs differ in the number
or size of multiplexers as is the case in Intel Stratix-IV
architecture, then all the unique SM types need to
be identified and treated as independent clustering
problems.

3) Build feature vectors vi for each multiplexer Mi of a
switch matrix as the following row vectors:

vi =
[
vi1 vi2 . . . viL

]
. (3)

Here, vin is a row vector that corresponds to the utiliza-
tion of multiplexer Mi (1 if in use, 0 otherwise) in all
switch matrices of nth benchmark. The element in the
jth column of vector vin therefore corresponds to the
utilization of the multiplexer Mi in the jth instance of
the switch matrix in benchmark Bn: 1 ifMi is in use by
the benchmark Bn, 0 otherwise. Given that the number
of used switch matrices in learning benchmarks is not
the same across all benchmarks, the length of vectors
vin is not constant either.

4) Add vectors vi to the training data set V .
In the remainder of this section, we first present a clustering

algorithm that uses K-means algorithm to build power-gating
clusters (Section IV-A). Then, we introduce a novel metric
called utilization similarity and derive new clustering algo-
rithms (Section IV-B). Finally, we modify the FPGA routing
algorithm [57] to account for the presence of power-gating
clusters and use them efficiently (Section IV-C).

A. CLUSTERING USING K-MEANS ALGORITHM (KM)
Our first power-gating approach is a straightforward imple-
mentation of K-means clustering, following the steps of
Algorithm 1. Given the training data set V and the desired
number of power-gating regions K , the algorithm starts by
initializing cluster centers. Then, it empties all clusters,
assigns the multiplexers to the closest clusters (smallest
Euclidean distance to the cluster center), and recomputes
the cluster centers. These steps are repeated until there are
no changes in the cluster composition (i.e., the multiplexers
assigned to the clusters do not change from one iteration
to another) or until the maximum number of iterations is
reached.

To initialize the centers of the cluster, we employ
k-means++, one of the most commonly used initialization
approaches [58] (Section III-C). InitCenters function,
shown in Algorithm 2, starts by initializing the center of the
first cluster µ1 with a randomly chosen element from the
set V . Then, for every vi in V , it calls ComputeDistance
to find the Euclidean distance di,j between vi and an already
initialized cluster center µj:

di,j = ||vi − µj||2 (4)

2The switch matrices with at least one used multiplexer.
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Algorithm 1: Power Gating Using K-means Clustering
Input: Data set: V = {vi} , i = 1..N
Input: Total number of clusters: K
Output: Clusters C = {C1,C2, . . . ,CK }
Variables: Cluster centers: µ1, µ2, . . . , µK
InitCenters(V , K )
while Cluster elements change do

foreach Ci ∈ C do
Ci← ∅

foreach vi ∈ V do
k ← TheClosestCluster(vi, C)
Ck ← Ck ∪ vi
µk ← UpdateCenter(µk , vi)

Algorithm 2: Function InitCenters for Computing
Initial Cluster Centers
Input: Data set: V = {vi} , i = 1..N
Input: Total number of clusters: K
Output: Cluster centers: µ1, µ2, . . . , µK
Variables: Distance between vi and µj: di,j; sum of

distances squared: dssq; next cluster ID: k;
probabilistic distance metric: p

µ1← randomly chosen from V
k ← 2
while k < K do

dssq← 0
foreach vi ∈ V do

foreach µj, 1 ≤ j < k do
di,j← ComputeDistance(vi, µj)
dssq← dssq+ d2i,j

p← 0
foreach vi ∈ V do

pi,j←
d2i,j
dssq

if pi,j > p then
p← pi,j
µk ← vi

k ← k + 1

Finally, it computes the probability that vi may become the

new cluster center as
d2i,j∑

i=1..N d
2
i,j
, whereN is the cardinality of

set V . Vector vi that maximizes this probability is then chosen
as the initial center of the next cluster.

At the end of each iteration of the K-means clustering
algorithm, we call UpdateCenter function to find the
mean of all cluster members and update the cluster center
accordingly.

B. CLUSTERING USING UTILIZATION SIMILARITY
METRIC (SiM)
A power gating region is a collection of switch matrix
multiplexers controlled by a common power-gating circuit.

As shown earlier, multiplexers can be described using a fea-
ture vector in Eq. (3), where each dimension reflects the uti-
lization of the corresponding multiplexer in one of the switch
matrices (1, if used; 0, otherwise). Consequently, two feature
vectors vi and vj are identical only if their two corresponding
switch matrix multiplexers have exactly the same utilization
pattern across all learning benchmarks; there is no doubt that
these vectors should be assigned to the same power gating
region. However, in most practical cases, the feature vectors
differ significantly. To address this, we introduce utilisation
similarity metric as follows:

si,j =
∑

m=1..|vi|

{
1, if vi[m] = vj[m]
0, otherwise.

(5)

This metric, computed on a pair of feature vectors vi and
vj, is equal to the number of dimensionsm in which these two
vectors are the same: the higher it is, the more beneficial it is
to keep the two corresponding multiplexers inside the same
cluster.

The notion of the cluster center, presented in
Section IV-A, does not fit well the utilisation similarity metric
in (5). An alternative could be to use a clustermode, common
in categorical data clustering. A cluster mode is a vector
whose elements correspond to the most frequent value of that
dimension across all feature vectors of the cluster members.
However, this is not suitable either, because the majority of
the elements of the feature vectors in (3) are zeros, due to
the large number of unused multiplexers in the FPGA switch
matrices; consequently, the resulting cluster modes would
lean towards zero. Let us introduce the notion of a cluster
pattern ρ, as a measure of similarity between all cluster
members. Naturally, the cluster pattern of a single-member
cluster is equal to that member. Then, when assigning each
new member to the cluster, the cluster pattern ρ is updated
based on the feature vector v of the newly added element as
follows:

ρ[m] =


1, if ρ[m] = v[m] and v[m] = 1
0, if ρ[m] = v[m] and v[m] = 0
X, if ρ[m] 6= v[m],

(6)

such that 1 ≤ m ≤ |v|. Here, X indicates a value other than
zero and one.3 Therefore, we can express the power gating
efficiency ε of cluster Ci as the product of the cluster size and
the number of pattern elements different from X.

