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ABSTRACT MRI is a non-ionising imaging modality that could be used as an alternative to Xray-based
imaging methods to accurately assess the 3D morphology of the vertebral anatomy of scoliosis patients.
However, a major caveat in utilising MRI is the significant amount of time required to manually segment
the anatomy of interest. To overcome this limitation, we implemented a fully automatic method for the 3D
segmentation of thoracic vertebrae, including vertebral body and posterior elements, of healthy adolescents
and patients with Adolescent Idiopathic Scoliosis (AIS) using MRI data. 62 MRI scans were obtained from
3 healthy volunteers and 25 patients with AIS. A state-of-the-art deep-learning network for segmentation was
trained using image patches of the apical vertebra (T7, T8, T9 or T10) extracted from 20 AIS patient MRIs.
Ad-hoc data augmentation was adopted to represent the unlabeled vertebral levels in the dataset (T5-T6,
T11-T12). The vertebral levels T5-T12 were then segmented for the remaining MRI datasets by feeding
to the network the MRI patches generated by translating a window of fixed size and stride onto the MRI
volume. The mean dice score coefficient for the AIS patient vertebral levels T5-T12 was of 87% =+ 4.3%,
which was comparable to the performance achieved by two experts. On average, 93% and 97% of the MRI
segmented slices were considered clinically acceptable morphological reconstructions of AIS and healthy
volunteer vertebrae, respectively. The proposed method can be considered as the first step towards more
routine MRI-based imaging of AIS osseous deformities, reducing the cumulative exposure of young patients
to ionising radiation.

INDEX TERMS Deep learning, CNN, segmentation, scoliosis, MRI, vertebral body, posterior process, AIS.

I. INTRODUCTION

Adolescent Idiopathic Scoliosis (AIS) is a progressive
multi-dimensional deformity of the spine found in about
2-3% of adolescents [1]. It is characterised by atypical
growth of the vertebral body in the coronal, sagittal and
axial planes, as well as asymmetrical development of the
pedicles. In clinical practice, monitoring this spinal pathol-
ogy is a determinant for patient treatment management [2].
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Conservative treatment to delay scoliosis progression is
achieved via spinal orthoses/bracing, while, in the more
severe cases, surgical correction may be required. AIS assess-
ment and follow up is performed using radiographic imag-
ing (XRay or bi-planar, EOS®), which provides only 2D
information about the deformed vertebral morphology, and
exposes young patients to cumulative ionising radiation
throughout their healthcare [3].

While 2D plain radiography is the basis for diagnosis,
follow-up and monitoring of patients, AIS vertebrae are char-
acterised by a 3D deformity of both the vertebral body and
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the posterior elements when compared to a typical develop-
ing adolescent spine. The ability to examine this 3D mor-
phology in detail is important clinically for surgeons when
assessing pathological spinal anatomy, and also in biome-
chanical investigations, where a virtual representation of the
3D bone surface (or segmentation) can be used to simu-
late patient-specific mechanics. Computed tomography (CT)
imaging provides high-quality 3D imaging of the deformed
spinal anatomy and is used clinically to identify underlying
pathology and guide surgical treatment [4]. However, also
CT-derived exposure of patients to ionising radiation, with
the associated lifetime attributable risk of morbidity, leaves
paediatric and adolescent patients particularly vulnerable due
to their young age [5]-[7].

MR imaging could represent an alternative to radiation-
based imaging by providing an accurate, radiation-free
method to examine this pathology and, eventually, vol-
umetrically analyse AIS vertebral growth and deformity
progression. Furthermore, this imaging modality could also
be valuable to inform surgical planning and/or intra-operative
guidance for spinal surgery, where the 3D MRI-based spine
model can be registered to fiducial markers on the patient
spine [8]. However, despite its potential, a significant caveat
in utilising MRI is the time required for manual segmen-
tation of bone and cartilage structures, and the accuracy
achieved [8].

This study aims at overcoming these limitations by imple-
menting an automatic segmentation method for the 3D recon-
struction of the vertebral anatomy of both AIS patients and
healthy adolescents from MRI data. To enable accurate spine
analysis, we reconstructed for the first time the entire thoracic
vertebra bony anatomy, including the vertebral body and the
posterior process.

Previous studies for 3D vertebrae automatic segmentation
focused on the vertebral body of the spine, excluding the pos-
terior process, which has a more complex and irregular shape.
Earlier developed approaches typically involved model-based
techniques, using balloon forces [9], elastic finite element
models [10] or combinations of statistical shape modelling
and active shape models [11]-[14]. More recent methods
include traditional machine learning (ML)-based algorithms
and convolutional neural networks (CNNSs). In the former cat-
egory, Chu et al. [15] utilised a random forest-based method
first to localise the vertebral bodies centres, and then to seg-
ment the vertebral bodies combining the appearance learned
during algorithm training and the shape information derived
from Parzen windows. An alternative approach was proposed
by Gaonkar et al. [16], who developed a segmentation method
robust to different MRI scanning protocols. Vertebral bod-
ies were segmented using an ensemble of random forests,
each trained using different relevant vertebral body features,
obtained for varying parameters settings of the Felzenswalb
superpixel algorithm. Fallah er al. [17] developed a sim-
ilar approach training random forests through image fea-
tures extracted from MRI images at different resolutions.
Gawel et al. [18] used, instead, a cascade of Boosted classifier
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combined with an active appearance model. All these meth-
ods strongly rely on hand-crafted features, based on the mor-
phology or the image intensity of the region of interest. For
this reason, they may not be robust in more complex imaging
scenarios, considering higher image variability, e.g. in the
presence of pathology.

