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ABSTRACT For multidimensional data, Space-Filling Curves (SFCs) have been used to improve the
execution time of spatial data queries. However, their effect on compression, when used to reorder the uncom-
pressed values, is known to a lesser extent. We investigate the impact of three SFCs on Shuttle Radar Topo-
graphic Mission (SRTM) elevation data and Square-Kilometre Array telescope (SKA) radio-astronomy data:
two types of datasets to which SFCs have not been extensively applied, within a compression context. This
work contributes to the understanding of how such reorderings impact compression performance and affect
different compression schemes and preprocessing techniques through their use. We show empirical results
from combining eight common compression schemes, the Z-Order, Gray-Code, and Hilbert space-filling
curves, and the bitwise preprocessing technique BitShuffle. The Hilbert Curve consistently outperforms
the other orderings for the SRTM dataset though the mapping implementation incurs a significant speed
penalty. However, the Z-Order and Gray-Code Curves are best for the SKA dataset. Through an analysis of
the dataset autocorrelations, file-entropies, and block-entropies; we show that the SKA dataset’s dimensional
bias is not exploited as much by the Hilbert Curve compared to the Z-Order and Gray-Code Curves. However,
the Hilbert Curve is the most appropriate for the SRTM dataset as it can be modelled as isotropic and has a
significantly higher level of local autocorrelation. BitShuffle is necessary to practically compress the SKA
data, but does contribute to the compression performance of the SRTM dataset. These curves and BitShuffle
are advantageous in reducing block-entropy values for such datasets.

INDEX TERMS Data compression, computers and information processing, digital elevation models, radio

astronomy, space-filling curves, multidimensional data.

I. INTRODUCTION

Space-Filling Curves are mappings between the one-
dimensional space and the d-dimensional space, and are used
to improve query times of spatial data-structures by reorder-
ing and indexing the underlying values, preserving some
spatial locality. Their d-dimensional orderings create curves
which wrap around themselves and traverse local subregions,
clustering nearby points together. This property results in
some neighbouring d-dimensional values being closer in the
one-dimensional space than if a standard row-major or raster
scan was used; the extent to which is dependent on the type
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of data and SFC applied. For this reason, they have appli-
cations in areas where spatial properties must be preserved
or modified, such as improving indexing performance of
relational and spatial databases [1]-[3]. They have also been
used to reduce I/O access times by reducing the number of
disk seeks necessary for range queries [1] or improving disk
address prediction from disk indices [4]. SFCs have shown
promise in large point-data management software, for both
data compression and access [5], [6]. Given their locality
preservation properties, SFCs are effective at improving k
nearest-neighbour queries [7]-[10]. As SFCs map between
d and one dimensions, they are also applicable for Machine
Learning (ML) scenarios where data must be mapped into an
alternative form appropriate for a given ML model, in some
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cases with an improvement to the overall accuracy of said
model. Instances of this in the literature include the clas-
sification of schizophrenia and normal patients’ 3D fMRI
scans [11], gesture recognition of Surface Electromyogra-
phy (sEMG) signals represented as images [12], [13], and
malware detection and classification using Support Vector
Machines [14]. Within the context of low-level computing,
the curves have been used in the creation of cache-oblivious
loop structures that preserve the locality of data held within
the cache [15]. Closer to the topic of compression, some SFCs
have shown application in bandwidth reduction of signals
based on their digital samples [16].

Many SFCs exist, though the literature typically focuses on
a select few popular types and their variants [15], [17], [18].
The most popular three are the Peano [19], Z-Order [20], [21],
and Hilbert [22] Curves. However, many variants of these
have been discussed and investigated in the literature. In this
paper we focus on three SFCs and Row-Major Order, which
we treat as a reference SFC called the Raster Curve or Raster
Scan. Metrics and measures have been defined to quantify
the level of clustering or locality preservation but only within
specific contexts and purposes such as nearest-neighbour
searches [7], [8], spatial tree data-structure optimization [23],
and hard-disk drive I/O performance [1], [24], [25].

Given their ability to map between multiple dimensions,
these curves have also been applied to the compression of
multidimensional data, with varying results. In 1986, Lempel
and Ziv [26] showed that the compressibility of an image
is lower-bounded by the same image when ordered using
the Hilbert Curve [22]. They describe this behaviour using
their encoder published in 1978, commonly referred to as
LZ78 [27], [28]. However, their conclusion is not universal as
it is dependent on the type of encoder defined in their work,
one that is derived from LZ78. There are a few published
cases where the use of SFCs are used to effectively compress
data, and in some cases outperform the standard Raster Scan.
Pinciroli et al. use the Hilbert Curve to compress angiocar-
diographic images to a compression ratio of approximately
R. = 6, though lossy in nature [29]. Another application,
also to medical images, is the work by Liang ef al., where
Run-Length Encoding (RLE) [30], LZW [31], LZ77 [27],
and Huffman Encoding (HFF) [32] are applied to CT Scan
images with differential coding and reordering using the
Hilbert Curve [33]. They achieve a maximum compres-
sion ratio of 3.42 utilizing LZW and HFF, with differen-
tial coding and Hilbert Curve reordering as preprocessing
steps.

An application of SFCs to the compression of colour
images is shown by Abdollahi et al. [34] where they combine
Move-to-Front Encoding with various SFCs as their com-
pression technique. They quantify the effect on compress-
ibility, assuming an entropy-encoder such as HFF, using the
entropy-ratio instead of R.: the ratio between the resulting
image and input image’s entropies. For all images they inves-
tigated, Abdollahi et al. achieved the lowest entropy-ratios
when the Hilbert Curve was applied. Provine and Rangayyan
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compress greyscale images mapped with the Hilbert and
Raster Curves using HFF, Arithmetic Coding, Predictive
Coding, and LZW [35]. The highest compression ratios
they achieve, of approximately R, = 5, are obtained with
HFF combined with differential coding, a form of predictive
coding.

In some cases, bespoke SFCs have been designed to
assist with the compression of data. Ouni, Lassoued,
and Abid develop a gradient-based SFC (GSFC) for the
compression of two-dimensional images [36], [37]. When
used in conjunction with the Graphics Interchange For-
mat (GIF) [38], which uses LZW, their vote variant of the
GSFC achieves better compression than with the Raster or
Hilbert Curves [36]. However, with the PNG format [39],
which uses DEFLATE [40] (a combination of LZ77 and
HFF), all SFCs are approximately the same: the Hilbert
Curve and GSFC achieve similar compression ratios [36].
When compared to other compression schemes, the lossless
JPEG compressor JPEG-LS nearly always achieves better
compression than GIF, PNG, and their Differential Pulse
Code Modulation (DPCM) [41], GSFC, and HFF based
technique [37]. Nevertheless, their GSFC-based compression
technique achieves compression ratios just above those for
JPEG-LS, indicating that further work may result in superior
performance.