ε(Ci) = |Ci| ·
(
|ρi| − CountX(ρi)

)
. (7)

The higher the value of ε(Ci), the higher the similarity
between the cluster elements. The power gating efficiency of
all K clusters then becomes:

ε(C) =
∑
i=1..K

|Ci| ·
(
|ρi| − CountX(ρi)

)
. (8)

Since the expression in (7) is nonnegative, the higher the
value of ε(C), the better the clustering.

3In our implementation, without loss of generality, X is set to −1.
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Algorithm 3:Our Proposed SiM Clustering, Which Uses
Similarity Metric Defined in Eq. (5) and the Concept of
Cluster Pattern From Eq. (6)
Input: Data set: V = {vi} , i = 1..N
Input: Total number of clusters: K
Output: Clusters C = {C1,C2, . . . ,CK }
Variables: Cluster patterns: ρ1, ρ2, . . . , ρK
InitPatterns(V , K )
foreach vi ∈ V do

k ← TheMostSimilarCluster(vi, C)
Ck ← Ck ∪ vi
ρk ← UpdateClusterPattern(ρk , vi)

In the following subsections, we present four novel
approaches towards efficient clustering and power gating of
the FPGA routing multiplexers.

1) SiM CLUSTERING
Our first clustering algorithm, which we name SiM
(i.e., similarity clustering), is summarized in Algorithm 3.
This clustering aims to maximize the power gating effi-
ciency by using the cluster patterns instead of the cluster
centers and the similarity metric instead of the Euclid-
ian distance. The algorithm starts by calling the function
InitPatterns to initialize the cluster patterns. This func-
tion is similar to InitCenters; however, it replaces the
call to ComputeDistance with the computation of the
similarity metric in Eq. (5).

Then, for every vi in V , we search for the cluster yielding
the highest similarity metric between vi and the cluster pat-
tern, to insert vi in it. Finally, we update the cluster pattern
following Eq. (6).

It should be noted that starting new clustering iterationwith
existing cluster pattern is rather unlikely to result in an effi-
cient clustering solution, because CountX(ρi) would either
remain the same or increase as iteration advance. To iter-
atively repeat Algorithm 3, similar to K-means clustering,
we need a strategy for updating the cluster patters between
subsequent iterations. This is addressed in our next clustering
approach.

2) SiM-PR CLUSTERING
To render the SiM algorithm iterative, we choose to replace
the cluster pattern with a randomly selected member of the
cluster, at the end of each iteration of the algorithm. We call
this new algorithm SiM with pattern reduction (SiM-PR),
because the cluster pattern is reduced to another cluster mem-
ber. The SiM-PR approach is detailed in Algorithm 4.

3) SiM-IPR CLUSTERING
SiM and SiM-PR result in two extreme solutions. The former
completes only one iteration, while the latter allows for more
iterations but, at the end of every iteration, it reduces cluster
patterns to randomly chosen elements from the corresponding

Algorithm 4: Our Proposed SiM-PR Clustering. Unlike
SiM, This Algorithm Runs Multiple Iterations, at the End
of Every Iteration, Replaces the Cluster Pattern With a
Randomly Chosen Cluster Member. As a Consequence,
at the End of Every Iteration, the Patterns Elements Are
Reduced Back to Two Values Only: 0 and 1
Input: Data set: V = {vi} , i = 1..N
Input: Total number of clusters: K
Output: Clusters C = {C1,C2, . . . ,CK }
Variables: Cluster patterns: ρ1, ρ2, . . . , ρK
InitPatterns(V , K )
while Cluster elements change do

foreach vi ∈ V do
k ← TheMostSimilarCluster(vi, C)
Ck ← Ck ∪ vi
ρk ← UpdateClusterPattern(ρk , vi)

foreach Ci ∈ C do
ρi = RandomElementFromCluster(Ci)

clusters. The randomness in SiM-PR can help finding a more
efficient clustering solution compared to SiM, but it can also
cause the algorithm to remain in a locally-optimal solution.
Therefore, we propose an alternative in which the cluster pat-
terns are reduced incrementally, depending on the efficiency
metric defined in Eq. (7). We name this algorithm SiM with
Incremental Pattern Reduction (SiM-IPR) and show its imple-
mentation in Algorithm 5. Unlike SiM-PR, this algorithm
applies pattern reduction only onR (R < K ) clusters that have
the lowest power gating efficiency metric, which we compute
using Eq. (7). The parameter K stands for the total number
of clusters, while the parameter R (rate) is a variable, equal
to the number of clusters whose patterns are to be reduced
in the current clustering iterations. In our implementation,
we choose to set the initial value of R to K/2 and, in every
subsequent iteration, to reduce R by half.

4) SiM-IPR-MP CLUSTERING
The clustering algorithms proposed in Sections IV-B1, IV-B2,
and IV-B3 focus on grouping multiplexers with the highest
utilization similarity, without taking into account the effects
such a decision can have on the actual power consumption of
the entire switch matrix. The consequences we refer to here
are two-fold: first, adding a mux to a cluster can affect the
cluster pattern and, therefore, its power-saving opportunities.
Second, adding a mux to a cluster increases the cluster size
and the overall power consumption of the cluster; the latter
corresponds to the sum of the power consumption of the clus-
ter members and the power consumption of the power-gating
circuit itself.

Before proceeding, let us recall the meaning of dimensions
equal to zero in the cluster patterns (Eq. (6)): they correspond
to the muxes that are unused by all the cluster elements and,
consequently, can be powered off. For a cluster pattern of
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Algorithm 5: Our Proposed SiM-IPR Clustering. Unlike
SiM-PR, This Algorithm Applies Pattern Reduction Only
on R Clusters That Are the Most Inefficient, According to
Eq. (7). the Parameter R Stands for Rate. Its Initial Value
Is K/2. In Every Subsequent Iteration, It Is Reduced by
Half
Input: Data set: V = {vi} , i = 1..N
Input: Total number of clusters: K
Output: Clusters C = {C1,C2, . . . ,CK }
Variables: Cluster efficiencies: E = {E1,E2, . . . ,EK };

set of clusters whose patterns are to be
reduced: CR; cluster reduction rate: R; cluster
patterns: ρ1, ρ2, . . . , ρK .