CNN s have the advantage of extracting the relevant image
features automatically, thus without the need for manual
feature engineering. Several deep-learning-based approaches
were reported in the literature for the vertebral anatomy
segmentation from CT, including classification-based meth-
ods [19] and 2D/3D CNNs, such as state-of-the-art algo-
rithms (UNet [20]) [21]-[23] or their variants [24]. 2D
UNets [25], [26] and hybrid approaches combining CNN
with model-based segmentation or star convex graph cuts
[27], [28] were detailed for MRI-based vertebral body auto-
matic segmentation and achieved the highest performance
for this task. The approach developed by Rak. et al. [20]
used a simplified version of the UNet trained with 2D MRI
image patches to extract a map of the vertebrae likelihood,
followed by a graph cut formulation combining the likeli-
hood maps extracted with star-convexity constraints. In con-
trast, Korez et al. [21] extracted the vertebrae likelihood
using a 3D CNN and used a deformable model to adapt
this pre-segmentation to the vertebrae boundaries. The main
limitation of the CNN-based algorithms is the need for a large
amount of labelled training data that needs to represent the
desired model output. Furthermore, data variability increases
significantly when spinal deformities (or the more complex
anatomy of the posterior process) are considered, increasing
the complexity of the problem.

Among the implemented approaches, only Guerroumiet
al [25] addressed vertebrae segmentation for AIS patients.
In their work, to limit the amount of required labelled data,
the CNN was first trained on a publicly available dataset
of healthy volunteers and subsequently fine-tuned utilising
AIS patient data. However, as for the other ML and CNN
methods, their approach required a labelled training dataset
comprehensive of all the vertebral levels to be segmented.
In this paper, we propose an alternative, data-efficient method
to automatically segment the thoracic spine (T5-T12) using a
state-of-the-art CNN trained with a labelled dataset limited
to the apical vertebra (i.e. the most deviated laterally from
the central sacral line [29]) of each AIS patient. Differently
from [25], [26], model training was performed using MRI
image patches corresponding to the ground-truth labels (com-
prising the vertebral body and the posterior process) and
adopting ad-hoc data augmentation to represent the unlabeled
vertebral levels in the dataset. The vertebral levels T5-T12
were then segmented by feeding to the network the image
patches obtained by translating a window of fixed size and
stride onto the MRI volume. Our approach thus exploits
the similarity among the different vertebral levels treating
them as a single class and compensates for their variability
through ad-hoc data augmentation and MRI decomposition
into multiple patches.
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Il. MATERIALS AND METHODS

A. DATASET OF AIS PATIENTS AND HEALTHY VOLUNTEERS
A database including sequential MRI scans from 25 AIS
patients and 3 healthy (non-scoliotic) volunteers was used
for this study (Table 1). Ethics approval for data collec-
tion was granted by the Queensland University of Tech-
nology (1200000281), the Children’s Health Queensland
(SSA/14/QRCH/411) and the Mater Health Human Research
Ethics Committees (14/88/AMO03). For each AIS patient, 3 to
6 MRI scans were acquired, at 3 to 20 months intervals
(Table 1). Of these MRI datasets, at least two scans were used
for each patient - initial presentation for tertiary spinal clinic
care, and just prior to either spinal fusion surgery, or their
final clinical follow-up appointment. For healthy participants,
annual MRI scans were acquired up to the point of skeletal
maturity (Table 1). The first MRI scan for the 3 healthy
participants was utilised in the current study.

TABLE 1. AIS and healthy participants’ demographics.

AlIS Healthy
Number of Subjects 25 3
Age at First Scan 124+13 11.5+1.0
(years)[mean + SD]
Age at Final Scan (years) 147+ 1.1 14.1+£1.0
[mean + SD]
Mean time between scans 23+1.2 2.6+0.5
(years) [mean + SD]
Mean Cobb Angle at 29+18 N/A
First Scan (degrees)
[mean + SD]

SD = standard deviation

B. MRI SCANNING PROTOCOL

The participants of this study were examined on a 3 Tesla (3T)
MRI scanner (Philips Achieva 3.0T TX Dual Transit Sys-
tem), using a T1-weighted 3D gradient echo sequence (Voxel
size 0.5 x 0.5 x 0.5mm, TR 5.9ms, TE 2.7ms, Flip angle
5 degrees). The scans were acquired with the participants in
supine position, with the arms resting along the torso. The
MRI field of view obtained comprised at least the thoracic
vertebrae from TS to T12.

C. GROUND-TRUTH LABEL GENERATION

Ground-truth labels were generated for the apical vertebra of
AIS patients and vertebra T9 of non-scoliotic participants,
using a software for image analysis (AMIRA 6.0.0, Thermo-
Fisher-Scientific, USA). For AIS patients, the apical vertebra
for each patient was first identified on the coronal plane.
The apical vertebral level was T7, T8, T9 and T10 for 2,
12, 9 and 2 AIS patients, respectively. The MRI axial slices
of the vertebra of interest were manually segmented using a
brush tool, and the generated segmentation stack converted to
a binary mask [30]. The sagittal and the coronal projections
of the mask were also examined and adjusted if necessary to
ensure all vertebral regions were correctly selected.
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The vertebrae TS5, T6, T11 and T12 were also segmented
on the MRI scans of 1 or 2 AIS patients following the same
procedure, to enable testing the algorithm performance on
these additional vertebral levels. Table 2 reports a summary of
the labelled vertebral levels for AIS and healthy participants.

The labels were generated, as part of a larger clinical MRI
dataset, by two experts: a trained medical doctor (H.J.), who is
an orthopaedic registrar, and a Biomedical Engineer, who has
been trained in 3D reconstruction of clinical MRI data. These
researchers performed all the manual segmentations of MRI
datasets for individual vertebrae, and in both instances, their
observer error in reliably reconstructing osseous anatomy
from MRI was confirmed (see Section II-F-3). This process
of manual segmentation to generate 3D reconstructions of
osseous anatomy from MRI data is the standard approach
used clinically, and both these researchers were chosen as
they had considerable experience in this workflow.

TABLE 2. Labelled volumes for AIS and healthy participants.