Scarmana and McDougall apply SFCs to the compression
of Digital Terrain Models (DTMs), with results showing the
fastest and best compression when the Hilbert Curve is used
with DPCM [42]. They compare the compression perfor-
mance of the Hilbert Curve and DPCM to LZW, JPEG2000,
JPEG-LS, and DEFLATE with the Raster Scan. However,
they do not compare the results to DPCM with any other
orderings or SFCs. Furthermore, they only investigate three
DTM files.

Even though Pinciroli et al. [29], Liang et al. [33],
Abdollahi et al. [34], and Scarmana and McDougall [42]
achieve larger compression ratios and lower entropies when
utilizing the Hilbert Curve compared to the standard Raster
Scan, they do not compare SFCs to the Raster Scan within
the same compression schemes. Provine and Rangayyan do
compare two SFCs, but one is the base-line Raster Curve [35].
Ouni, Lassoued, and Abid do compare the Raster Scan with
two SFCs, but not all combinations of SFCs and compression
schemes are explored [36], [37]. Additionally, literature cov-
ering the theoretical performance of SFCs, within the context
of data compression, differ in their conclusions on the benefit
of using SFCs for d-dimensional data reordering. Quin and
Yanagisawa show analytically that for images made of arti-
ficial random ellipses, the use of SFC-reorderings — before
a subsequent RLE compression step — does not improve the
compressibility of the data [43].

They come to this conclusion by measuring the length of
runs when using RLE, with longer lengths being preferable.
For generic images and lossless context-based compression
techniques, Memon, Neuhoff, and Shende calculate the the-
oretical predication gains when utilizing different ordering
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techniques and conclude that there is no significant predic-
tion gain when utilizing the Hilbert Curve over the Raster
Scan [44]. They conjecture that the Raster Scan may result
in better compression performance over SFCs because com-
mon compression schemes are either explicitly or implic-
itly designed for row-major order structured data. Whether
focusing on empirical results or theoretical results, it is easily
argued that existing literature does not contain the full picture
on compression performance with SFC-based reorderings.

For compression of DEM data without the use of SFCs,
Rane and Sapiro achieve an average compression ratio of
R, = 11.7 with JPEG-LS [45]. The DEM data they use
contains 1201 x 1201 16-bit integer pixels. They find that the
bit-level redundancies in DEM integer data can be exploited
by compression techniques, specifically JPEG-LS, if the ele-
vation values are restructured. For example, they show that
treating a 24 bit integer as two separate two and one byte
integers results in better compression when using JPEG-LS;
owing to the higher redundancy of the most significant two
bytes.

Compression of astronomy data is dependent on the
data type used, as is also the case with DEM data.
Masui et al. develop a bit-level reordering scheme to com-
press radio-astronomy data [46]. Their final compression
scheme BitShuffle restructures values into groups of bits
by their underlying significance, resulting in higher com-
pression ratios with compression schemes that operate on
multi-byte symbols. Though they refer to BitShuffle as the
preprocessing step and the subsequently applied LZ4 [47]
compression scheme, it is more appropriate at times to refer to
only the preprocessing step as BitShuffle [48]. Though they
apply the technique to integer data, it is also applicable to
floating-point data. Zheng et al. implement a lossless com-
pression technique for integer astronomy data also by refor-
matting low-level bit representations of values [49]. Instead
of grouping bits by their significance, an effective bit-width
is used alongside DEFLATE to achieve better compression
than the combination of BitShuffle and LZ4 (R, = 3.36 vs
R = 2.49) on an integer dataset from the Five Hundred
Meter Aperture Spherical Radio Telescope (FAST) [48].

The work covered here, in this paper, contributes to the
overall picture of compression under SFC reorderings by
comparing the compression performance for two datasets of
differing sources with four reorderings (including the Raster
Scan) and eight common compression schemes. Though
other datasets have been compressed using these curves under
similar scenarios, the core of the contribution is in the usage
of datasets that have not been extensively covered before.
A further contribution is in the analysis of the underlying
entropy-structure of the data-files which shows how the SFCs
and BitShuffle affect the compressibility of the two distinct
types of data used. Coupled with statistical metrics for the
two datasets, this analysis expands on the knowledge of how
and to what extent SFCs can be used to exploit locality
within multidimensional data. We show that SFCs, as indi-
cated by some aforementioned literature, provide a limited
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general improvement to compression ratios, with slight to
severe reductions in speed. The impact of SFC reorderings
is dependent more on the compression scheme and dataset
than the specific curve applied.

The compression schemes investigated are BZIP2 [50],
GZIP [40], [51] (DEFLATE), HFF [32], LZ4 [47], LZ77 [27],
LZO [52], LZW [31] (a variant of LZ78 [28]), and
Run-Length Encoding (RLE) [30]. BitShuffle is employed
to allow further compression of both datasets and iden-
tify the impact of SFC reorderings on the least-significant
binary-components of the underlying data representa-
tions [46]. BitShuffle is necessary to effectively compress
one of the two datasets shown here, as the floating point data
type used is not amenable to some byte-level compression
techniques employed. More on the compression schemes and
BitShuffle is discussed in Section II-C.

The two datasets used here are 7.72 GB of two-dimensional
Digital Elevation Data from the Shuttle Radio Topo-
graphic Mission (SRTM) and 7.28 GB of three-dimensional
Radio-Astronomy Correlator Data from the Square Kilome-
tre Array (SKA) Project. These were chosen as the former
expands on the work done by Rane and Sapiro [45] and
Scarmana and McDougall [42]. The latter adds knowledge on
the effect of SFCs to compression of a dataset to which SFCs
have not yet been applied: floating-point radio-astronomy
data. Further discussion of the datasets, as well as an analysis
of their properties, is given in Section II-B. Further back-
ground on the compression schemes chosen and the SFCs
investigated are covered and discussed in Section II. The
methodology and implementation details by which the results
are obtained are given in Section III. The analysis in this
paper incorporates metrics used from the aforementioned
literature to evaluate the impact of SFC reordering on the
compression performance: compression ratios, compression
and decompression speeds, file-entropy, and block-entropy.
The results and analysis are given in Section IV with a final
discussion in Section V.

Il. BACKGROUND

The following subsections cover the technical background
and explanation of the SFCs used, properties and structures
of the two datasets, and a breakdown of the eight compres-
sion schemes applied. Technical aspects of the datasets and
compression schemes are also given, with an explanation of
the BitShuffle variant used in this work.