InitPatterns(V , K )
R← K/2
while Cluster elements change do

foreach vi ∈ V do
k ← TheMostSimilarCluster(vi, C)
Ck ← Ck ∪ vi
ρk ← UpdateClusterPattern(ρk , vi)

foreach Ci ∈ C do
Ei← Efficiency(Ci)

CR = ∅
for 1 ≤ r ≤ R do

k = LeastEfficientIndex(E)
E ← E \ Ek
CR = CR ∪ Ck

foreach Ci ∈ CR do
ρi = RandomElementFromCluster(Ci)

R← R/2

lengthN and havingN0 dimensions equal to zero, we can thus
say that the probability of this particular cluster to be powered
off equals the probability that the circuit to be programmed
onto the FPGA uses one of the muxes corresponding to those
N0 dimensions:

POFF(Ci) =
N0

N
. (9)

The probability of a cluster being powered on is equal to:

PON(Ci) = 1− POFF(Ci) =
N − N0

N
. (10)

The static power consumption of a power-gating cluster Ci
can be approximated as the weighted sum:

W (Ci) = POFF(Ci) ·WOFF(Ci)+ PON(Ci) ·WON(Ci) (11)

where WOFF(Ci) and WON(Ci) represent the static power
consumption of the power-gating cluster when it is powered
off and powered on, respectively.WON(Ci) corresponds to the
sum of the power consumption of the power-gating circuitry,
WPGON , and the power consumption of the multiplexers in the
cluster, when the cluster is powered on. Similarly, WOFF(Ci)
is equal to the power consumption of the power-gating circuit

alone,WPGOFF , when the cluster is powered off, which brings
us to the next expression:

W (Ci) = POFF(Ci) ·WPGOFF (Ci)+
(
1− POFF(Ci)

)
·

(
|Ci| ·WMUX +WPGON (Ci)

)
. (12)

Here,WMUX is the power consumption of each multiplexer
in cluster Ci. Consequently, the power consumption of the
entire routing switch matrix with K power gating clusters can
be approximated as:

W (SM ) =
K∑
i=1

W (Ci) (13)

Let us now turn to the example shown in in Fig. 6, wherewe
need to decide whether to assign multiplexer M1 (highlighted
in red) to cluster G of size three or to cluster F of size seven.
Supposing that the utilization similarity between M1 and
cluster G is higher than between M1 and cluster F , our previ-
ously proposed clustering algorithms would naturally assign
M1 to cluster G. However, let us further assume that PON of
cluster G and of cluster F , after assigning M1 to them, are
20% and 50%, respectively. If we run a HSPICE simulation
to estimateWPGON ,WPGOFF , andWMUX, to compute the value
of expression in Eq. (12) for clusters G and F , we find that
a better decision would be to assign M1 to F , because it
would result in higher power saving (1.75 nW power saved
for M1 in F versus 1.39 nW power saved for M1 in G).
Therefore, we find that relying on utilization similarity only
is not the optimal criteria: we need to take into account the
impact that the clustering decision has on the overall power
consumption—something that we ignored in the previously
proposed clustering algorithms.

In this section, we propose a clustering algorithm named
SiM with Incremental Pattern Reduction to Minimize Power
consumption (SiM-IPR-MP), in whichwe assignmultiplexers
to clusters with the most utilization similarity as well as the
least power consumption increase, i.e., the least difference
in the static power consumption after and before assigning
the multiplexer to a cluster. To get there, we will first discuss
how we estimate the power consumption of the power-gating
circuitry, and then present the derivation of the new clustering
metric.

a: POWER CONSUMPTION OF POWER-GATING CIRCUITRY
For the purpose of estimating the static power consumption
of the power-gating circuit, we use HSPICE and run a set
of circuit-level simulations, employingPredictive Technology
Model (PTM) [59] and the exact FPGA transistor siz-
ing extracted through COFFE [29]. Fig. 7 shows our pro-
posed power gating circuit-design approach. As can be seen,
the sleep transistors are inserted between the main power
supply and the virtual power supply. The size of sleep tran-
sistors depends on the number of multiplexers in each cluster,
and is chosen so that it does not affect their delay. We vary
the number of multiplexers in the cluster |Ci| and record
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FIGURE 6. An illustration of an FPGA routing switch matrix, with G and F
as example power-gating clusters. M1, highlighted in red, is a multiplexer
that needs to be assigned to one of them.

FIGURE 7. The structure of the proposed power gating scheme. The
dashed line depicts one power gating region. The number of multiplexers
inside the power gating regions can vary based on the clustering
algorithm. The power state of each power gating region is controlled by
an SRAM cell which can turn on the PMOS or NMOS sleep transistor.

the power consumption of the entire cluster, including the
power-gating circuit, when it is powered on or powered off.
The obtained results for the cluster in powered-on state are
plotted in Fig. 8, in blue. Given the strong linear dependency
between the power consumption and the cluster size, we use
a data analysis software4 to find a best-fit linear function
(shown in yellow in the same figure), which we will later use
to derive the clustering metric.

The following best-fit linear approximation function is
obtained:

F(|Ci|) = a · |Ci| + b, (14)

where a is 79.3 nW and b is −33.4 nW and the approxi-
mation error is below 1.14%. We then repeat the simulation
in HSPICE, this time with the cluster powered off, and find
that the power consumption of the power-gating circuit is
approximately doubled. Therefore, for simplicity, instead of
computing the power consumption of the power-gating circuit

4CurveExpert Professional

FIGURE 8. In blue, the power consumption of the power-gating circuit
when the cluster is powered off, in the function of cluster size. We can
notice that increasing the cluster size results in higher power
consumption of the power-gating circuit. In yellow, the best-fit linear
approximation.

when the cluster is powered off, we use the same linear
best-fit function as in Eq. (14) with the coefficients multiplied
by a factor of two.

