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ABSTRACT Surface roughness is one of the important indicators to measure the surface quality of parts
processed, in addition to the cutting parameters affecting the surface roughness, the inevitable tool wear
during the cutting process also makes the surface roughness constantly changing. In order to achieve
high-precision prediction of machined surface roughness, a high-speed precision milling surface roughness
prediction method based on particle swarm optimization least squares support vector machine (PSO-
LSSVM) is proposed in this paper. The prediction method uses standardized cutting parameters and tool
wear as the input variables, and uses the LSSVM algorithm to model the relationship between the input
variables and the surface roughness, the improved PSO algorithm is used to optimize the hyperparameters
of LSSVM so as to improve the generalization ability. In order to verify the effectiveness and superiority
of PSO-LSSVM predictive performance, two surface roughness prediction models have been developed
based on support vector machine (SVM) and response surface method (RSM), respectively. With the same
sample conditions, average relative error and root mean square error of PSO-LSSVM prediction model are
the smallest, and the correlation coefficient of PSO-LSSVM method is the largest. It is indicate that the
surface roughness prediction accuracy and generalization ability based on PSO-LSSVM are the best under
different cutting parameters.

INDEX TERMS Surface roughness prediction, least squares support vector machine, PSO algorithm,
precision milling.

I. INTRODUCTION
Surface roughness is one of the important indicators to evalu-
ate the surface quality of precision machining, which directly
affects the performance and service life of parts [1], according
to statistics, more than 80% of fatigue cracks in aerospace
parts start from the roughness of the processed surface [2].
Therefore, realizing the accurate prediction of the surface
roughness in the intelligent and automatic machining process,
and adjusting the cutting parameters in the machining process
in time can not only improve the machining quality and
efficiency, but also reduce the processing cost, which has
important application value for the actual production. For
this, many scholars have conducted in-depth research on the
prediction method of surface roughness.

The associate editor coordinating the review of this manuscript and
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In the process of precision milling, it is necessary to con-
struct a high-precision and robust surface roughness pre-
diction model in order to evaluate the surface roughness
of milling. At present, surface roughness prediction method
are mainly divided into two aspects, one is online surface
roughness detection, such as the use of photoelectric sensor
technology to directly measure the surface roughness [3], [4],
but due to the influence of cutting chips and coolant in the
machining process, the direct detection accuracy and effi-
ciency are low. The other is indirectly detect surface rough-
ness by monitoring the process state. In recent years, many
scholars have studied surface roughness prediction methods
based on cutting parameters and tool geometric parameters,
which mainly include theoretical modeling method [5], [6],
empirical regression analysis modeling method [7]–[9] and
artificial intelligence modeling law [10]–[12] etc. In terms
of theoretical modeling research, Montgomery and Alti-
tas [5] proposed a theoretical model to predict the surface
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roughness during processing with a flat-end milling cutter as
Ra = f 2z /[32 × (R ± fznz/π )], where fz is the feed rate
per tooth, R is the tool radius and nz is the number of
tool teeth. He et al. [6] proposed a new theoretical surface
model, which takes into account the influence of cutting
edge shape, workpiece material properties and other random
factors. In terms of empirical regression analysis modeling,
Agrawal et al. [7] developed a surface roughness prediction
model based on multiple regression modeling by studying the
influence of cutting parameters on machined surface rough-
ness. Li et al. [8] established a high-speed milling surface
roughness regression prediction model based on RSM, and
verified the accuracy of the prediction model. Rao et al. [9]
used variance analysis to determine the importance of cutting
parameters to surface roughness, and established a statistical
model for surface roughness prediction based on RSM.