Vertebral Apical Number Number
level vertebra of of
volumes volunteers
AIS T5 - 1 1
T6 - 2 2
T7 v 4 2
T8 v 29 12
T9 v 21 9
T10 v 4 2
T11 - 2 2
T12 - 2 2
Healthy T9 - 3 3

D. CNN TRAINING

1) IMAGE AND LABEL PRE-PROCESSING

The AIS patients’ labelled dataset of the apical vertebra was
utilised for algorithm training. Pre-processing was applied
to this dataset using MATLAB (version 9.3.0 [R2017 b],
The Mathworks Inc. Natick, MA, USA). For each MRI vol-
ume, the subvolume corresponding to the ground-truth label
was selected (Figure 1). Along the anterior-posterior and the
cranial-caudal directions, the boundaries of each subvolume
were the extremes of the minimum bounding box of the
corresponding ground-truth label. Along the medial-lateral
direction, a fixed boundary was selected for all the volunteers’
subvolumes, by visually inspecting the MRIs and excluding
the outermost parts that did not contain the vertebrae. More
specifically, the image region included 261 pixels, selected
starting from the 119" pixel from the most lateral side of the
MRI volume.

a: ANATOMICAL PLANE SELECTION

Due to the morphology of the spine, the subvolumes gener-
ated contained part of the superior and part of the inferior
adjacent vertebrae, for which labelling was not provided.
To enable a proper training of the algorithm, the anatomical
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FIGURE 1. Example of MRI subvolume selection (yellow box) based on
the corresponding ground-truth label (in green) shown for visualisation
purposes in a software for image analysis (ImFusion, Miinchen,
Germany). Red, green, blue and white panels in the figure correspond to
the coronal, sagittal, axial and 3D rendering of the MRI, respectively.

FIGURE 2. Representative example of MRI slices generated when the
axial plane intersects the labelled (in green) and an unlabelled adjacent
vertebra (a-c and b-d, respectively) within the MRI subvolume containing
the labelled vertebra, enclosed in the yellow box. a)-b) show in blue the
axial plane intersecting the vertebra and c)-d) the resulting axial MRI
slices.

plane selected for slicing the subvolumes should not gener-
ate 2D images where the annotated and the not annotated
(adjacent) vertebrae have similar shapes. The inconsistency
in labelling would, in fact, not allow the algorithm to find
a proper correlation between the images and the labels.
As shown in Figure 2 a-b, this was the case for the axial plane.

Both the sagittal and the coronal plane were instead suit-
able candidates. The coronal plane was selected being the
plane generating the highest number of 2D labelled images,
as the longest dimension of the thoracic vertebrae was along
the anterior-posterior direction (from the anterior vertebral
body to the tip of the posterior process). The MRI subvolumes
were thus sliced along this plane, and not-annotated slices
were discarded from the dataset. This process resulted in 6449
2D MRI images of the apical vertebra with corresponding
ground-truth labels. Figure 3 shows for each AIS patient
the number of annotated coronal slices for each vertebral
level.
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FIGURE 3. Annotated coronal slices per volunteer and vertebral level.

b: AD HOC DATA AUGMENTATION FOR TRAINING

Different types of data augmentation were implemented to
include in the training dataset possible image variations spe-
cific to the unlabeled vertebral levels in the dataset (i.e.
TS, T6, T11, T12). The MRIs were visually inspected and
the primary sources of variability among different vertebral
levels identified.

The vertebrae morphology captured by the coronal plane
varies based on the specific spine levels and the coronal plane
intersection angle with the vertebra. The image transforma-
tions to compensate for these effects included:

« Rotation and horizontal translation. Each image was
rotated and translated by an amount randomly selected
between (—10, 10) degrees and (—10, 10) pixels,
or between (—15, 15) degrees and (—15, 15) pixels
(Figure 4 b).

o Shear deformation. A random shear value between
(0.05, 0.5) and between (—0.05, —0.5) was selected for
each annotated image (Figure 4 c).

o Coronal plane tilt. Each MRI subvolume was resliced
into 2D images 10 times, after tilting the coronal plane
at different angles from —15 to 15 degrees, with an
increment of 3 degrees each time.

Image intensity changes were also observed, such as vary-
ing levels of boundary definition and pixel intensity values
surrounding the vertebrae, due to the presence of different
tissues adjacent to the vertebral levels. More specifically,
the apical vertebrae in the training set were mostly charac-
terised by a black background due to the presence of the
lungs, while this was not the case for lower vertebral lev-
els (e.g. T11 and T12) surrounded by soft tissues. To this
end, two additional image transformations were implemented
(Figure 4 d-e):

o Blurring. A blurring factor randomly chosen between

1 and 3 was applied to each image.

« Background intensity override or background intensity
override and blurring. Darker pixels (intensity values
lower than 80 on a scale from 0 to 255) at the sides of
the annotated vertebra were replaced with a randomly
selected grey value between 150 and 170. This solution
aimed at forcing the algorithm to generate a solution
even if the region to be segmented was not surrounded
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FIGURE 4. Image transformation examples applied to two MRI coronal slices and corresponding labels (a) including the vertebral body and the
posterior process (left and right column, respectively). b) Rotation R and horizontal translation D; c) Shear deformation (S=shear factor); d) Blurring

(BF = blurring factor); e) Background intensity override (SL/SR =

by a black background. Subsequently, blurring (with a
random factor between 1 and 3) was also applied to some
of the images randomly selected.

The ranges of values used for the image transformations
described above were selected by visually inspecting the
MRI volumes. 90,010 2D images were obtained from the
data augmentation process in addition to the original dataset.
Black pixel padding was applied to both the original and the
newly generated images (and corresponding annotations) to
match the largest image in the dataset (118 x 364 pixels,
in height and width, respectively). The images (and annota-
tions) were then downscaled, keeping the same image aspect
ratio, to 100 x 308 pixels, to reduce the algorithm computa-
tion time.