Following the expressions (13) and (14), we can write:

W (SM )=
K∑
i=1

(
POFF(Ci) · (2a · |Ci|+2b)+(1− POFF(Ci))

· (WMUX · |Ci| + a · |Ci| + b)
)
. (15)

b: DERIVATION OF NEW CLUSTERING METRIC
Adding a multiplexer to a cluster affects the overall power
consumption. This change in power consumption can be
found by computing the following expression:

1W (Ci) = WIN(Ci)−WOUT(Ci). (16)

Here, WIN(Ci) is the power consumption of the clus-
ter Ci after the multiplexer is added to the cluster. Sim-
ilarly, WOUT(Ci) is the power consumption of the cluster
before the multiplexer is added. These two values are related
to the number of dimensions equal to zero in the cluster
pattern (N0), the pattern length N , and the impact of adding
the multiplexer to the cluster on the number of dimensions
equal to zero (1N0):

POFF,IN =
N0

N
,

POFF,OUT =
N0 −1N0

N
. (17)

Following the expressions (14) and (12), equation (16)
becomes:

1W (Ci)

= POFF,IN[2a(|Ci| + 1)+ 2b]

+ (1− POFF,IN)[WMUX(|Ci| + 1)+ a(|Ci| + 1)+ b]

−POFF,OUT(2a |Ci| + 2b)

− (1− POFF,OUT)[WMUX |Ci| + a |Ci| + b]. (18)

After applying the expression in (17) to the previous equa-
tion, we obtain:

1W (Ci) =
1
N

{
1N0[(WMUX − a)(|Ci| + 1)− b]

−N0(a−WMUX)
}
+WMUX + a. (19)
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Finally, knowing that WMUX, a, and N are constant, mini-
mizing1W becomes equivalent to minimizing the following
simplified objective function:

W=1N0[(WMUX−a)(|Ci|+1)− b]−N0(a−WMUX). (20)

c: DISTINGUISHING BETWEEN SMALL AND BIG
MULTIPLEXERS
In all previously derived expressions, we use a single
variable to denote power consumption of a routing mul-
tiplexer, WMUX. However, not all multiplexers in routing
switch matrices are necessarily of the same size. As discussed
in Section III-A, in the architectural model of Stratix-IV
FPGA, we uncover that the switch matrices are composed of
two types of multiplexers, different in size.

Therefore, their power consumption differs: it is higher
for the large multiplexers. Hence, particularly high priority
should be given to efficiently clustering the large multiplex-
ers. In adding a new multiplexer to a cluster, two scenarios
should thus be distinguished:

1) The new multiplexer is small, in which case the power
consumption increase caused by assigning the multiplexer to
the cluster can be computed from (18).

2) The new multiplexer is large, capable of providing
M-times more power saving if clustered well, i.e., if it can
be powered off. Here, M is the ratio of the power con-
sumption of a large multiplexer over the power consumption
of a small one, which we compute in HSPICE simulation.
Hence, adding a large multiplexer becomes equivalent to
adding M small multiplexers to the cluster. Accordingly,
the equation (18) becomes:

1W =
1
N

{
1N0[(WMUX − a)(|Ci| +M)− b]

+M·N0(a−WMUX)
}
+M ·WMUX +M · a.

(21)

Once again, given that WMUX, N , a, and b are constants,
minimizing the power consumption increase due to the inclu-
sion of a large multiplexer in the cluster corresponds to
minimizing the following metric:

WLARGE = 1N0[(WMUX − a)(|Ci| +M)− b]

−M · N0(a−WMUX). (22)

The algorithm implementing the described clustering is,
in its essence, very similar to Algorithm 5. The main differ-
ence is in the computation of the similarity metric and in the
fact that the metric differs in the function of the multiplexer
size.

C. POWER-GATING AWARE ROUTING
Once the power-gating regions are implemented in the FPGA
fabric, it seems natural to try to make the best use of them;
that is precisely our next step.

Let us take all the benchmarks in Table 4—we will explain
them in more detail in the upcoming section—and apply SiM-
IPR-MP clustering to find the power-gating regions. Then,

let us take the resulting FPGA switch-matrix architecture,
and use it to place and route the benchmarks. After count-
ing the used (occupied) versus unused routing multiplexers,
we arrive to the plot shown in Fig. 9. Interestingly, the vast
majority of power-gating regions (79.3%) has low utilisation
rate: less than 25% of their muxes are used. Additionally,
we find that there are only around 5% of all the power-gating
regions where at least half of the multiplexers are used.

FIGURE 9. The rate of resource utilization in power-gating regions: In the
vast majority of power gating groups (in blue) less than a quarter of the
resources is used. In addition, the rate of highly-used power gating
groups is lower than 1% (in yellow).

If there would be a possibility to guide the FPGA router
away from the fully unused power-gating regions and towards
those that are already in use (i.e., cannot be powered off),
higher power saving could be achieved. This idea is illustrated
in the example in Fig. 10, showing two power-gating regions.
The first region is composed of five multiplexers shaded in
dark grey; 80%of them are already occupied (dashed red lines
correspond to the already routed connections). The second
region is composed of six multiplexers shaded in light grey.
If the FPGA router could avoid the second region by replacing
the tentative connection marked as (1) with the connection
marked as (2), then the second power-gating group would
remain fully unused and, consequently, it could be powered
off. To make the best use of the available power-gating
regions, we need to enhance the FPGA routing algorithm:
make it aware of the existence of the power-gating regions
and have it use them efficiently.