Artificial neural network (ANN) is an integrated knowl-
edge tool that does not need to establish a specific mathemat-
ical or mechanical analysis model, but uses a large amount
of data to train it to reflect the complex relationship between
input variables and output variables. Considering the complex
nonlinear relationship among cutting parameters, tool param-
eters and surface roughness in precision milling process,
therefore, many researchers have made a lot of attempts and
research in this filed. Abu-Mahfouz et al. [10] established
a surface roughness prediction model based on SVM by
collecting vibration signals under different cutting conditions
and extracting signal features. Kumar and Hynes [11] estab-
lished a prediction model based on ANFIS and optimized
the cutting parameters using genetic algorithm (GA), and
the experimental results show that the cutting speed and tool
angle in the machining process have an important influence
on the drilling quality. Zhang and Shetty [12] established
a prediction model of the machining process based on the
method of effective least squares support vector machine.
Wu and Yin [13] combined the classic theoretical model
and the ANN model to study the surface roughness of the
workpiece under different milling parameter combinations,
and based on NSGA-II optimization algorithm to obtain
the best process parameters. Mia and Dhar [14] proposed
an ANN-based surface roughness prediction method. They
also found that effective lubrication conditions can improve
processing quality through comparison. He et al. [15] ana-
lyzed the formation mechanism of machined surface quality,
and based on the ANN algorithm established a machined
surface quality prediction model with the cutting vibration
and machining parameters. Chiu and Lee [16] established an
adaptive fuzzy neural network prediction model that takes
machining parameters as input and milling accuracy and sur-
face quality as outputs. Through simulation and experiments,
the authors show that the model can well predict target values.
Misaka et al. [17] proposed a machining surface quality pre-
diction model based on the Co-Kriging method. They proved
through experiments that the developed model achieves a
satisfactory prediction accuracy onlywhen the amount of data
is small.

From the previous studies, we can see that in the theoretical
and regression prediction research, the modeling process has
been simplified to a great extent, such as they only consider
the cutting parameters and tool geometry parameters, and
do not consider the influence of the changing factors in the
cutting process on the surface roughness. However, the tool
parameters in the milling process are dynamically changing
(such as tool face wear, etc.). When the tool wears, it directly
affects the integrity of the machined surface. Due to the
complexity and uncertainty of the milling process, especially
in the high-speed precision milling process, when the feed
per tooth is small, there is a large accuracy error between
the established prediction model and the actual measurement.
However, the current surface roughness prediction model
based on neural networks or other intelligent methods lacks
consideration of related physical quantities which directly
affect the quality of the processed surface, such as tool wear.
These deficiencies limit the prediction accuracy and gener-
alization ability of the proposed method, hence, it cannot
accurately reflect the actual processing process.

In the high-speed precision milling process, it is necessary
to adopt a more reliable method to predict the surface rough-
ness and control the surface roughness within a reasonable
range to improve the performance of the parts. Therefore,
this article first briefly describes the main factors affecting
surface roughness, and analyzes the impact of tool wear
on surface roughness from the perspective of the formation
mechanism of surface roughness. Then, a surface roughness
prediction method based on PSO-LSSVM in high-speed pre-
cision milling process is proposed, which fully considers the
influence of tool wear on surface roughness. In this work,
we first use the adaptive weight algorithm to improve PSO
algorithm, and then use the improved PSO algorithm to itera-
tively optimize the hyperparameters in the LSSVM to ensure
the learning ability of the predictive model. Finally, three sets
of milling experiments with different cutting parameters ver-
ify the prediction accuracy and generalization ability of the
surface roughness prediction model established in this paper.

II. ANALYSIS OF SURFACE ROUGHNESS
Surface roughness is the roughness of small spacing and small
peaks and valleys on the machined surface, which is mainly
caused by the friction marks caused by the tool wear and the
system vibration during the cutting process. Research shows
that process parameters such as tool geometry parameters,
cutting parameters, cooling and lubrication methods in the
cutting process all affect the surface quality of the parts, and
there is a mutual coupling relationship between these factors.
The main factors that affect the roughness of the processed
surface are listed in table 1 [18], [19], [20].

In high-speed precision milling, the higher cutting speed
makes the tool wear faster, the tool nose radius rε and the
flank wear VB will increase and leads to an increase in the
contact area between the tool and the workpiece, which inten-
sifies the plough and friction of the tool, as shown in Figure 1.
In the process of precision milling, irregular tool cutting
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FIGURE 1. The formation of the processed surface.

TABLE 1. The main influencing factors of surface roughness.

edge wear will leave wear marks on the machined surface,
as the tool flank wear continues to expand, the friction and
temperature between the tool and the workpiece will change
significantly, which seriously affects the surface roughness of
the finishing process.