A. SPACE-FILLING CURVES

The first Space-Filling Curve (SFC) was discovered by
G. Peano [19] in 1890 after G. Cantor proved that the car-
dinality of a d-dimensional unit-hypercube is the same as the
unit-interval: |Z| = |Z¢|. Cantor’s result shows that a continu-
ous curve can fill a hypercube in its entirety using a surjective
mapping [53], [54]. D. Hilbert [22] later found a second SFC,
now referred to as the Hilbert Curve, which is more common
in literature on the topic of SFCs. H. L. Lebesgue discov-
ered the Z-Order curve by interleaving the bits of d integer
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coordinate values resulting an observable zigzag pattern [20].
It was popularized by Morton in his work applying it to
geodetic databases [21] and has been referred to as the
Lebesgue Curve and the Morton Curve. These curves wrap
around themselves and their local contexts before travers-
ing into further regions of the d-dimensional space. This
property implies that d-dimensional neighbouring points are
likely to be close in the one-dimensional SFC-mapped space.
Depending on the SFC used, the distance to a d-dimensional
neighbour in the one-dimensional space may be less than with
the Raster Scan on average or in the worst case [55]. This is
not always the case as each curve has its own characteristics
and structure. Significant research exists on evaluating which
SFCs are best at this locality preservation process [8], [25],
[56]. Of the three sources cited, the Hilbert Curve gener-
ally achieves the best locality preservation of the three SFCs
utilized in this paper. Though different curves achieve the
best metric in each paper, only the Z-Order, Gray-Code, and
Hilbert Curves are covered in this paper to limit the scope.

In this paper, we refer to it as the Z-Order Curve.
The Gray-Code Curve is created by treating the Z-Order
one-dimensional index as a Gray Code, converting it to a Gray
Code index, and then conducting the Z-Order Curve mapping
on the resulting value [57]. The Raster Scan is technically
an SFC; however, as it is used as the ordering for most data
on disk and in memory, it is a trivial example and is instead
used as the reference curve in this and other research. The
Peano curve is not utilized in this work as its extents are
not the same as the Z-Order, Gray-Code, and Hilbert Curves
— and therefore cannot be applied to the same data without
modification. All SFCs discussed here are illustrated in Fig. 1
with the following subsection covering the general definition
of SFCs.

To understand the process by which indices are mapped
to d-dimensional points, the SFC mapping and constraints
must be defined. A given SFC S is defined as a surjective
function from the unit-interval to the unit-hypercube. For
computational purposes, we must take a finite solution of S
to apply it to data, giving a bijective mapping. The following
definition describes an SFC appropriate for computation.

Let M be an arbitrary finite subset of the set of natural
numbers Ny, with d-dimensional variants M and Ng respec-
tively. We define a finite SFC mapping S as

S:M, > MY, (1)

where M, is the set of all one-dimensional indices {x;, x;, .. .}
and M% is the set of all d-dimensional points {K;, K, .. .}.
The cardinalities of the two sets are set as |[M,| = |M‘IJ(|
by definition. This is also the case for the surjective true
SFCs. As all SFCs covered in this paper are constrained to
a hypercube in d-dimensions, we define the size of these sets
Nr, for an SFC with sidelength N, as follows:

IM,| = Ny = N9 = |M4|. )

Though non-hypercubic curves exist, they are not covered
in this paper. Therefore, the SFC mapping S transforms the
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FIGURE 1. 2D representation of the types of Space-Filling Curves
investigated and the Peano Curve. The markers represent points in the
SFC-space with the solid marker indicating the first point along the SFC.
The arrows denote the direction of traversal along the curves.

index 0 < x; < Nr — 1 to a point K; = (ko, K1, ..., Kd—1)
where 0 < k; < N — 1. The SFC index is sometimes
referred to as an SFC distance though this is only geometri-
cally applicable in the one-dimensional SFC space; however,
the SFC index and distances have the same values. There are
four SFCs utilized in this paper: the Raster Curve/Scan R,
Hilbert Curve H, Z-Order Curve Z, and Gray-Code Curve
G. All of these except the Raster Curve are recursive in their
definitions, as can be seen in Fig. 1, though not all SFCs need
to be. Recursive SFCs (RSFCs) are defined by dividing the d-
dimensional space into B subregions which are equivalent to
the same SFC at a lower depth-of-recursion m. The number of
regions (B) is called the base-of-recursion and is dependent on
the number of dimensions d. The depth-of-recursion m is also
referred to as the SFC order, allowing us to refer to a specific
finite SFC as an mth order d-dimensional SFC. Of the four
RSFCsin Fig. 1, the Peano Curve is the only one with B = 34,
with the rest having B = 24 In fact, the Hilbert Curve
is strongly related to the Z-Order and Gray-Code Curves
with some mapping algorithms utilizing them as individual
algorithmic steps [58]. Given the difference in B for the four
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RSFCs, the Peano Curve cannot fill the same region as the
other three SFCs unless modified or their true surjective vari-
ants are taken. The Peano Curve is not utilized here to ensure
the same file extents are compressed for each configuration.
Given the hypercube constraint, we can define the sidelength
N of our RSFCs (Z-Order, Gray-Code, and Hilbert Curves)
as

N =Bd =2, 3)

implying that |M%|=|M,|=2"¢. The resulting SFC
mapping, given the constraints, maps the set of 2"¢
one-dimensional positive-integer indices to the set of
d-dimensional coordinates. The final SFC mappings are
shown below.

S: M, > M4 )
S MY > M, ®)

For a given index x and its corresponding d-dimensional
point K, the functions that map between them are given as

Sx)=K = (k0, ..., Kd—1) 6)
and
STHK) =x, )
The constraints on x and «, for a given SFC, are
0<wi <Bi (8)
and
0<x<B" ©)]

Given that a dataset D is most likely stored in a
one-dimensional representation, it must first be transformed
into the d-dimensional space for the subsequent SFC map-
ping S to be applied. As most multidimensional data are in
either row or column-major order, the Raster Scan SFC R
is used: R (D) = D<. By reordering a given dataset D¢
using an SFC, S (D?), the locality of the points is some-
what preserved: i.e. neighbouring points in the d-dimensional
space are close in the one-dimensional space. Note that
the inverse of the SFC mapping is taken as the reordering
must output a one-dimensional array. The full process, from
row-major order to the SFC mapped array is defined as
ST (DY) =S (RDY).

The work in this paper evaluates how effectively this
reordering improves the compression performance of some
compression techniques. The initial hypothesis was, given the
evidence in the literature, that a compression scheme C would
reduce the total size of a dataset more if an SFC mapping
is used. The hypothesis is shown in (10) where |D| denotes
the total size of the dataset D and C(D) is the application of

compression technique C € C to the same dataset.
c(S™ (D)1 < IC(R7(D))] (10

In this paper we use the compression ratio R, as shown in
(11). As is discussed in Section IV, the extent to which the
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compression performance is improved is heavily dependent
on the dataset and whether BitShuffle is applied.