1) FPGA ROUTING PROBLEM AND ALGORITHM
The primary data structure representing FPGA routing
resources is the directed Routing Resource Graph (RRG)
G = (V ,E), where V is the set of vertices and E is the
set of edges. Each vertex v ∈ V represents wires and pins
that are internal to FPGA. Each edge eij ∈ E represents a
programmable connection point between a pin and a wire
segment, or a programmable routing switch between twowire
segments. Each signal i to route through G forms a net Ni =
(si, {ti,1, ti,2, . . . , ti,m}), where si is the net source vertex and
{ti,1, ti,2, . . . , ti,m} are the sinks. The solution to the routing
problem of the net Ni is a set of paths from the source si
to all the net sinks; these paths form a directed routing tree
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FIGURE 10. The role of routing modification in increasing the power
gating opportunities. Here, by modifying the routing of nets (replacing the
connection (1) with the connection (2)), we can extract some unused
groups to act as power gating opportunities (the first power gating
group).

RT (Ni) ⊂ G. Routing is successful if the routing trees of
different nets are disjoint in G.

In 1995, Mc Murchie and Ebeling presented PathFinder,
an iterative algorithm that achieves a good compromise
between two conflicting goals: eliminating congestion and
minimizing critical path delay [57]. Its distinctive feature is
the existence of a cost of using a given vertex v in a route. This
cost depends on the delay of the vertex and its congestion
history. While signals compete for vertex v, they negotiate
and the cost evolves as the algorithm runs. This algorithm,
also called negotiation-based router, is used in the modern
commercial and research FPGA design tools, VTR included.
PathFinder implementation is a triple-nested loop:
• The outer loop (all-net router), invokes the middle loop
(signal router), for all signals i to be routed. If there is no
congestion, i.e., no routing trees share routing resources,
PathFinder terminates. Additionally, if a user-defined
number of iterations is exceeded, PathFinder termi-
nates. Otherwise, before proceeding to the next itera-
tion, all-net router updates the second-order (also called
historical or accumulated congestion) costs h(v) of all
congested nodes.

• Each signal router iteration starts by riping up the exist-
ing routing tree RT (Ni) of a net Ni. As a consequence,
the occupancy of nodes in RT (Ni) is decreased and
their first-order (also called present congestion) costs
p(v) are updated accordingly. Then, it invokes the inner
loop (maze expansion) to re-route the net Ni. Once new
routing tree is created, the present congestion costs of all
congested nodes in RT (Ni) are updated.

• Maze expansion traverses the RRG, starting from the
source node of a net. It initializes the routing tree RT (Ni)
with the source node. Then, it expands the source node,
i.e., uncovers all its neighbors and stores them in a
Priority Queue (PQ) sorted by their costs. These costs
are a function of a) the node base cost b(v) (equal to

the delay of the node, delay(v)), b) its present cost p(v),
c) its accumulated cost h(v), and d) the net criticality:

Cost(v) = Crit(i, j) · delay(v)

+

(
1− Crit(i, j)

)
b(v)h(v)p(v). (23)

The first term in (23) is a delay-sensitive term, while
the second is congestion-based. The criticality of a net
is equal to:

Crit(i, j) = 1−
slack(i, j)
Dmax

, (24)

where Dmax denotes the delay of the critical path of the
circuit and slack(i, j) is the slack of source and sink j
connection of net i. In each subsequent maze expan-
sion iteration, the lowest-cost vertex vmin is extracted
from PQ. If vmin is a sink of the net Ni, a path is con-
structed by invoking a backtrace procedure and added to
RT (Ni). Otherwise, vmin is expanded and all its neigh-
boring nodes which have not been previously visited are
inserted in the PQ.Maze expansion continues until paths
to all sinks are found and the routing tree is complete.

2) POWER-GATING-AWARE FPGA ROUTING
To make the routing algorithm aware of the existence of
power-gating clusters, we introduce two enhancements. The
first modification concerns the routing resource graph: for
every vertex v that corresponds to a switch-matrix routing
multiplexer, we introduce an additional cost named power-
gating cost, or PG(v).
If the power-gating cluster to which the multiplexer v

belongs is already in use (i.e., at least one of its members
is occupied), then the cost PG(v) is cleared, to prevent it
from having an impact on the FPGA routing algorithm. If,
however, the power-gating cluster is not used (i.e., entirely
unoccupied), then we choose to scale the cost with the cluster
size and the routing iteration i as follows:

PG(v) =
{
0, if cluster is in use,
b(v) · |C(v)| · i, otherwise.

(25)

By scaling the cost with the cluster size and the iteration
count, we strongly encourage the router to avoid routing
through the unused power-gating regions. Scaling with the
iteration count is common; it is applied by PathFinder when
updating the first-order p(v) and the second-order h(v) costs.
The second enhancement we introduce concerns the com-

putation of the total cost of a routing multiplexer, shown
in (23). To avoid the new cost function directly affecting
the circuit critical path delay, we choose to augment the
congestion-based part of the cost, by including PG(v):

Cost(v) = Crit(i, j) · delay(v)

+

(
1−Crit(i, j)

)(
b(v)h(v)p(v)+PG(v)

)
. (26)

Finally, to account for the presence of large and small
multiplexers in FPGA switch matrices, we further improve
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TABLE 4. Benchmarks: The total number of reconfigurable blocks and DSPs is as reported in the work by Murray et al. [28]. The FPGA size is obtained by
running the placement and routing of the benchmarks in VTR 8.0, using the Stratix-IV FPGA architectural model.

the computation of PG(v):

PG(v) =
{
0, if cluster is in use,
b(v) · (NL ·M+ NS ) · i, otherwise.

(27)

Here, M is the ratio of the power consumption of a large
multiplexer over the power consumption of a small one,
which we compute in HSPICE simulation. NL and NS are the
number of large and small multiplexers in the power-gating
cluster of the multiplexer v, respectively. Our proposed rout-
ing algorithm is different from the previous studies [5], [6] as
we precisely consider the architecture of modern FPGAswith
various sizes of routing multiplexers. In addition, in contrast
to [6], we do not scale down the routing cost with the number
of used resources in a power gating region. This is due to
the fact that utilizing only one multiplexer in a power gating
region forces it to be powered ON and the number of the
used multiplexer in a power gating region does not affect its
efficiency for power gating. Our scaling of the routing cost
with the routing iteration count forces the routing algorithm
to avoid multiplexers in unused power gating regions as long
as that is possible.