Cutting parameters and tool wear not only affect the
machining accuracy and surface roughness of the workpiece,
but also affect the machining efficiency and production cost.
Therefore, this article studies the influence of cutting param-
eters and tool wear on the surface roughness of the precision
milling process, and takes the cutting parameters and tool
wear as the input, establishes an accurate surface roughness
prediction model to solve the problem of accurate prediction
of machined surface roughness.

III. SURFACE ROUGHNESS PREDICTION MODEL BASED
ON PSO-LSSVM
A. PRINCIPLE OF LSSVM
SVM is a supervised machine learning method based on
statistical learning theory, which uses the principle of risk
minimization to construct a decision function to solve the
nonlinear problem of small sample size and high digits.
LSSVM is simplified on the basis of the support vector
machine, which takes equations as its constraints and adopts
different decision functions, so as to reduce the computational
complexity of SVM and improve its learning ability. The
main principles of LSSVM are as follows.

Give a sample of N points {(xi, yi), i = 1, 2, . . . ,N }, with
input vectors xi ∈ Rn and output yi ∈ Rn, where n is the
data dimension. For nonlinear regression problems, LSSVM
maps the original data to a high-dimensional space by using a
nonlinear mapping function ϕ(·), and then constructs a linear

regression equation in this space. Then the regression model
based on LSSVM can be expressed as:

y = wTϕ(xk )+ b (1)

where w is the weight vector, b is the deviation. Then the
minimization problem of the regression objective function
can be expressed as:

minw,b,e J (w, e) =
1
2
wTw+

1
2
γ

N∑
k=1

e2k

s.t. yk = wTϕ(xk )+ b+ ek , k = 1, . . . ,N

(2)

where γ is the regularization parameter or penalty factor,
which determines the degree of punishment for samples that
exceed the error, b is the deviation, ek is the slack variable,
which represents the error expectation of the approximation
function at the sample data point. According to Eq. (2),
the Lagrange function of LSSVM can be expressed as:

L(w, b, e, α)=J (w, e)−
N∑
k=1

αk [wTϕ(xk )+b+ek − yk ] (3)

whereαk is the Lagrangemultiplier. According to theKarush-
Kuhn-Tucker (KKT) condition, the following equality con-
straints can be obtained as:

∂L(w, b, e, α)
∂w

= 0→ w =
N∑
k=1

αkϕ(xk )

∂L(w, b, e, α)
∂b

= 0→
N∑
k=1

αk = 0

∂L(w, b, e, α)
∂ek

= 0→ αk = γ ek , k = 1, . . . ,N

∂L(w, b, e, α)
∂αk

= 0→ wTϕ(xk )+ b+ ek − yk = 0

(4)

Eliminating the variables w and ek in Eq. (4), we can get
the following linear equation:[

0 IT

I �+ γ−1I

] [
b
α

]
=

[
0
y

]
(5)

where � represents the inner product of the kernel matrix,
y = (y1, y2, . . . , yN )T ,α = (α1, α2, . . . , αN )T , and I =
(11, 12, . . . , 1N )T . The kernel function can be expressed as:

� = ϕ(xi)Tϕ(xi) = K (xi, xj) (6)

where i, j = 1, 2, . . . ,m.
According to Mercer’s theorem, the kernel function is

defined as:

K (xk , xl) = ϕ(xk )Tϕ(xl) (7)

We can obtain αN and b by solving Eq. (6), and the regres-
sion function of LSSVM can be expressed as:

y(x) =
N∑
k=1

αkK (x, xk )+ b (8)

where K (x, xk ) is the kernel function.
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At present, the commonly used kernel functions include
radial basis kernel function, linear kernel function, polyno-
mial kernel function, multi-layer perceptron kernel function,
etc. Among them, the radial basis function has a wide conver-
gence range and strong generalization ability [21], through
experimental comparison and analysis of the above kernel
functions, this paper chooses the radial basis function as the
kernel function of LSSVM, and its expression is:

K (xi, xj) = exp

(
−
||xi − xj||2

2σ 2

)
(9)

where σ is the width of the kernel function.
From the above analysis, it can be seen that the penalty fac-

tor γ and the kernel parameter σ are the two main parameters
that affect the prediction performance of LSSVM, the com-
monly used parameter solving methods include trial and error
method, grid search method, and crossover method [22], but
these methods mainly use exhaustive parameters to obtain the
global optimal solution, which is cumbersome and inefficient.
Artificial intelligence optimization algorithm can solve this
kind of problem well, and it has the advantages of high
accuracy, fast convergence and easy implementation.