2) CNN ARCHITECTURE AND TRAINING

A UNet architecture [20] was implemented to perform the
automatic segmentation of the vertebrae. It included ten
blocks of two sequential convolutional layers. After each
convolutional layer, batch normalisation [31], ReLu activa-
tion and dropout [32] of 10% of the network weights were
applied. The optimal algorithm hyperparameters (Table 3)
were defined by using the data from 80% of the patients
(20 AIS patients) to train the algorithm and the remaining
20% (5 AIS patients) to estimate the algorithm performance.
The algorithm was trained using Adam optimiser [33] and the
dice loss as cost function [34].

E. CNN TESTING ON AIS PATIENTS AND HEALTHY
VOLUNTEERS

1) CNN CROSS-VALIDATION

The algorithm cross-validation enabled partitioning the
dataset 5 times into training and test sets, using an 80% to
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left/right side pixel intensity) and blurring.

TABLE 3. Optimised algorithm hyperparameters.

Hyperparameters Value
Learning rate 107
Weight decay 10
Momentum 0.95
Batch size 8
Epochs 15

20% ratio (i.e., 20 to 5 AIS patients, respectively), each time
including different AIS patients in the test set. The training
and the test sets included on average 46.6 &+ 1.67 volumes
and 11.4 £ 1.67 volumes, respectively. Data augmentation
was applied to all the training volumes as described in
Section II-D-1-b.The algorithm was retrained with these new
data splits utilising the same network structure and hyperpa-
rameters as specified in Table 3, resulting in 5 trained models.

2) CNN TESTING WITH SLIDING WINDOW APPROACH FOR
VERTEBRAL LEVELS FROM T5-T12

The vertebrae T5-T12 were segmented on the AIS patients
and the healthy volunteers using the trained models assigned
in the cross-validation and the best performing model
in the cross-validation, respectively. Since the MRI vol-
umes included the whole upper body area, the most ante-
rior/posterior slices of the MRI not comprising the spine
were removed to reduce computation time. The medial-most
and lateral-most MRI slices were then cropped to pro-
duce the same fixed boundary size applied to the annotated
ground-truth images in Section II-D-1. Black padding was
applied at the lateral and medial sides of the images to match
the training images’ width (i.e. 308 pixels in width).
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The next step involved subdividing the MRI coronal slices
into patches capturing the vertebrae of interest, as performed
in training. To this end, a “sliding window approach” was
adopted. A window of fixed dimension (100 pixels) was
translated on each coronal slice of the MRI volume with a
stride of 10 pixels. Each image part overlapped by the window
was resized to 100 x 308 (as the annotated dataset images
in Section II-D-1b) and fed to the network. The resulting
segmentations were then resized and re-ordered based on
their original dimensions and positions on the corresponding
MRI, and overlapping pixels (from different segmentations)
were summed. The segmentations obtained for each MRI
coronal slice were finally combined to form a binary volume
and were resized to the original MRI volume voxel dimen-
sions (Figure 5).

FIGURE 5. Schematic representation of the sliding window

approach. In a) a window with fixed dimension and stride is translated
through an example MRI coronal slice. In b), all the image regions
overlapped by the window are fed to the network and segmented (shown
in green). The resulting segmentations are then re-ordered based on their
original position and summed. In c) the result after this procedure is
applied to the whole MRI slice is shown.

The window dimension selected was an overestimation of
the region needed to enclose a vertebra on the coronal plane
and combined with a relatively small stride, it ensured that
each vertebra (both vertebral body and posterior elements) in
the coronal plane could be fully enclosed by the sliding win-
dow at least once. The algorithm performance was assessed in
relation to the size of the window and stride selected, by test-
ing two additional window-stride combinations: 80 pixels
window with 10 pixels stride and 80 pixels window with
2 pixels stride.

3) POST-PROCESSING FOR QUALITATIVE ANALYSIS
Post-processing was implemented for a qualitative analysis
of the results. The volumetric segmentation generated as
described in Section II-E-2 was smoothed using a standard
Gaussian smoothing filter, with the kernel radius parameter
(defining the size and strength of the smoothing effect) of 10.
Relatively small connected components (below 7000 pixels)
were subsequently deleted. These post-processing steps were
automatically performed through the ““smoothing” func-
tion and the ‘“‘connectivity analysis” module embedded in
Imfusion.

Note, however, that the quantitative evaluations reported
in Section II-F were performed on the raw results obtained
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(Section II-E-2), without the post-processing steps here
described.

F. CNN AND INTRA-OBSERVER PERFORMANCE
EVALUATION
1) EVALUATION METRICS

o The Dice Score Coefficient (DSC) [35] is a quantita-
tive measure of the overlap between two binary masks
(Eq 1). It is calculated by superimposing the two masks
and computing the number of overlapping pixels mul-
tiplied by a factor of 2, divided by the total number of
segmented pixels in the two masks. Thus, two perfectly
overlapping masks would resultin a DSC of 1 (or 100%).

DSC = 2(M, - M2) )
|My| + |M>]
where indicates the dot product, the subscripts refer to
the masks 1 and 2, and the absolute value of each mask
corresponds to the total number of segmented pixels.

o The Hausdorff distance (HD) [36] measures the maxi-
mum distance selected among the minimum distances
computed between the boundary pixels of the two binary
masks (B and B) (Eq 2-4).

9

HD = max (hd (B1, B2) , hd (B, B})) 2)

hd (B1, B») = max min |b; — by |? 3)
b1€B| byeB;

hd (B2, By) = max min b — b |? )
by€B) b1€B

Two additional metrics were developed to further assess the
segmentations for each vertebral level and for all the vertebral
levels in each MRI.