We implement the described enhancement directly in VTR
8.0 and discuss the experimental results in the next section.

V. EXPERIMENTAL SETUP AND RESULTS
In this section, we first detail the implementation and eval-
uation flow including the associated toolsets, the architec-
tural parameters, and the used benchmark suites. Afterwards,
we present the evaluation of the effectiveness of our pro-
posed power gating architectures and the enhanced routing
algorithm. Lastly, we provide a comprehensive comparison
of our proposed approaches and the closely related research
work [5]–[7].

A. EXPERIMENTAL SETUP
To evaluate the power-gating approaches, we select the Titan
benchmarks [28]. These benchmark circuits cover a wide

range of application domains. They represent very large
industrial-scale designs, many of which contain heteroge-
neous blocks common in modern FPGAs. In Table 4, we list
the benchmark names, the number of reconfigurable blocks
they occupy, the number of DSP blocks in use, and the mini-
mal FPGA size needed to place and route them successfully.
Additionally, Table 4 shows howwe partition the benchmarks
into learning (L) and testing (T) sets in three experiments
(EXP1, EXP2, and EXP3). In each experiment, the learning
benchmarks are used to determine the power-gating clus-
ters, whereas the test benchmarks are used to evaluate their
efficiency.

To evaluate the efficiency of our power-gating approaches,
we use the Stratix-IV FPGA architecture model—the most
advanced FPGA architecture model provided as part of
the latest Verilog-to-Routing tool (VTR 8.0) [27], [37].
This FPGA model contains heterogeneous routing and logic
resources, similar to that of commercial FPGA devices. The
details of the Stratix-IV FPGA architecture model were pre-
sented in Section III. In VTR, we set the channel width
to W = 300, to provide enough routing resources for the
largest of the benchmarks. We use COFFE [29] fed with the
22 nm Predictive Technology Model (PTM) [59] to automat-
ically generate the transistor sizing, which we then import to
HSPICE to estimate the area, delay, and power consumption
of the various FPGA resources.

B. EXPERIMENTAL RESULTS
In the following subsections, we present a number of
experiments in which we assess the performance of our
power-gating methods, by comparing them among them-
selves and against the approaches proposed by other
researchers. Our first comparison metric is the number of
routing multiplexers that can be switched off (Section V-B1).
Then, we examine the effectiveness of our enhanced router
in increasing this particular metric (Section V-B2). Next,
we compute the second comparison metric: the area over-
head of the power-gating logic (Section V-B3). Afterwards,
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TABLE 5. Number of muxes that can be switched off for 4, 8, 16, 24, and 32 clusters per switch matrix, normalized to those of K-means algorithm. It can
be noticed that for low number of clusters (4,8,16), K-means is superior, whereas for higher number of clusters (24, 32) SiM-IPR-MP takes over, often
outperforming K-means by 10–20%.

we focus and elaborate on analyzing the area overhead
versus the static power consumption of the FPGA routing
resources. Finally, we provide a detailed comparison of our
two best-performing methods: SiM-IPR and SiM-IPR-MP
(Section V-B4).

1) HOW MANY ROUTING MUXES CAN BE SWITCHED OFF?
The most straightforward way to compare our clustering
algorithms is to count the number of routing multiplexers
that can be switched off (powered off). Table 5 lists the
obtained results, for every test benchmark in the three experi-
ments EXP1, EXP2, and EXP3. To facilitate the comparison,
the results are normalized with respect to the number of mul-
tiplexers that can be switched off when K-means clustering
is used instead. In all experiments, we vary the number of
clusters K , by setting it to 4, 8, 16, 24, or 32.
The results in Table 5 show that every subsequent pro-

posed strategy resulted in increased (and thus improved)
number of multiplexers that can be switched off. Next, for
low number of clusters (4, 8, 16), we see that K-means
algorithm is, on average, superior than SiM, SiM-PR, and
SiM-IPR. For higher number of clusters, however, SiM-IPR
and SiM-IPR-MP take over. Finally, SiM-IPR-MP cluster-
ing algorithm is the most efficient: For all values of K ,
SiM-IPR-MP outperforms all of the SiM, SiMPR, SiM-IPR
approaches, on average. Furthermore, for 32 clusters per
switch matrix, SiM-IPR-MP algorithm allows for 28% more,
on average, multiplexers that can be switched off, compared
to the baseline K-means clustering.
Let us now compare SiM-IPR-MP approach to the heuris-

tics presented in previous studies, in particular those of
Bsoul et al. [5] (K = 1), Hoo et al. [6] (two versions: K = 4
and K = 85), and Seifoori et al. [7] (K = 32, clusters
the multiplexers driving the same track in the same power

5All multiplexers in each side are clustered in one power gating group for
K = 4, while small multiplexers 12:1 and big multiplexers 40:1 in each side
of switch matrices are clustered in different power gating groups in K = 8.

gating groups). Table 6 reports howmany (in%) of all routing
multiplexers can be turned off, for all the test benchmarks
and in all three experiments. Since the pattern of some clus-
ters in each clustering iteration of SiM-IPR-MP algorithm is
replaced with a randomly selected member of the cluster,
the achieved clustering varies randomly from run to run.
To investigate how this randomness would affect the number
of multiplexers that can be powered off, we repeat the SiM-
IPR-MP clustering algorithm for each benchmark 10 times.
In the last column of Table 6, we add the values obtainedwhen
our enhanced router is used after the clustering with SiM-IPR-
MP, which also has been repeated 10 times. The average of
the standard deviation across 10 runs over all benchmarks
in SiM-IPR-MP clustering algorithm for four, eight, and
32 clusters per switch matrix is 0.36%, 0.25%, and 0.2%,
respectively. Furthermore, the maximum standard deviation
is 1.25%, 0.81%, and 2.38%, respectively. The average of
the standard deviation across 10 runs over all benchmarks
for enhanced router is 0.61%, while the maximum is 1.18%.
This indicates that there is good agreement over the repeated
experiments and suggests that running the experiment for
only one time can effectively verify the proposed algorithms.
Looking at the average results, we see the following: For
four clusters, SiM-IPR-MP can power off additional 20% of
the routing muxes (15.28% vs. 12.76%). For eight clusters,
it can power off additional 38% of the multiplexers (22.07%
vs. 15.94%) and, for 32 clusters, this number increases to
52%multiplexers (45.92%vs. 30.24%). Finally, the enhanced
routing helps power off additional 19.3% of all the routing
multiplexers, amounting to ≈71% improvement (51.74% vs.
30.24%) compared to the best static power-gating approach
reported so far.