__Ip)
C@)]

(1)

(o

B. DATASETS
Two separate datasets were identified as appropriate for
evaluating the impact of SFC reordering on compres-
sion schemes: Digital Elevation Model (DEM) data and
radio-astronomy correlator data. Their properties are sum-
marized in Table 1. The former is a selection of files from
the Shuttle Radio Topographical Mission (SRTM) sourced
through the United States Geological Survey (USGS). The
dataset files have a spatial resolution of l-arc second or
30 metres per pixel [59], [60]. When Memon, Neuhoff, and
Shende conclude that the Hilbert Curve does not improve pre-
diction gains for context-based predictive lossless encoders,
they do so under the assumption that the data can be modelled
as an Isotropic Gaussian Random Field (IGRF) [44].
Existing literature indicates that DEM data can be simu-
lated using IGRFs [61], [62], making the SRTM dataset a
good real-world candidate for the model chosen by Memon,
Neuhoff, and Shende [44]. Empirical evidence for the SRTM
data following this model is given in Section II-B2. The
SRTM dataset is significantly larger than the three files used
by Scarmana and McDougall [42] and the hundred files used
by Rane and Sapiro [45]: three 8 MB files versus one hundred
2.75 MiB files versus nine hundred and twenty 8 MiB files.
Their data and the SRTM dataset have the same data type
(signed 16 bit integers) though only that used by Scarmana
and McDougall and the SRTM dataset have similar extents
per file (2000 x 2000 versus 2048 x 2048 pixels). The DEM
files used by Rane and Sapiro measure 1201 x 1201 pixels
in size. The second dataset is sourced from the South African
Radio Astronomy Observatory (SARAO) archive [63], which
is the South African component of the Square-Kilometre
Array (SKA) radio-astronomy project [64]. Once completed,
the SKA will be the largest radio-telescope in history. Orig-
inally created in 2018, this specific SKA dataset stores elec-
tromagnetic interference measurements in an HDFS5 file [65].
The SKA measures the electromagnetic power-spectrum
from hundreds of dishes, positioned around both Southern
Africa and Australia, which is then correlated and processed
to filter out noise and amplify low-power emissions from
distant sources. The resulting data are three-dimensional in
nature, with components time, channel, and correlator prod-
ucts [66]. Each channel is a fixed band of the frequency spec-
trum while the correlator products encode the measurements’
distribution throughout the physical array. The data are stored
as IEEE-754 standard single-precision floating-point val-
ues [67], presenting different bit-level behaviour to the SRTM
integer data. Though typically two floating-point values are
stored, representing the complex power-spectrum, the spe-
cific dataset acquired has large regions where only the real
power-spectrum is present.
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TABLE 1. Properties of the two investigated datasets. Data Type names
are from the C/C++ language standards in little-endian. The file
properties shown here are for the processed and prepared files acquired
from the original datasets. The names and labels for each dimension in
the given datasets are provided.

Processed Datasets

SRTM (A) SKA (B)
Total Size 7.72GB 7.28GB
File Size 8388617B 83886178

Data Type intl6 float32
File Shape 2048 x 2048 128 x 128 x 128

# Files 920 868

Dim. 1 Longitude Time

Dim. 2 Latitude Channel (frequency)

Dim. 3 — Correlator Products

Other datasets from the SKA and SARAO contain the
full complex power-spectrum though permission could not
be acquired to utilize them. For this reason, the imaginary
component was removed to not bias the results presented
in this paper. As is discussed in Section II-B2, the SKA
dataset does not present the same locality correlation and
isotropic behaviour as the SRTM files, which is one of the
reasons the dataset was chosen. By comparing datasets with
different data types and models, the impact of the SFCs
on compression performance can be investigated in more
detail.

1) DATA PREPARATION

The SRTM and SKA datasets were sourced in the Geo-
TIFF [68] and HDF5 [65] formats respectively. To main-
tain a common format from which to apply the SFCs and
compression techniques, a custom binary file-format called
SFCC was created to store the same values as those stored
in the original dataset files. Each SFCC file contains a
nine-byte header storing metadata to assist subsequent pro-
cessing steps. This includes the number of bytes in the
data type, number of dimensions, the sidelength of the data
extents, the current SFC ordering applied, the current com-
pression scheme applied, whether BitShuffle is applied or
not, and a four-byte magic-word to identify SFCC files. Each
dataset was split into standalone files which maintained the
same dimensionality as the original data but with different
file extents. The sidelengths were kept as powers-of-two,
given the mathematical constraints on the chosen SFCs, such
that files from both datasets have the same total file-size
of 8.38 MB.

Each SRTM GeoTIFF file was divided into four overlap-
ping quadrants to translate the 3601 x 3601 data extents
into four 2048 x 2048 SFCC files (extents is measured in
pixels or values). The SKA data were chunked into cubes of
sidelength 128 with no overlap. Owing to the data types being
two and four bytes for the SRTM and SKA datasets respec-
tively, the resulting SFCC files all measure just over 8.38 MB.
The final processed datasets contain 868 SKA and 920
SRTM SFCC files, where the values are stored in row-major
order.
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FIGURE 2. Autocorrelation for both datasets along all dimensions. The
distance is measured as a fraction of the d-dimensional SFC-space
sidelength N. X and Y are longitude and latitude in the SRTM data. Time,
Channel, and Correlator are the three dimensions in the SKA data. Note
that the sidelength for the SKA data is a 16th of that of the SRTM data:
128 versus 2048.

2) DATASET MODELS

The autocorrelation data plotted in Fig. 2 support the
pre-existing assumptions that the SRTM data, being a
DEM dataset, can be modelled as an Isotropic Gaussian
Random Field. The X and Y plots in Fig. 2 show that
elevation-values are highly correlated when they are close
in the d-dimensional space. The similarity between X and Y
indicates that the SRTM data are not biased to either dimen-
sion and can be classified as isotropic.

The SKA data show different characteristics, with a
sharper reduction in the autocorrelation, more so given the
smaller sidelength used (128 versus 2048). The discrepancies
between the time, channel, and correlator dimensions indi-
cate that the SKA data may be anisotropic, though the lack of
significantly high correlation means this conclusion cannot
be confirmed in its entirety. However, it is important to note
that unlike the SRTM data, the SKA data reach a noticeable
floor of zero correlation for the correlator dimension, indicat-
ing a finite range of non-zero correlation in its direction. The
bias towards the time dimension is hypothesized to originate
from EMI sources measured by the instruments, where the
electromagnetic spectrum channels used are fixed and the
duration of interference is sustained, creating characteristic
FFT waterfall patterns in the data [69].

C. COMPRESSION SCHEMES

Compression schemes can be split into multiple categories,
with each individual scheme potentially being comprised
of multiple preprocessing steps and compression algo-
rithms. As an example, BZIP2 is a combination of RLE,
the Burrows-Wheeler Transform (BWT), Move-to-Front
Encoding (MTF), and Huffman Encoding (HFF) [50], [70].
Compression algorithms are typically defined by the
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TABLE 2. Composition of compression schemes and file-formats split
into preprocessing steps (Preproc.) and compression algorithms.
Arithmetic coding (ARITH.) and Predictive coding (PRED.) are truncated to
reduce space requirements. Schemes have their own software and tools
that can compress files whereas algorithms are standalone methods for
compressing. The DEFLATE algorithm is indicated by X. Instances where
the implementation of a given algorithm differs from the canonical
definition are marked with X2. Schemes> denote compression tools that
are supported by HDF5. Algorithms and schemes investigated are
underlined.