B. PSO-LSSVM NEURAL NETWORK MODELING
The PSO algorithm is a group of heuristic intelligent algo-
rithm, each particle in the algorithm looks for the global
optimum solution by following the current optimal posi-
tion. Assuming that there are a total of N particles in a
multi-dimensional solution space, the velocity and position of
the i-th particle can be expressed as: Vi = (vi1, vi2, . . . , vin),
and Xi = (xi1, xi2, . . . , xin). The best position experienced by
a single particle i is marked as: Pi = (pi1, pi2, . . . , pin), and
the best position experienced by the population is marked as:
Pg = (pg1, pg2, . . . , pgn). The update of particle speed and
position can be expressed as:

V k+1
id = ω(s)V k

id + c1r1 · (P
k
id − X

k
id )

+c2r2 · (Pkgd − X
k
gd ) (10)

X k+1id = X kid + V
k+1
id (11)

wherew is the inertia weight coefficient; d is the dimension of
the solution space, c1 and c2 are acceleration factor, and they
are non-negative constants; r1 and r2 are two randomnumbers
with values between (0,1) to increase the randomness of the
search, k represents the current iteration number.

Compared with other classic intelligent optimization algo-
rithms, the obvious feature of PSO is that the search speed is
fast and efficient, and the algorithm is relatively simple. But
it also has a defect that if the inertia weight is too large, it will
lead to ‘‘premature convergence’’ and oscillations when the
particles are close to the global optimal solution, and if the
inertia weight is smaller, it will help to improve the local
search capability of local particle swarms. Therefore, in order
tomore effectively control the flight speed of the particles and
adjust the position of the particles, this article uses an adaptive
adjustment strategy to update the inertia weight coefficient to

FIGURE 2. Flow diagram of PSO-LSSVM neural network optimization.

improve the global search capability of the PSO algorithm
and improve the problem of local imbalance. The calculation
formula of the adaptive weight coefficient can expressed as:

w =

wmin −
(wmax − wmin) · (f − fmin)

(favg − fmin)
, f ≤ favg

wmax, f ≥ favg
(12)

where f is the current value of the particles, favg and fmin are
the mean and minimum value in the particle swarm, respec-
tively, and wmin and wmax are the maximum and minimum
weight coefficients.

The flowchart of optimizing LSSVM with improved PSO
algorithm is shown in Figure 2. The specific steps are as
follows:

Step 1: Standardize the collected data samples according to
Eq. (13), and then randomly obtain 80% of the sample data as
training samples, and 20% of the sample data as test samples.

x̂i =
xi − xmin

xmax − xmin
(13)

where xi is a variable data in the data set, xmax is themaximum
value in the variable, and xmin is the minimum value in the
variable.

Step 2: Set the range of the penalty factor γ and the kernel
parameter σ in LSSVM, and initialize the particle swarm
randomly according to the parameter range.

Step 3: Set the number of optimization iterations to 200, the
acceleration factors c1 and c2, the maximum inertia weight
wmax to 0.8, the minimum inertia weight to wmin to 0.5, the
variance of the randomweight average to 0.2, and the weights
are adaptively updated according to Eq. (12).

Step 4: Calculate the fitness value of each particle accord-
ing to the Eq. (14), and then determine the individual optimal
value and population optimal value of the current particle
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FIGURE 3. Schematic diagram of surface roughness prediction based on
PSO-LSSVM.

according to the fitness value.

eRMSE =

√√√√ 1
N

N∑
i=1

||f (xi)− yi||2 (14)

Step 5: Iteratively update the position and velocity of the
particles according to the Eq. (10) and Eq. (11), then produce
a new generation of populations.

Step 6: Calculate the fitness value of each particle in the
new population again, and then compared with the optimal
position of the historical individual and the optimal position
of the population. If it is better, replace it, otherwise it will
remain unchanged.