« The Segmentation Scoring Rate (SSR) is a quantitative
metric to compute the rate of correctly segmented 2D
coronal slices (Eq 5). For each vertebral level, two sep-
arate SSR were computed for the vertebral body (VB)
and the posterior process (PP). A score of 0, 0.5 or 1 was
assigned by visual inspection whenever the vertebra was
not segmented, partially or fully segmented (morpholog-
ically clinically acceptable segmentation), respectively.
More specifically, to be considered clinically acceptable,
the segmentation boundary had to include the cortical
bone (Figure 6), with an error tolerance of +/— 1 pixel.
Moreover, a 0.5 score was assigned if the vertebra was
correctly segmented, but false positives were connected
to the prediction; whereas a score of 1 was given when
false positives were present but were not connected to
the segmentation. The scores assigned for the coronal
slices “i” of a vertebral level were then summed and
divided by the total number of 2D images where the
vertebra part (either VB or PP) was present.

n
> i score;

SSR = &)

where n is the number of 2D coronal slices where a specific
vertebral level was present.
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FIGURE 6. Schematic representation of the sliding window

approach. In a) a window with fixed dimension and stride is translated
through an example MRI coronal slice. In b), all the image regions
overlapped by the window are fed to the network and segmented (shown
in green). The resulting segmentations are then re-ordered based on their
original position and summed. In c) the result after this procedure is
applied to the whole MRI slice is shown.

o The Overall Score (OS) is a quantitative measure assess-
ing for each MRI the quality of the segmentations pro-
duced for the vertebrae from T5 to T12 (Eq 6- 7). It is
computed as the average of the evaluations V; assigned
to each vertebral level in an MRI volume (Eq 7).

0os =V, (6)
Vi = wi(SSRYE) + ws (SSR{’P ) %)

where SSRIVB and SSR}DP are the SSR computed for the VB
and the PP of the vertebral level in the MRI, respectively.
The weights w; and wy were set to 0.5. Note that if one is
interested only in VB segmentation then w; = 1 and wp = 0.

2) CNN PERFORMANCE ON AIS PATIENTS AND HEALTHY
VOLUNTEERS

a: CNN CROSS-VALIDATION

The algorithm performance was first evaluated on the ver-
tebral levels available in training. The mean DSC was
computed between the 2D segmentations generated by the
algorithm and the expert, for each test set and each vertebral
level in the test sets (Section II-E-1).

b: SLIDING WINDOW OPTIONS COMPARISON
The different windows-stride dimensions combinations
described in Section II-E-2 were tested on 5 MRIs randomly
picked from different test sets, ensuring that the combination
of MRIs selected had a ground-truth label for each vertebral
level. To assess the algorithm performance in relation to
the window-stride dimension selected, the mean DSC was
computed between the ground-truth segmentation and the
corresponding vertebrae in the predicted segmentation.
Since the segmentation obtained from the algorithm com-
prised the vertebrae from T5 to T12, the vertebral level to be
compared with the corresponding (one vertebra) ground-truth
was first selected. This selection was performed by extracting
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TABLE 4. Mean DSC for the test set used in each CNN model and for the
corresponding vertebral levels. Column 1 details the CNN model. Columns
2-6 report the mean DSC computed over all the images in the
corresponding test set and the mean DSC considering only the images of
a specific vertebral level (T7, T8, T9 or T10), respectively.

CNN Mea  Mean Mean  Mean Mean
Model n DSCT7 DSC DSC DSC
DSC [%] T8[%] T9[%] T10[%]
[%] (images (imag (images (images
) es) ) )
1 88.3 - 88.5 87.5 89.5
(819)  (448) (239)
2 87.9 - 87.8 88.8 87.7
%941) (213) (221)
3 89.0 - 89.6 88.4 -
(711)  (469)
4 90.0 90.7 89.8 89.0 -
(469) (496)  (463)
5 88.0 88.2 87.4 88.1 -
(234) (159)  (797)

all the connected components (along the coronal plane) of
the predicted segmentation region enclosed by the bounding
box of the corresponding ground-truth annotation plus a small
margin (5 pixels in the medial-lateral and superior-inferior
directions).

The mean DSC was recomputed for some examples of the
annotated vertebrae in the test sets, to account for possible
changes in the algorithm performance caused by the sliding
window approach.

c: CNN TESTING FOR VERTEBRAL LEVELS T5-T12

The 5 MRIs selected in Section II-F-2-b and 3 addi-
tional randomly selected MRIs of healthy volunteers were
assessed first by comparing the mean DSC and the SSR
(Section II-F-1) for the vertebral levels for which a cor-
responding ground-truth was available. As described in
Section II-F-2-b, to enable this evaluation, the vertebral level
corresponding to the ground-truth vertebra was extracted
from the predicted segmentation, which included all vertebral
levels T5-T12.

The dataset was then comprehensively evaluated comput-
ing the SSR for each vertebral level (with or without com-
parison of corresponding ground-truth label) and the OS to
obtain the overall performance of each MRI analysed.

3) INTRA-OBSERVER AND INTER-OBSERVER VARIABILITY
TESTS

The intra-observer and the inter-observer variability were
assessed to compare the experts and the algorithm perfor-
mance and to understand the maximum achievable perfor-
mance for the algorithm. The first expert (H.J.) contoured
the apical vertebra of one of the AIS patient three times,
at different time points. The DSC was computed between
the 2D segmentations of the first and the second contoured
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TABLE 5. Mean DSC for the test set used in each CNN model and for the corresponding vertebral levels. Columns 1-3 detail the CNN model, the volunteer
ID and the vertebral level, respectively. Columns 4-7 report the mean DSC obtained for the three different Window-Stride combinations and when the
sliding window approach was not applied. The cases where the Window-Stride combinations obtained a significant mean DSC difference are highlighted.