Preproc. Compression Algorithms
= E @) o~ = a
[ - ~ [Fa s
s 28 £§ 9 ¢4
Schemes E s 5 2 =Z & NN g =2
BZIP23 | X | X X
GZIP3 X1 X1
Lz43 X2
LZO? X2
SZIP3 X | X
Unix Comp. X
ZSTD? X! X!
Formats
GeoTIFF xX2| X X X2
IMG X2
JPEG-LS X
PNG X1 X!
SRTM
DTED
USGS DEM

general technique used to reduce the size of dataset.
Entropy Encoding, Dictionary Compression, Arithmetic
Compression, and Predictive Coding are a few examples
of such general techniques. Table 2 marks which prepro-
cessing techniques and compression algorithms make up
the compression schemes and data-formats identified in the
aforementioned literature and sources of the chosen datasets.
HDFS is not listed as a standalone format and instead com-
patible compression schemes are marked with a footnote
marker.

Four standalone algorithms were chosen as good can-
didates for this work as they are used as components of
many of the schemes and formats identified: Huffman Encod-
ing (HFF), LZ77, LZW, and Run-Length Encoding (RLE).
BZIP2 and GZIP were included as they are commonly found
in popular Linux distributions [71]. LZ4 [47] and LZO [52]
were chosen as they are modifications of LZ77 that are sup-
ported by HDFS5, the format for the SKA dataset.

The implementations of HFF [72], LZW [72], RLE [72],
and LZ77 [73] differ from other implementations as their
canonical definitions do not define file-format requirements
and other implementation details. For example, the Huffman
encoding software used employs canonical variable-length
codes, a static tree, and stores the tree in the first 256 bytes of
the compressed data-block. The HFF implementation used in
GZIP/DEFLATE can use either fixed or dynamic codes [40].
As is discussed in Section IV, the implementation of RLE
used is somewhat naive as runs of 1 are not encoded dif-
ferently to longer runs, thus increasing file sizes where run
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TABLE 3. Configuration parameters for compression schemes used. Block
size refers to the size of independently compressed sections of data.
Symbol size is the number of bytes from the data that are treated as a
standalone value for dictionary creation and encoding purposes. Some
values are not listed as they are implied by the compression level of the
given tool. ' The RLE symbol size shown is for int16 and float32 data
respectively. 2Some values are the maximum sizes to which that the
metric is allowed to expand.

Comp. Block Dictionary Symbol Comp.
Type Size Size Size (bytes) Level
BZIP2  900kB 9
GZIP 1 9
HFF 1
LZ4 4MB 9
LZ77 64 KiB? 1
LZO 256KiB 9
LZW 6 KiB? 1
RLE 2.4 bytesl

lengths are short and/or infrequent. Technical parameters for
the compression methods used are given in Table 3.

Of the eight schemes used in this research, half are pro-
vided by external tools within the Linux testing environment.
The internal schemes are integrated directly into the com-
pression testing software as they are canonical algorithms
without a standard tool or program. Preliminary testing did
not significantly compress the SKA dataset. To explore the
lack of compressibility in these data and enhance compres-
sion performance, the BitShuffle process is implored as an
extra preprocessing step for both datasets and all compression
schemes.

1) BITSHUFFLE

BitShuffle is a bit-wise preprocessing technique designed
to enhance the subsequent compression of radio-astronomy
data, specifically for HDF5 [46]. It extends the foundational
premise of shuffle, a preprocessing filter integrated into
HDFS5, where bytes are reordered into groups by their sig-
nificance in their higher-level data type [65], [74]. BitShuffle
reorders the data by bit instead of byte and, when combined
with lossy precision reduction and LZ4, has been shown to
achieve a compression ratio of about 3.58 on radio data [46].
In the published definition of BitShuffle, Masui et al. found
the next best compression ratio at 3.30 with DEFLATE at a
compression level of seven but with an order-of-magnitude
slower speeds [46]. Of the other compression schemes they
cover, the one with speeds closest to the aforementioned
BitShuffle combination achieves a compression ratio around
40 % worse.

As this paper only covers lossless techniques, the variant
of BitShuffle used here does not employ the precision reduc-
tion or LZ4 compression step covered by Masui et al. [46].
Instead, here and for the rest of this paper, BitShuffle refers
to only the preprocessing bit-level restructuring. Applying
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FIGURE 3. Compression process utilizing s fccompress and external
compression tools. Internal and external compression methods/tools are
labelled as C; and C, respectively. 8 = 1 when BitShuffle is applied and
0 otherwise. y indicates which compression scheme is to be used. The
compressed output for an input file I is Cs g , (¥). Decompression is
carried out in the reverse order.

BitShuffle to dataset D,
D= {vo,vl,vz,...,vN},
where ' has the binary structure
\/’szf)v"1 vé vz,
results in the BitShuffled output

BitShuffle _o _1 - _
D = {vo,vl,vz...,vb},

where ¥ has the binary structure

If N is divisible by eight, then 7' is byte-aligned. The Bit-
Shuffle process does not increase the file-size. The metadata
indicating that BitShuffle has been applied to an SFCC file
is encoded in the most significant bit of the header data
type byte.

ill. METHODOLOGY

To apply the SFCs, BitShuffle, and compression schemes
to the two datasets, the C++ program sfccompress
was developed with an accompanying Python script,
sfcc_compress.py, for automation. Both facilitate the
reordering of SFCC input data using either the Raster Scan,
Z-Order, Gray-Code, or Hilbert Curves, the application of
BitShuffle, and the compression of the resulting prepro-
cessed data. BZIP2, GZIP, LZ4, and LZO — being external
tools — are applied separately to the sfccompress pro-
gram. The sfcc_compress.py script acts as an umbrella,
executing the appropriate tools to apply a given configu-
ration to a dataset file. The full compression process is
illustrated in Fig. 3. The sfccompress program oper-
ates on SFCC files which contain raw data from the two
datasets and metadata to facilitate compression, as discussed
in Section II-B1.