2) EFFECTIVENESS OF THE POWER-GATING-AWARE ROUTER
Table 7 shows the effectiveness of power-gating-aware rout-
ing algorithm in increasing the power gating opportunities.
We test this routing algorithm for SiM-IPR-MP clustering
and the number of clusters set to 16, 24, and 32. Reducing

VOLUME 9, 2021 115613



Z. Seifoori et al.: Shrinking FPGA Static Power via ML-Based Power Gating

TABLE 6. The percentage of all multiplexers that can be switched off using the power-gating schemes proposed in related research works [5]–[7] versus
our best performing clustering algorithm SiM-IPR-MP.

TABLE 7. Number of muxes that can be switched off when the enhanced
routing algorithm and SiM-IPR-MP clustering are used, for 16, 24, and
32 clusters per switch matrix, normalized to the corresponding number of
muxes in the absence of the enhanced routing algorithm. The results
show that the enhanced routing algorithm helps increasing the power
gating opportunities by 10–18%, on average.

the number of clusters below 16 results in higher number
of multiplexers in each power gating cluster. As Eq. (27)
suggests, with the increase of the number of multiplexers per
cluster, the routing resource cost CostPG increases as well.
When this cost is too high, the routing fails, which is why
the enhanced routing algorithm fails to successfully route
the test benchmarks for four and eight clusters per switch
matrix, as well as the three benchmarks indicated with a dash
in Table 7. In almost all the remaining experiments, we found
that the enhanced router helps to use better the power-gating

regions: on average, the number of additional muxes that
could be switched off reaches 12% (for K = 32), 12% (for
K = 24), and 18% (for K = 16); this increase is comparable
to the improvement brought by SiM-IPR-MP over SiM-IPR.
When evaluating an FPGA router, it is common to report

its impact on the circuit critical path delay. We show this
data in Table 8; on average, the critical path delay increases
by 9% (K = 32 and K = 24) or 15% (K = 16). This
increase is due to the router putting more effort in saving
power than in finding the most efficient routes. When the
power consumption is the main design concern, this increase
can probably be tolerated.

3) AREA OVERHEAD OF THE POWER-GATING LOGIC
Let us now compare the area overhead of our power-gating
architectures, which we define as the difference between the
area required for the routing switch matrix with and with-
out the power-gating circuitry. For this purpose, we perform
HSPICE circuit-level simulations, using the accurate netlists
of the FPGA power-gating regions generated by COFFE, and
22 nm predictive technology model [59].

Table 9 and Table 10 show the overhead obtained for SiM-
IPR and SiM-IPR-MP clustering approaches, averaged across
all benchmarks and all three experiments. Table 11 shows
the area overhead obtained for the power-gating approaches
proposed by other researchers. It is not surprising that the
power overhead grows with the increase in the number
of clusters per switch matrix K , because the number of
power-gating (sleep) transistors is proportional to the number
of clusters per switch matrix. For all values of K , we measure
similar area overhead compared to the respective related
work. The slight differences are due to the fact that the area
overhead depends on the cluster size and its composition: our
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TABLE 8. Critical path delay when the enhanced routing algorithm is
used, for 16, 24, and 32 clusters, normalized with the critical path delay
obtained using the unmodified VTR router.

TABLE 9. The area overhead in the FPGA routing switch matrices after
adding the power-gating logic, for SiM-IPR clustering algorithm.

TABLE 10. The area overhead in the FPGA routing switch matrices after
adding the power-gating logic, for SIM-IPR-MP clustering algorithm.

clustering, unlike the approaches proposed by other
researchers, results in nonuniform cluster sizes, which is
favorable when the number of clusters is high (K = 32).
Fig. 11 shows the power-gating area overhead (y-axis)

versus the achieved normalized static power consumption
(x-axis), for all test benchmarks and all three experiments,
selecting the following power-gating approaches: Bsoul
et al. [5] (K = 1), Hoo et al. [6] (two versions: K = 4 and
K = 8), Seifoori et al. [7] (K = 32), KM, SiM, and SiM-
IPR. The values on x-axis are normalized to the static power
consumption estimated for an FPGA architecture without any
of the power-gating mechanisms in place. This figure is in
line with data presented in Table 9, Table 10, and Table 11:
our approaches result in area overhead higher than that of
Bsoul et al. [5] (K = 1) and Hoo et al. [6] (K = 4 and
K = 8), but lower than that of Seifoori et al. [7]. Additionally,
our approaches result in all data points being shifted towards
lower normalized static power consumption (lower values on
x-axis), which is, again, in line with our design goals. Dashed
line emphasizes the best results achieved by our algorithms,
which outperform all the other power-gating strategies.

Fig. 12 compares SiM-IPR-MP, with and without the
enhanced routing, against the SiM-IPR approach. Each color
in the plot corresponds to a specific cluster size K . We notice

TABLE 11. The area overhead in the routing switch matrices after adding
the power-gating logic, computed using the clustering approaches
proposed by other researchers.

that as K grows, the area overhead grows as well; the reason
for this is the increased number of power-gating logic that
needs to be put in place. However, higher K has important
benefits: it helps reducing the normalized static power con-
sumption (the data points move to the left on x-axis). The
square symbols correspond to the enhanced router results—as
expected, they form the Pareto front. The normalized power
consumption of data points in Fig. 11 and Fig.12 is reported
in Table 12. Similar to Table 6, the normalized power con-
sumption of data points reported in Table 12 using SiM-IPR-
MP algorithm and enhanced router algorithm is the average
across 10 runs over all benchmarks. We see that employing
SiM-IPR-MP algorithm with 32 clusters per switch matrix
and the power-gating aware router can shrink the FPGA
static power consumption by 53%, on average, whereas the
best power-gating approach presented by Seifoori et al. [7]
achieves 31% power reduction, on average; this presents an
improvement of about 70% over the state of the art.