Mean DSC[%]
CNN  Volunteer Vertebra Window - Window- Window- No  Sliding
Model 1D Stride [100- Stride Stride Window
10] [80-10] [80-2]
1 5 T6 87.1 87.1 87.0 -
5 T10 90.5 90.5 90.5 89.5
5 T11 90.4 90.4 90.4 -
2 6 T6 83.8 84.1 84.7 -
6 T8 89.0 89.0 88.9 88.5
6 T12 85.3 84.5 86.0 -
3 11 T9 92.5 91.9 92.0 90.9
4 14 T7 91.5 91.5 91.2 91
5 3 T5 824 81.8 83.0 -
3 T6 77.1 77.2 84.9 -
3 T8 87.3 87.2 87.8 83.6
3 T11 85.6 84.7 85.3 -

FIGURE 7. The most posterior coronal slice assessed through the SSR metric (a) and the actual most posterior slice contoured by the expert
(b) (The actual posterior-most coronal slice was 12 MR images posterior to the one assessed with SSR). In the left and right column,
the MRI and the corresponding superimposed ground-truth segmentations (in green and highlighted by arrows) are shown, respectively.

volumes, the second and the third contoured volumes, and was followed to assess the intra-observer variability for more
the first and the third contoured volumes. superior and inferior verbal levels of the torso (T6 and T11).

The second expert (see Section II-C) outlined the same Finally, the inter-observer variability was computed
vertebra three times, at different time points and the DSC between the two experts for the apical vertebra, comparing
was computed as for the first expert. The same procedure the labels generated during three contouring sessions for one
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TABLE 6. Comparison between the DSC, SSR and HD evaluation computed for each volunteer individually. Columns 1-5 detail the volunteer type (AIS or
healthy), the CNN model, the volunteer ID, the vertebral level, and the number of pixels contained in the corresponding ground-truth (GT), respectively.
Columns 6-8 report the mean DSC considering the vertebral body (VB) and the posterior process (PP) individually and combined (TOT), excluding from the
evaluation the most anterior-posterior MRI slices with not well-defined vertebra boundaries. Columns 10-15 report the corresponding SSR and mean HD
obtained. Column 9 details the mean DSC with superscript* calculated (for the vertebral body and posterior process) over all the coronal slices where the
vertebrae were present, even if not well defined. The cases corresponding to the lowest SSR performance (over the whole vertebra) are highlighted.

Window-Stride [100-10]

#CN  Volun Verteb # Mean Mean Mean Mean SSRYB SSRP® SSR™ Mean Mean Mean
N teer ra  Pixel DSCY DSC® DSCT DSCT [%]  [%] '[%] HD'®[ HD™ HD™T
Mod  ID GT  B[%] [%] °T[%] °T[%] mm]  [mm]  [mm]
el
AIS 1 5 T6 12104 198+ 2.85+ 2.49+
0 93.9 88.3 91.1 87.2 96.5 96.6 96.0 1.24 1.69 1.57
5 T10 16490 220+ 251+ 2.39+
3 94.8 90.9 92.9 90.6 100 99.3 99.6 091 1.84 1.53
5 T11 18587 2.31+ 2.93+ 2.67+
8 95.7 90 92.9 90.4 97.7 92.6 95.2 1.62 1.80 1.75
2 6 T6 13242 298+ 338+ 3.21%
8 92.8 83.8 88.3 83.8 100 99.2 99.6 0.92 1.14 1.06
6 T8 14172 1.99+ 3.00+ 2.55+
8 94.0 88.6 91.3 89 94.7 100 97.4 0.87 1.67 1.46
6 T12 20636 230+ 459+ 3.65+
6 95.2 82.4 88.8 85.3 100 74.3 87.2 0.77 5.26 4.20
3 11 T9 15827 1.57+ 1.90+ 1.75+
1 933 933 933 92.5 99.1 100 99.6 1.88 1.21 1.55
4 14 T7 16393 1.36+ 1.72+ 1.57+
1 95.1 933 94.2 91.5 100 97.9 99.0 1.00 0.89 0.95
5 3 TS5 83603 215+ 3.67 3.07+
93.4 80.6 87.0 82.5 97.5 90.9 94.2 0.81 2.61 2.22
3 T6 10742 222+ 347+ 294+
0 92.8 86.8 89.8 77.2 97.6 99.2 98.4 1.39 2.37 2.10
3 T8 12700 1.98+ 3.07+ 2.59+
9 92.9 89.5 91.2 87.4 100 100 100 1.56 1.22 1.48
3 T11 16462 3.38 5.34+ 4.46+
5 93.2 84.1 88.7 85.7 95.7 71.5 83.6 +1.21 3.82 3.09
Hea 4 1 T9 10024 146+ 2.06+ 1.81+
Ithy 3 92.2 93 92.6 91.2 100 96.7 98.3 1.19 1.65 1.49
5 T9 11656 1.58+ 1.83+ 1.72+
4 92.7 93.8 93.2 924 100 100 100 1.11 1.18 1.15
10 T9 12719 1.94+ 1.57+ 1.78+
9 93.1 93.1 93.1 92.5 100 94.5 97.3 1.35 1.06 1.22

volume and the labels outlined during a single contouring
session for two additional volumes.

Ill. RESULTS

A. CNN CROSS-VALIDATION

The 5 CNN models showed similar performance, with mean
DSC between 88% and 90% (Table 4). The same trend was
observed analysing each vertebral level individually, despite
the vertebral levels T7 and T10 were underrepresented in the
training set.

B. SLIDING WINDOW OPTIONS COMPARISON

The results obtained for different window-stride combina-
tions did not show a significant variation in most of the cases
analysed (Table 5) (the mean DSC variation was typically
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less than 1%). The window-stride combination [80-2] showed
a performance increase of about 1-2% in a few cases and
of about 8% in one case (highlighted in Table 5). The over-
all computation time (including opening the dicom file and
writing the segmentation generated) was about 2 minutes for
the window-stride combinations [100-10] and [80-10], and
12 minutes when a stride of 2 was utilised. All computations
were performed on an online cloud (RONIN, New Jersey,
United States) using 2 GPUs NVIDIA Tesla M60 (NVIDIA,
Santa Clara, California, United States).

C. CNN TESTING FOR VERTEBRAL LEVELS T5-T12

Table 6 compares the DSC, the SSR and the HD evalu-
ation. The metrics were computed for the vertebral body
and the posterior process, considered as individual parts
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and combined. The MRI coronal slices for which the segmen-
tation was assessed were selected by visual inspection, dis-
carding the most anterior and posterior coronal slices where
the boundaries of a given vertebra could not be confidently
identified (Figure 7). The mean DSC computed over all the
coronal slices where the vertebrae were present (even if not
well defined) is also reported in Table 6 with superscript *.