The process is parametrized using S, 8, and y, represent-
ing the chosen SFC reordering, whether BitShuffle is applied
(1 for yes, O for no), and the compression scheme to use,
respectively. The compressed version of an SFCC file Dy, for
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a given configuration, is given as Cs g, (IDy). As an exam-
ple, compressing a file with the Hilbert Curve, BitShuffle,
and GZIP gives C3 1,6zip(Dr). Execution of the compres-
sion and decompression processes is conducted using GNU
Parallel [75] with four threads, the number available on the
computing hardware used. An input list of parameters and
filenames is supplied to GNU Parallel which passes them
on to sfcc_compress.py where the appropriate tools
are called. Timing is measured in milliseconds by GNU
Parallel. The ordering of parameters and filenames is such
that decompression jobs cannot occur before the compressed
output is created in a previous job. As the process is loss-
less, the validity of each step was verified by reversing the
process and confirming the final output matches the initial
input using a SHA256 hash-sum. The full compression and
decompression process was conducted over two days on a
desktop computer with an Intel Core i5-2500K CPU, 16 GB
of 1333 MHz DDR3 memory, a 500 GB Seagate Barracuda
SSD with EXT4 partitions, the GNU C Compiler (GCC)
version 9.3.0, and Ubuntu 20.04 with version 5.4.0-47 of the
Linux kernel.

Storage requirements for each file is measured in bytes
using the du Linux tool. Compression and decompression
speed is calculated as megabytes-per-second (MB/s) by
dividing the size of each dataset, uncompressed, by the
sum of execution times for a given configuration. The
uncompressed size is used for both the compression and
decompression speeds. The runtime is measured as the
number of milliseconds elapsed from the start of the
sfcc_compress.py script execution to the return of an exit
code. Compression ratios are calculated as the ratio of
the uncompressed size and the compressed size (see (11)).
Other measurements made include statistical properties of
the preprocessed files using Python. File entropy is mea-
sured on a byte level, normalized between zero and one.
The block-entropy of each preprocessed file is calculated
with a blocksize of 16KiB, also normalized between zero
and one.

A. IMPLEMENTATION DETAILS

The Raster Scan mapping in sfccompress is imple-
mented using modulo arithmetic on integer variables. For
the Z-Order and Gray-Code Curves, libmorton is used [76].
Unfortunately, the CPU used does not support the BMI2 or
AVX2 instruction sets, which libmorton can use to improve
mapping speeds. However, this did not appear to be an issue
with the given dataset sizes. The Gray-Code Curve mapping
implementation uses the same libmorton calls but with six
bitwise operations to translate between the Gray-Code index
and value.

The mapping algorithm by Chenyang, Hong, and
Nengchao [77] is used for the Hilbert Curve components of
sfccompress by integrating the libhilbert library [78]. The
SFC mapping rates from s f ccompress are shown in Fig. 4.
The Hilbert mapping is the slowest by a significant margin
while the other three SFCs achieve similar mapping rates.
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FIGURE 4. Mapping Rate for the four SFCs on the benchmarking
computer. The sidelengths for the 2D SRTM dataset is 2048 (2!1) and the
3D SKA dataset is 128 (27).

Furthermore, the Raster, Z-Order, and Gray-Code mappings
are not affected by the increase in sidelength. This is because
the algorithm by Chenyang, Hong, and Nengchao iterates
through every recursive subregion of the Hilbert mapping
and is thus dependent on the SFC order m and the sidelength
N = 2™ [77]. However, the other three SFC mappings are
not dependent on the sidelength while N¢ < 2% as their
mapping algorithms operate on 64-bit integer variables in
the same manner irrespective of the actual value of N. For
significantly larger sidelength values, more integer variables
would be needed by the algorithms, incurring a small runtime
penalty.

The implementation of BitShuffle only conducts a bit-level
reorganization of the underlying values, as described in
Section II-C1, and not the lossy precision reduction defined
by Masui et al. [46]. This BitShuffle implementation is coded
in C++ and integrated into the sfccompress program. Itis
important to note that the BitShuffle process is dependent on
the data type being used but not the number of dimensions.
For the SRTM and SKA datasets, the values are 16 bit signed
integers and single-precision floating-point values respec-
tively, corresponding to two and four bytes each. For an
n bit data type, blocks of n values are shuffled at a time,
packing their bits into the output array based on their bit-level
significance. Therefore, a single block processes ZXS"Z bytes
at a time: 64 B for int32 and 256 B for float. The performance
of this process is shown in Fig. 5. The shuffle rate quantifies
how many 7 bit input values are shuffled per second while the
size of the SFC space is the size of a given data file, excluding
all metadata (g x N dy,
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FIGURE 5. BitShuffle implementation shuffle rate vs the size of the data
being mapped. All files compressed in this paper have a 2'3KiB sized SFC
space. Note that the SRTM dataset values are 16 bit integers and the SKA
dataset values are single-precision floating-point values. The L1, L2, and
L3 cache sizes are shown in blue: 32KiB, 256 KiB, and 6144 KiB
respectively. The shuffle rate is measured in values per second.

The sizes of the L1, L2, and L2 caches for the Intel 15 CPU
used are shown in Fig. 5 in blue. The shuffle rate for both
the forward and reverse mappings decreases when the SFC
Space exceeds the L1 Cache size but settles at a floor after
the L3 Cache size. All four cores in the 15 2500K CPU share
the L3 Cache whereas there are dedicated L1 and L2 Caches
for each of the four cores. However, the BitShuffle implemen-
tation is not parallel and therefore only one L1 Cache and one
CPU core are used. The float data type has a shuffle rate of
about a quarter of the 16 bit integer data type. Normalizing
for data type size, BitShuffle on single-precision float data
is still half as fast as with the smaller data type. For a given
size of the SFC space, different data types result in different
access patterns for the input and output arrays. Therefore, it is
hypothesized that the slower shuffle rate for the float data
type is primarily caused by cache misses in the BitShuffle
C++ implementation used. Secondly, the greater decrease for
the reverse mapping compared to the forward mapping may
also be attributed to cache misses and out-of-cache memory
accesses. The memory read access pattern for the forward
mapping is the memory write access pattern for the reverse
mapping, and vice versa.

IV. EXPERIMENTAL RESULTS

Results are separated into three categories — compression
ratios, compression and decompression speeds, and informa-
tion entropy — where both datasets are covered. There are
two important baseline configurations for the compression
ratio and speed results. The most common in real-world
applications is that without SFC reordering and without
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TABLE 4. Empirical results for all combinations of compression schemes, BitShuffle, and SFC reorderings with both datasets. Measurements shown are
compression ratio R¢, compression speed, and decompression speed. The highest result for a given combination of BitShuffle 8, compression scheme,
and dataset is in bold and underlined. Where all values are the same, none are in bold or underlined. Note that 8 denotes whether BitShuffle [46] is
applied (8 = 1) or not (8 = 0). Compression schemes shown are BZIP2 [50], GZIP (DEFLATE) [40], [51], Huffman Encoding (HFF) [32], LZ4 [47], LZ77 [27],
LZO [52], LZW [31] (a variant of LZ78 [28]), and run-length encoding (RLE) [30]. All results are shown to three significant figures.