Step 7: Check whether the requirements are met (usually
the preset maximum number of iterations and the lower limit
of the fitness value), if the termination requirements are not
met, return to step (4). If the conditions are met, the program
ends and the global optimal is obtained, that is, the optimal γ
and σ 2 are obtained.
Step 8: Assign the obtained optimal position (γ , σ ) of the

particle swarm to the LSSVM prediction model to obtain the
optimal prediction model.

The PSO-LSSVM method is used to establish the
non-linear mapping relationship between cutting variables
and surface roughness, where cutting variables include cut-
ting parameters and tool wear. Suppose there are n sets of
training sample data (xi, yi) (i = 1, 2,. . . , n), in this model,
cutting parameters and tool wear are input sample data, where
xi is a five-dimensional real number input vector, including
water cutting speed Vc, feed per tooth fz, cutting width ap,
cutting depth ae, and tool wear value VB, yi is the output
sample data, that is, the surface roughness measured by the
experiment. The schematic diagram of the nonlinear mapping
relationship model between the input vector xi and the output
value yi established in this paper is shown in Figure 3.
The steps needed to use the PSO-LSSVM model are:
Step 1. Normalize the turning experimental sample data

and divide them into two parts: training data and test data.
Step 2. For training data, using PSO algorithm to train

LSSVM model and after many iterations, get the optimal γ
and σ for LSSVM.

FIGURE 4. Details of experimental measurement system.

TABLE 2. Physical and mechanical properties of 7050 aluminum alloy.

Step 3. Use optimized LSSVM model to predict surface
roughness based on the test data.

IV. MILLING EXPERIMENT DESIGN AND RESULT
ANALYSIS
A. PRINCIPLE OF LSSVM
The milling experiment was performed on a
JDCT1200T_A15SH three-axis machine tool, as shown
in Figure 4 (a), tool wear measured using microscope system
(Figure 4 (b)), workpiece surface roughness measured using
MarSurf GD 25 (Figure 4 (c)).

The experimental material is 7050 aluminum alloy devel-
oped and produced by Alcoa, which has excellent perfor-
mance such as high strength, plasticity and toughness, and
is widely used in aerospace, mold and other application
fields. Its main properties are listed in Table 2. Before the
experiment, the aluminum alloy sheet was processed into a
workpiece with a size of 120× 80× 10 mm.
The tool used in the experiment is a solid carbide tool,

and the main parameters are listed in Table 3. This exper-
iment mainly focuses on high-speed finishing and semi-
finishing, the cutting parameter and their level settings are
listed in Table 4.

B. EXPERIMENTAL RESULTS
1) SURFACE ROUGHNESS MEASUREMENT
At present, the commonly used surface roughness evaluation
method in the world is to make a quantitative evaluation of
the height of the actual contour curve between the peak and
valley (the amplitude of the contour waveform) on the French
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TABLE 3. Main structural parameters of solid carbide end mills.

TABLE 4. Cutting parameter.

FIGURE 5. Arithmetic mean deviation Ra.

FIGURE 6. Surface roughness measurement micrograph.

phase cross section of the measured surface [23], as shown
in Figure 5.

The arithmetic mean deviation of the profile is a parameter
used in most countries to evaluate the surface roughness, and
its calculation can be expressed as:

Ra =
1
l

∫ l

0
|y(x)| dx ≈

1
n

n∑
i=1

|yi| (15)

For each experiment, when measuring the surface rough-
ness, the processed surface is cleaned with alcohol, each
Ra measurement is repeated at least three times at different
locations and the average value was used in the analysis. Part
of the surface roughnessmeasurementmorphology during the
experiment as shown in Figure 6.

2) TOOL WEAR MEASUREMENT
In the finishing process, the cutting tool needs to be replaced
before the wear increases drastically or the surface roughness
is seriously affected. The microscopic schematic of tool flank
wear in the actual machining process as shown in Figure 7.
The wear in the middle part of the wear zone (area B in

FIGURE 7. Schematic diagram of tool flank wear.

FIGURE 8. Micrograph of tool flank wear change.

Figure 7) is relatively uniform, and VB is often used to
indicate average wear, and the maximum wear width is rep-
resented by VBmax. In the measurement of tool wear sta-
tus, the average width of the wear zone is generally used
to measure the wear of the flank surface according to the
literature [31].