For AIS volunteers, the SSR values obtained were between
83% and 100% (where 100% implied that all the segmented
slices considered were clinically acceptable), with the lowest
values corresponding to the vertebral levels T11 and T12
(highlighted in Table 6). This trend was confirmed by the
HD, but not by the mean DSC obtained. Since the vertebrae
T11 and T12 were the largest vertebral levels in the dataset
(about double the size of a TS or a T6), segmentation errors
would be penalised less compared to the other vertebral
levels.

The SSR reported for each vertebral level (over 5 and
3 MRIs for AIS and healthy participants, respectively) con-
firmed that a significantly lower performance was obtained
for the levels T11 and T12, especially for the posterior process
(Table 7). Compared to AIS patients, for healthy participants,
the mean SSR was slightly lower for the vertebrae T7-T10,
but it significantly improved for the vertebrae TS, T11 and
T12 (by 4.8, 7.8 and 12.5 %, respectively). When all the
vertebral levels were considered, healthy participants showed
a higher performance compared to AIS patients (Table 8).

D. INTRA-OBSERVER AND INTER-OBSERVER VARIABILITY
TESTS

The intra/inter-observer mean DSC was on average 86.7% =+
2.8% and 86.2% =+ 2.6%, respectively. Table 9 describes
these results for all the cases analysed. The higher DSC of
the experts was typically associated with the consistency in
selecting the first and the last MRI images that were consid-
ered contourable within a volume.

E. QUALITATIVE ANALYSIS AFTER POST-PROCESSING
Figures 8 and 9 show examples of raw and the post-
processed segmentations (Section II-E-3) of AIS patients and
healthy volunteers. The post-processing resulted in deleting
the false positives generated in the raw solution and enabled
connecting incomplete adjacent segmentations. However,
the smoothing algorithm utilised also caused an undesired
merging of the boundaries of adjacent vertebrae, due to the
small distance between them. Furthermore, filtering small
components resulted in deleting segmentation parts of the
vertebrae.

IV. DISCUSSION

In this paper, we present a deep-learning technique to recon-
struct the thoracic spine levels T5-T12, using the ground-truth
label data of a single vertebra per patient. Without loss of
generality, the sliding window approach and the data aug-
mentation utilised here could be applied to any deep learn-
ing algorithm for spine segmentation. The implemented data
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TABLE 7. Mean overall SSR reported for each vertebral level computed
over 5 and 3 MRIs of AIS and healthy participants, respectively. Columns
1-2 describe the volunteer type (AIS or healthy), respectively. Columns
3-5 report the mean SSR computed for the vertebral bodies (VB),

the posterior process (PP) or the two combined (TOT) respectively, for the
corresponding vertebral level. The cases corresponding to the lowest SSR
performance (over the whole vertebra) are highlighted.

Vertebral Mean Mean Mean
level SSRVE  SSRPP SSRTOT
[Y0] [%0] [%]
AIS T5 90.7 95.0 92.8
T6 98.1 98.4 98.3
T7 99.3 99.2 99.2
T8 98.9 99.5 99.2
T9 99.0 99.9 99.4
T10 97.1 97.8 97.4
T11 88.9 83.9 86.4
T12 77.2 70.5 73.8
Healthy T5 98.3 96.8 97.6
T6 97.9 96.5 97.2
T7 99.2 98.6 98.9
T8 99.6 97.9 98.7
T9 100 97.0 98.5
T10 99.0 94.5 96.7
T11 98.7 89.7 94.2
T12 94.0 78.6 86.3
TABLE 8. OS values for AIS and healthy participants.
Volunteer OS[%]
1D

AIS 5 96.1

94.1

94.1

14 88.5

92.3

Healthy 1 96.5

96.2

10 99.0

augmentation consisted of commonly used image processing
transformations, and the selected parameters were purely
derived by visual inspection. The sliding window size was
arbitrarily chosen, solely considering that it had to exceed
the dimension of the individual vertebrae along the coronal
plane and, the algorithm performance was proved to be robust
to significant changes in the sliding window dimension. The
stride dimension most strongly influenced the segmentation
processing time since it defined the number of image patches
extracted from a given MRI volume. Utilising a smaller
stride (e.g. 2 pixels) was time expensive, but it could lead
to higher segmentation performance for the vertebral levels
not represented in the training dataset. It ensured in fact that
the network could be fed with multiple patches capturing the
vertebra, or different regions of it, at varying locations within
the patch. At the current stage, the stride can be selected
depending on the specific requirements of the segmentation
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TABLE 9. Mean intra/inter-observer mean DSC computed for two experts. Columns 1-2 describe the volunteer ID and the vertebral level, respectively.
Column 3-5 report the intra/inter-observer mean DSC computed for two experts.

Volu Ver Intra-observer A  Intra-observer B Inter-observer A-B
nteer tebr Mean DSC[%] Mean DSC[%] Mean DSC[%] Mean DSC[%] Mean DSC[%]
ID a 14- 24. 3A_ 1B 1A 24 14— 24— 3A_ 1A DA 3A_ 1A DA 3AL
2A 3A lA 2B 72B 2B !B IB 1B 2B 2}3 2B 3B 3B 3B
3 T8 8. 87. 84. 814 89. 8l.6 857 878 8. 798 822 812 805 833 829
3 9 2 8 0
5 TI0O - - - - - - 874 - - - - - - - -
6 T8 - - - - - - 88.0 - - - - - - - -
3 T6 - - - 833 87. 895 - - - - - - - - -
8
3 Ti1 - - - 88.1 91. 89.0 - - - - - - - - -
7

The superscripts refer to observers A and B and the CNN C; 1, 2, 3 indicate the segmentation produced during the first, second or third contouring session,

respectively.