4) HOW WELL SiM-IPR-MP GROUPS THE BIG MUXES?
As discussed in Section IV-B4, one of the goals of SiM-IPR-
MP clustering algorithm is to improve the clustering of big
multiplexers, so that a higher number of them can be powered
off. To estimate how well SiM-IPR-MP performs this task,
we first count the number of big multiplexers that can be
powered off and compare it to SiM-IPR. Then, we introduce
a metric called power-reduction rate (PR), defined as

PR =
PIPR − PMP

PIPR
. (28)

Here, PIPR and PMP are the estimated power consumption
when SiM-IPR and SiM-IPR-MP clustering approaches are
used, respectively.

In Fig. 13, for all the test benchmarks and all three experi-
ments, we plot on y-axis the relative change in the number of
powered-off big multiplexers (the higher, the better) and on
x-axis the power reduction rate (in %). These results demon-
strate that SiM-IPR-MP clustering algorithm does manage to
improve the clustering of big multiplexers by outperform-
ing SiM-IPR approach in almost all test cases. In the cou-
ple of encircled outlier cases, even though the number of
powered-off multiplexers worsens, the actual power saving
is improved, thanks to the comparatively higher number of
powered-off small multiplexers.

Fig. 14 provides another comparison of SiM-IPR-MP
and SiM-IPR algorithms. Each marker corresponds to
one experiment-benchmark pair. On x-axis, we show
the power-reduction rate, corresponding to Eq. (28).
On y-axis, we choose to show another metric:
Power-Overhead-reduction Rate (POR). It is computed
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FIGURE 11. The power-gating area overhead versus the static power consumption of the FPGA routing network. The latter is normalized to the static
power consumption estimated for an FPGA architecture without any of the power-gating mechanisms in place. Each marker corresponds to one
experiment-benchmark pair.

FIGURE 12. The power-gating area overhead versus the static power consumption for SiM-IPR-MP and SiM-IPR clustering. The latter is normalized
to the static power consumption for an FPGA architecture without any of the power-gating mechanisms in place. Each marker corresponds to one
experiment-benchmark pair.

FIGURE 13. The power reduction rate in Eq. (28) versus the change rate of the number of switched OFF big multiplexers for SiM-IPR-MP
clustering algorithm versus with SiM-IPR, in three experiments of EXP1, EXP2, EXP3 and for various number of clusters. Each marker corresponds
to a specific number of clusters.

as follows:

POR =
POIPR − POMP

POIPR
. (29)

Here, the power overhead PO is the difference between,
on the one hand, the sum of the power consumption of

all the powered-off regions and all the powered-on regions
and, on the other hand, the sum of the power consump-
tion of all the routing multiplexers when no power gating
is put in place. Therefore, the higher the value on y-axis,
the higher the power-overhead reduction, i.e., the lower the
power overhead. Analyzing the results in Fig. 14, we see that
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TABLE 12. The static power consumption of the FPGA routing network in FPGA architectures that use the power gating schemes proposed in previous
studies [5]–[7] or our best performing clustering algorithm SiM-IPR-MP. The power consumption is normalized to the static power consumption of an
FPGA architecture which does not employ any power gating scheme.

FIGURE 14. The power reduction rate in Eq. (28) versus the power consumption overhead reduction rate in Eq. (29), for all three experiments
EXP1, EXP2, and EXP3. This figure illustrates the improvement brought by SiM-IPR-MP clustering algorithm over SiM-IPR.

FIGURE 15. The average of power-reduction rate and normalized
power-overhead, in the function of cluster size, for SiM-IPR-MP and
SiM-IPR clustering.

for almost all test cases, SiM-IPR-MP is superior to SiM-IPR:
the majority of the data points are situated in the first quad-
rant. The highest power-overhead reduction and the highest
decrease in the overall power consumption are both ≈ 25%.

There are, however, a few encircled outliers, for which either
the power overhead or the overall power consumption is
slightly increased compared to SiM-IPR, due to the final clus-
ter composition and the number of small and big multiplexers
in each cluster.

Fig. 15 shows the average of the power reduction rate
of data points in Fig. 14 versus the average of their nor-
malized power overhead. The y-axis on the left corre-
sponds to the average power-reduction rate and the y-axis
on the right corresponds the average of power overhead,
which are normalized to the routing power consumption of
each benchmark implemented in an architecture that does
not support power gating, for the sake of fair compari-
son. We can observe that SiM-IPR-MP is superior in both
the power-reduction rate and the power-overhead. Addition-
ally, 32 clusters per switch matrix is once again the opti-
mum configuration, with both metrics reaching their high
values.
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VI. CONCLUSION
This paper discussed the effectiveness of leveraging
machine-learning approaches and power-gating aware rout-
ing in reducing the static power consumption of FPGA
routing resources. To improve the efficiency of previously
proposed power-gating techniques, which all relied on heuris-
tic approaches, we proposed a number of machine-learning
inspired clustering algorithms, each more efficient than pre-
vious: SiM, SiM-PR, SiM-IPR, and SiM-IPR-MP. Addition-
ally, we design an improved FPGA router, which takes into
account the availability of power-gating regions and further
helps their efficient use. The experimental results are very
promising: In a setting with 32 clusters per switch matrix,
our most efficient clustering algorithm SiM-IPR-MP—which
takes into account the power overhead of the power-gating
circuitry and the routing multiplexer size—helps reducing
the static power consumption by additional ≈26% (0.51 vs.
0.69), on average, with respect to the most efficient simi-
lar solution proposed so far [7]. When power-gating aware
routing is applied together with SiM-IPR-MP clustering,
we observe additional ≈6% reduction in static power con-
sumption, on average. This work is, therefore, an important
step towards enabling wider presence of FPGAs in low-power
applications.
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