SRTM Dataset
BzZIP2 GZIP HFF Lz4 LZ77 LZO LZW RLE

Raster 6.54 352 144 3.18 270 296 239  1.13
Z-Order 525 352 144 294 252 3.04 3.09 1.05
- Gray 504 345 144 288 246 3.00  3.03 1.05

Hilbert 594 3.76 144 3.13 268 3.21 3.28  1.11

Raster ~ 4.02 406 198 367 351 370 3.21 2.13
| Z-Order 440 431  2.05 397 3.99 3.97 342 2.41
~ Gray 438 429 205 394 395 396 3.4l 2.40
Hilbert 447 433 2.04 402 4.06 403 345 246

Raster 743  6.05 247 6.58 156 3.00 7.07 40.0
Z-Order 734 316 177 565 119 174  6.86 29.1
~ Gray 7.48 324 173 578 116 179  6.83 27.0
Hilbert 356  2.09 499  3.02 4.63 136 345 5.49

Raster  8.88 4.81 229 10.8 9.39 2.79 7.20 30.8
Z-Order 7.93 5.36 16.7 11.0 883 3.22 6.84 22.2
® Gray 7.63 5.11 16.2 10.4 8.90 3.11 6.89 23.0
Hilbert 3.71 2.89 4.81 4.27 4.14 2.19 3.42 5.23

Raster 743 6.01 234 658 155 298 710 304
Z-Order 6.91 3.07 17.6 5.29 11.3 1.71 6.88 21.5
« Gray 6.51 3.04 17.0 5.17 11.2 1.73 6.70 21.1
Hilbert 3.51 2.08 4.89 2.98 4.62 1.36 3.40 5.29

Raster 7.58 4.40 20.2 894 920 264 7.19 26.8

Comp. Ratio (Rc)

Decom. Speed (MB/s) | Comp. Speed (MB/s)

T Z-Order 6.71 4.81 14.6 8.92 8.66 3.00 6.73 21.7
N Gray 6.69 4.61 15.8 8.67 8.71 2.91 6.89 21.3
Hilbert 3.46 2.74 4.79 3.92 4.13 2.11 3.37 5.19
SKA Dataset
BZIP2  GZIP HFF Lz4 LZ77 LZO LZW RLE
S e Raster 1.06 1.10 0.941 1.03 1.03 1.03 0.822 0.800
[ I Z-Order 1.07 1.12 0.941 1.03 1.03 1.03 0.834 0.800
= « Gray 1.07 1.12 0.941 1.03 1.03 1.03 0.835 0.800
s Hilbert 1.06 1.10 0.941 1.01 1.01 1.01 0.840 0.800
[~
£ Raster 1.20 1.19 0.915 1.16 1.17 1.16 0.884 0.820
g I Z-Order 1.23 1.25 0952 1.22 1.24 1.22 0.905 0.882
O = Gray  1.23 124 0952 122 124 1.22 0.905 0.868
Hilbert 1.21 1.20 0.948 1.19 1.21 1.19 0.891 0.876
@ - Raster 4.14 10.4 18.7 12.1 2.44 6.31 3.21 35.9
m I Z-Order 4.25 11.4 15.9 14.3 241 6.86 3.16 32.5
% N Gray 4.36 11.5 14.8 144 241 6.75 3.10 33.3
2 Hilbert 3.39 6.50 7.79 7.48 2.17 4.67 2.62 10.9
D
& - Raster 4.16 6.68 144 108 281 3.68 3.23 24.3
g, I Z-Order 4.07 5.93 12.6 9.84 2.86 3.34 3.19 19.2
E o« Gray 4.14 5.83 12.6 9.66 2.85 3.42 3.20 21.5
Q Hilbert 3.36 4.19 6.95 6.16 2.52 2.78 2.64 9.20
E - Raster 4.07 10.0 15.2 9.80 2.41 6.03 3.10 20.9
m I Z-Order 4.22 9.94 13.4 114 237 5.98 3.03 23.2
E « Gray 4.26 10.5 12.7 12.0 235 6.24 3.05 19.2
2 Hilbert 3.37 6.11 7.75 6.56 2.15 4.41 2.59 9.68
"3
o ~ Raster 3.93 5.85 11.8 8.44 2.80 3.40 3.17 17.9
g I Z-Order 4.08 5.81 11.1 9.01 2.88 3.31 3.14 14.4
S Gray 4.09 5.73 10.3 8.81 2.86 341 3.07 16.4
E Hilbert 3.28 4.04 6.54 5.72 2.51 2.71 2.57 8.75
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BitShuffle — equivalent to compressing the data without
any preprocessing: this is the default scenario. We refer to
this as the unpreprocessed data as no preprocessing has been
carried out on the dataset values. The second baseline is
when the Raster Scan is used, as is the case with the former,
but with BitShuffle applied. This scenario is mostly appli-
cable to the SKA dataset as BitShuffle is compatible with
HDFS5, the format in which the data were acquired, and was
designed for the type of data present in the SKA dataset.
Therefore, it is likely that BitShuffle is already incorporated
into other radio-astronomy datasets. However, none of the
DEM file-formats support BitShuffle, and it is less likely that
BitShuffle would be applied to such datasets. In each of the
following subsections the key observations are identified and
important comparisons raised. A discussion of the results is
given in Section V. Empirical compression ratio and speed
results for all configurations are given in Table 4.

A. ENTROPY ANALYSIS

The SKA dataset has high entropy, with all unpreprocessed
and preprocessed files being above 0.9. The SRTM dataset
has a broader range of file-entropy values, with the majority
lying between 0.25 and 0.65. As the order of values does not
play arole in file entropy, the SFCs do not have any effect on
their own. When BitShuffle is applied, the byte values used
to calculate the file entropy are changed, resulting in different
file-entropies. Under this scenario, the Raster Scan results in
higher entropy values for the SRTM dataset compared to all
three SFCs. The Z-Order, Gray-Code, and Hilbert Curves all
achieve drastically similar file-entropy values for the SRTM
dataset whereas the Hilbert Curve deviates from the other two
with the SKA dataset.

Applying BitShuffle to the SKA dataset, without SFC
reordering, increases file-entropies by approximately 0.05.
The similarity in file entropy observed between each SFC
with the SRTM dataset is not entirely present in the
SKA dataset, as the Hilbert Curve with BitShuffle deviates
slightly to higher entropy values compared to the Z-Order
and Gray-Code Curves. Given that the BitShuffle process
reorders by bit and the file entropy is measured on the byte
level, the deviation between the three SFCs with the SKA
dataset and not with the SRTM dataset can be attributed to
two factors. Firstly, the three dimensions in the SKA dataset
have significantly lower autocorrelations compared to the
SRTM dataset. Given that the three SFCs traverse subquad-
rants in different orders, the bit-level statistics of the Bit-
Shuffle values differ more with lower autocorrelation values.
Secondly, the Z-Order and Gray-Code Curves traverse the
least-significant dimension first whereas the Hilbert Curve
traverse the most significant first (see Fig. 1).