Therefore, in the research process of this article, the aver-
age value of tool wear is defined as the value measured every
10 minutes of machining. When measuring the tool wear
value, we first clean the worn flank surface with alcohol,
and then repeat the measurement at least 3 times at different
positions, and use the average of the three measurements in
the analysis.

Part of the tool wear measurement morphology during the
experiment as shown in Figure 8.

During the experiment, due to the large experimental data,
in order to save space, the values of tool wear and sur-
face roughness collected during the experiment are shown
in Figure 9.

It can be seen from the surface roughness topography map
of Figure 6 and the tool flank topographymap of Figure 8 that
when a brand-new tool is used to cut the workpiece, the flank
of the tool has a certain degree of microscopic unevenness,
so the texture of the tool marks on the machined surface is
dense but not evident. This is because the cutting edge and
tool tip are in a sharp state at this time, and have goodmaterial
removal performance, so that the surface of the processed
workpiece reaches a good state. When the tool wear reaches
a certain level, the micro-concave and convex surface of the
flank face is gradually smoothed, and the pressure of the
contact between the flank face and the workpiece decreases.
At this time, the cutting edge is still in an ideal geometric
state in structure, and the cutting performance of the tool
reaches the best state, and the surface quality of the workpiece
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FIGURE 9. Experimental measurements values.

decreases but changes slowly. However, as the cutting time
increases, the tool begins to wear faster, the contact pressure
between the flank face and the surface of the workpiece
increases, and the gradual passivation of the cutting edge
of the tool degrades the processing performance of the tool,
resulting in a faster rate of decline in the quality of the
machined surface. However, with the increase of cutting time,
the tool wear is accelerated, the contact pressure between
the flank face and the workpiece surface increases, and the
gradual passivation of the cutting edge leads to the degrada-
tion of the machining performance of the cutting tool and the
decrease of the surface roughness.

It can be found from Figure 9 that there is almost the
same change trend between the surface roughness Ra and the
tool wear value VB under three groups of different cutting
parameters, it is indicate that there is a strong correlation
between the tool wear and the surface roughness.

C. SURFACE ROUGHNESS PREDICTION USING PSO-SVM
According to the steps of optimizing LSSVMwith PSO algo-
rithm in Section 3.2, we divide the 30 sets of data obtained
in experiment No. 2 in Table 4 into two parts, 25 groups
of experimental data were randomly selected to train the
prediction model, and the other 5 groups of experimental data
were used to verify the prediction model.

The fitness convergence curve of the improved PSO algo-
rithm for parameter optimization of LSSVM surface rough-
ness prediction model as shown in Figure 10. It can be seen
from the figure that after 68 iterations, the fitness value tends
to be stable and reaches the optimal. At this time, the opti-

FIGURE 10. The fitness curve of particle swarm optimization.

FIGURE 11. Surface roughness training and testing based on PSO-LSSVM.

mal feature parameters γ and σ 2 are 72.256 and 0.017,
respectively.

Assigning the optimized model feature parameters to the
LSSVM model, we get the surface roughness prediction
based on PSO-LSSVM. In order to verify the prediction
accuracy of the prediction model, we divide the data obtained
from Exp. No. 1 and Exp. No. 3 in Table 4 into training
data and test data respectively. The prediction results and test
results based on PSO-LSSVM are shown in Figure 11 and
Figure 12.

It can be seen from Figure 11 and Figure 12 that the
surface roughness training results and test results based on
PSO-LSSVM basically agree with the actual value change
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FIGURE 12. Surface roughness training and testing based on PSO-LSSVM.

curve, average prediction accuracy is as high as 97.8%.
It shows that the prediction model still has good prediction
accuracy and generalization ability when the cutting parame-
ters and the tool wear change.

Based on the above results, it is shown that by introducing
an improved PSO algorithm to optimize the parameters of
LSSVM, the problem of LSSVM parameter optimization is
effectively solved, so that the prediction model can reduce the
error of artificial selection of parameters and overcome the
inefficiency of traditional exhaustive method, and effectively
solves the problem of parameter optimization of LSSVM,
so that the prediction model can still have the advantages
of high accuracy, fast convergence and easy implementation
under different cutting strategies.