FIGURE 8. 3D reconstructions of AlS patients vertebral levels

T5-T12 before and after post-processing (leftmost and rightmost sides,
respectively). Figures a, b, c correspond to 3 AIS patients. The left/right
columns of images correspond to the posterior/anterior views of the
reconstructions.

application to find the best trade-off between processing time
and segmentation accuracy. In the future, this limitation could
be overcome through the use of additional training data.
Furthermore, since the algorithm was typically conserva-
tive in the vertebral anatomy detection, in this work, the final
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FIGURE 9. 3D reconstructions of healthy volunteers vertebral levels
T5-T12 before and after post-processing (leftmost and rightmost sides,
respectively). Figures a, b, c correspond to 3 healthy volunteers. The
left/right columns of images correspond to the posterior/anterior views
of the reconstructions.

segmentation generated through the sliding window approach
was defined as the union of all the segmentations generated
on the image patches. The effectiveness of this choice was
also proved through the fact that using a small stride, and thus

86821



IEEE Access

M. Antico et al.: Deep Learning-Based Automatic Segmentation

considering solutions of an increased number of overlapping
image patches, led to enhanced algorithm performance.

The segmentation approach used in this work was suc-
cessful for both healthy volunteers and AIS patients. The
reconstructions of healthy spines were, on average, more
accurate, even though the algorithm was trained uniquely
on AIS patient’s data. This result can be explained by the
patient-specific spinal deformity and/or intra-vertebral rota-
tions in AIS anatomy that created enhanced variability in the
vertebral appearance, to which the algorithm was not always
robust.

The 3D reconstruction of the vertebral anatomy here pre-
sented can be used to simulate patient-specific mechanics in
biomechanical investigations or to examine the AIS pathol-
ogy and, eventually, volumetrically analyse AIS vertebral
growth and deformity progression by comparing the verte-
bral anatomy reconstructions in the sequential MRIs of AIS
and healthy volunteers. This study is particularly relevant
since the only alternative to reconstruct the vertebral anatomy
during the AIS disease progression is using EOS biplanar
X-ray imaging [37] (EOS Imaging, Paris, France) that, being
based on generic shape fitting algorithms, cannot generate
a morphologically accurate model of the spine. The main
requirement defining the usability of the segmentations gen-
erated to analyse the pathology is the ability of accurately
reconstructing the anatomy of the vertebral bodies, which
are the elements contributing the most to the spine deformity
since they are the largest vertebral structures. The SSR metric
introduced in this paper indicated that clinically acceptable
morphological reconstructions were typically generated for
both the vertebral body and posterior process, with some
exceptions at the vertebral levels T11 and T12. This effect was
caused by the substantial variation in size and morphology
of these spinal levels, in particular for the posterior process,
when compared to other thoracic vertebrae. In the future,
to enhance the algorithm performance, additional vertebral
level(s) representative of the lower spine should be intro-
duced in the training set, accounting thus for their shape
difference.

In addition to the SSR, the segmentation results were also
obtained using the standard DSC. The results achieved by the
two metrics were not always directly proportional, since the
DSC evaluates the segmentations at a pixel-level, whereas
the SSR at a structural/morphological-level. In particular,
the DSC failed to identify the lower segmentation quality
of T11 and T12. Segmentation errors resulted in a smaller
penalty for these two vertebrae, due to their significantly
larger size compared to other vertebral levels.

The mean DSC obtained for AIS and healthy volunteers’
vertebral bodies (about 93-94% DSC) is comparable to the
current state-of-the-art [27] and significantly higher relative
to the previous study focusing on AIS patients [25], which
reported DSC values between 80 and 90%. A performance
similar to this paper was also reported by Korez et al. [28] and
by Lu et al. [26]. However, one should note that this compari-
son is purely qualitative and should not be taken literally since
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different test sets were utilised to generate the results reported
by the different works. These results depend not only on the
effectiveness of the segmentation method applied but also
on the specific MRI protocol employed, the vertebral levels
segmented, the volunteer group considered and the quality of
the ground-truth annotations provided.

In this paper, the quantitative segmentation results were
computed on the “raw” algorithm segmentations (without
post-processing). This choice was made to evaluate the
algorithm performance avoiding a possible bias specific to
the post-processing steps selected to smooth and remove
reconstruction artefacts. We also applied a simple, auto-
matic post-processing procedure to several segmentations for
comparison purposes. This process generated a smooth and
well-defined 3D reconstruction of the anatomy, but it also
led to sub-optimal results in terms of segmentation quality.
For these reasons, in future work, the segmentation post-
processing should be refined for this specific task.

The primary source of false positives in the “raw’’ segmen-
tation was caused by the fact that many patches which did
not contain any vertebral anatomy were fed to the algorithm.
Differently from training and cross-validation, at test-time,
the sliding window approach was applied to the whole ROI
containing the vertebral levels T5-T12, regardless of the pres-
ence of the vertebrae in the image patches generated. In the
future, the patches containing the vertebrae to be segmented
could be automatically selected using a trained classifier
[38], [39] before the segmentation algorithm is applied.

V. CONCLUSION

In this paper, we propose a data-efficient method to auto-
matically segment the thoracic spine (T5-T12) using a
state-of-the-art CNN trained with a labelled dataset limited
to the AIS patients’ apical vertebrae. Furthermore, it is the
first MRI-based method reconstructing the whole vertebra
bony anatomy, including the vertebral body and the more
complex posterior process. The implemented method showed
aperformance comparable to 2 experts, achieving a mean dice
score coefficient of 87%=+4.3 for the AIS patient vertebral
levels T5-T12. This approach was also robust for auto seg-
mentation of healthy volunteers data. On average, 93% and
97% of the MRI segmented slices were considered clinically
acceptable morphological reconstructions of AIS and healthy
volunteer vertebrae, respectively. The proposed algorithm can
be considered as the first step towards MRI-based screening
for AIS.
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