D. COMPARISONS OF EVALUATION RESULTS
In order to further verify the performance of the estab-
lished model, we have established RSM and SVM surface
roughness prediction models to verify the effectiveness of
the PSO-LSSVM model. The RSM model can expressed as
Eq. (16). The training data required for the two models is the
same as the training data of PSO-LSSVM.

Ra = p0 +
5∑
i=1

pixi +
5∑
i=1

5∑
j=1

pijxixj +
5∑
i=1

piix2i (16)

TABLE 5. Comparison of prediction accuracy of different methods.

where R a is the polynomial regression prediction value of
surface roughness, Px(x = 0, i, ij, ijl) are the unknown
parameters of the polynomial, x1 is the reciprocal of the
cutting speed v, x2 is the feed per tooth f z, x3 is the cutting
depth ap, x4 is the reciprocal of the cutting width ae, x5 is the
value of tool wear.

Average relative error (ARE), Root Mean square
error (RMSE) and correlation coefficient R2 are used to
evaluate the prediction effect of the mode, there calculation
formulas are the Eq. (17), Eq. (18) and Eq. (19), respectively.
The prediction results we get based on different prediction
models are listed in Table 5.

ER =
1
n

n∑
i=1

|xi − xi|
xi

(17)

RMSE =

√√√√1
n

n∑
i=1

|xi − xi|2 (18)

R2 = 1−

n∑
i=1

(xi − ix)2

n∑
i=1

(xi − 1
n

n∑
i=1

xi)2
(19)

where xi are the experimental measured values, (_x i) are the
predicted values of the established model, n is the number of
experimental data samples.

It can be seen that the prediction errors of the ARE and
RMSE obtained by PSO-LSSVM are the smallest, and the
value of R2 is the largest. It is indicate that when using
cutting parameters and tool wear as inputs, the prediction
model based on PSO-LSSVM model has high prediction
performance and can guide the practice well, because it
makes full use of the optimization ability of the improved
particle swarm optimization algorithm and the advantages of
LSSVM in small sample data prediction. Therefore, in the
case of less training data, it still has better generalization
ability and higher prediction accuracy when changing the
input parameters.

V. CONCLUSION
This paper mainly studies the surface roughness prediction
method during the high-speed precision milling. It aims to
obtain a reliable prediction method of milling surface rough-
ness, and provide the basis for improving the surface quality
of high-speed precision milling. Based on the current work,
the following conclusions we are obtained:

(1) An effective high-speed milling surface roughness
prediction method based on PSO-LSSVM algorithm has
been developed. The adaptive weight algorithm is used to
calculate and update the inertia weight coefficient in the
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PSO algorithm to improve the global search ability and local
improvement ability. The improved PSO is used to optimize
the regularization coefficient σ 2 and the kernel parameter
γ of the LSSVM algorithm. This method can better solve
the network learning problem in a small sample space to
improve the prediction accuracy and generalization ability of
the LSSVM prediction model.

(2) The main factors that affect the surface roughness
are described, and three different milling experiments have
found that there is a positive correlation between tool wear
and surface roughness during high-speed precision milling.
Taking cutting parameters and tool wear as input variables,
and surface roughness as output variables, the surface rough-
ness prediction model for high-speed precision milling based
on PSO-LSSVM can well reflect the relationship between
tool wear, cutting parameters and surface roughness, and
achieve high accuracy prediction of the surface roughness
of high-speed milling workpieces under different cutting
conditions.

(3) In order to further verify the effectiveness of the pro-
posed model, we also established two high-speed precision
milling surface roughness prediction models based on RSM
and SVM, respectively, and compared the prediction accuracy
of several models. The results show that under the same sam-
ple conditions, ARE and RMSE of PSO-LSSVM prediction
model are the smallest, which are 0.0326 and 0.0213 respec-
tively, and the correlation of PSO-LSSVM method is the
largest, which is 0.9857. It can be seen that the prediction
method based on PSO-LSSVM is superior to other prediction
methods in terms of prediction accuracy and generalization
ability, which provides a basis for further development and
optimization of the actual production process.
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