Given that the three SFCs are recursive, it is also important
to note that each subquadrant of the Hilbert Curve has a
different orientation but the other two SFCs do not. Further-
more, Mokbel, Aref, and Kamel show that the Z-Order and
Gray-Code Curves have dimensional bias whereas the Hilbert
Curve does not [56]. The combination of dimensional-bias in
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the SKA data, indicated by the autocorrelation and the dimen-
sional bias of the Z-Order and Gray-Code Curves, causes
the resulting BitShuffle values to differ from the Hilbert
Curve. This is not observed for the SRTM dataset as it is
isotropic and thus the dimensional-bias of the curves cannot
significantly influence the BitShuffle values and thus the file-
entropy. However, total file entropy is not a good indicator
of the underlying file structure. To analyse the impact of
SFC reordering and BitShuffle further, the block-entropies
for all files are plotted in Fig. 6. The similarity between all
orderings without BitShuffle for file-entropies is not present
in the block-entropies as each block includes different val-
ues. The blocksize is of the form 29" (for d € {2,3)),
equivalent to a subquadrant in the SFC mappings. Without
BitShuffle, the block-entropies for both datasets are lower
with SFC reorderings, though negligible for the SKA dataset
(~0.05 lower). The SFCs reduce the block-entropy for the
SRTM dataset without BitShuffle, compared to the Raster
Scan, by approximately 0.15. However, all three SFCs have
equivalent block-entropies as they have the same subquadrant
extents (all are recursive with B = 2¢). Chunking the datasets
into blocks with the same extents as the SFC subquadrants
(assuming a block-entropy blocksize larger than the chunk
size) would result in the same block-entropy results regard-
less of the SFC used. However, the block-entropies are more
useful in understanding the impact of BitShuffle. By showing
where the original datasets are the most redundant.

As the block-entropy for the SRTM dataset with BitShuffle
is zero for the last 30 % of each file, we can conclude that
the most significant 4 bits of the intl/6 values are mostly
redundant (|30 % x 16bit] = 4 bit). With SFC reorderings,
the median block-entropy is effectively zero for the last half
of each file. This implies that at least half of the SRTM files
only require one byte instead of two to represent most of their
values when using an SFC and BitShuffle. This would require
some metadata to store the actual value of the upper bits for
specified blocks of values. With the Raster Scan, the median
block-entropy reaches zero approximately one-bit later and
thus would require 9 bits when BitShuffle is used.

A similar claim cannot be made for the SKA dataset as the
block-entropies never drop to zero. However, the bits in the
floating-point values have distinctly different entropies based
on their location in the binary representation. Each IEEE-
754 single-precision value in the SKA data consists of 32 bits
split into a mantissa (21 bits), exponent (8 bits), and sign
(1 bits). The first 71.9 % of the BitShuffled SKA files contain
the mantissa, with the least-significant bits first. Even though
the block-entropy begins to drop at about 60 % through the
SKA files, this only accounts for the three most significant
bits of the mantissa. The exponent bits are far more redundant,
achieving a median block-entropy below 0.5. However, even
though SFCs had little effect without BitShuffle, and on
the mantissa bits with BitShuffle, the block-entropy for the
exponent bits is 0.2 lower with SFC reorderings than with
the Raster Scan. As the block-entropy for the mantissa bits
is the maximum possible (1.0), it can be assumed that the
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FIGURE 6. Median block-entropy for both datasets, all SFCs, and with and without BitShuffle. The top and bottom rows contain results for the
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using byte-sized symbols and normalized to between 0 and 1.

majority of compression gains on the SKA data are concen-
trated in the exponent and sign bits.

Not all compression schemes would be able to exploit
the lower entropies present in the preprocessed files as
they use other non-entropy based algorithms. However,
the file-entropies and block-entropies shown are indicative
of the restructuring carried out by the SFCs and BitShuffle.
Secondly, the significant reduction in block-entropy, for the
SRTM dataset without BitShuffle, when SFCs are applied
shows that they effectively exploit the high local-correlations
of Gaussian Random Fields.

B. COMPRESSION RATIOS

For nearly all compression schemes and SFCs, the use of
BitShuffle always improves compression ratios. The only two
instances where this is not the case is for BZIP2 with the
SRTM dataset and Huffman Encoding with the SKA dataset
and the Raster Scan. Compression Ratios are more than 30 %
smaller for BZIP2 and the SRTM dataset when BitShuffle
is applied. Even though BitShuffle improves compression
ratios for the SKA dataset with Huffman Encoding and SFC
reordering, the compression scheme always results in larger
dataset sizes for the SKA data. LZW and RLE also fail at
compressing the SKA dataset to above-unity compression
ratios. RLE only achieves R, values above two for the SRTM
dataset if BitShuffle is used, between 1.05 and 1.13 if not.
Without BitShuffle, RLE has the worst compression ratios for
the SRTM dataset whereas it is the worst for SKA dataset with
and without BitShuffle. For 8 = 0 and all SFCs, RLE has a
compression ratio of 0.8 for the SKA dataset owing to the low
local correlation of the data and the specific byte encoding
used by the RLE implementation. As the SKA dataset uses
IEEE-754 single-precision floats, each RLE encoded symbol
requires five bytes: a run length and the run value. If there
are no runs with lengths greater than one, we would expect
a compression ratio of R, = 0.8, the R, achieved for the
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SKA dataset with RLE and no BitShuffle. This shows that
RLE, with this naive encoding scheme, is wholly unsuitable
for compressing the SKA dataset. Even with BitShuffle, RLE
ratios are only increased by up to approximately 10 % yet still
sub-unity (R, < 1).

Compression Ratios for the SKA dataset never exceed
Re 1.3. HFF, LZW, and RLE all expand the dataset
size — in all cases — rather than reducing it. However,
without BitShuffle, the largest compression ratio for the SKA
dataset is 1.12 when using GZIP with either the Z-Order or
Gray-Code Curves. For the SRTM dataset, all compression
schemes achieve R, > 1, under all configurations. When
it comes to the effect of SFC reordering versus the Raster
Scan, the curves nearly always improve compression for both
datasets when BitShuffle is also applied. Without BitShuffle,
the only schemes improved through the use of SFC reorder-
ings are GZIP, LZO, and LZW for the SRTM dataset and
BZIP2, GZIP, and LZW for the SKA dataset. Interestingly,
the Hilbert Curve gives the biggest improvement of all the
SFCs for the SRTM data, when SFCs do improve R values.
The Z-Order and Gray-Code Curves do decrease compression
ratios by more than 5 %, without BitShuffle, in some cases:
BZIP2,1.Z4,1.Z77, and RLE for the SRTM dataset. The only
situation where the Hilbert Curve reduces R, more than 5 %
is with BZIP2, no BitShuffle, and the SRTM dataset.

With BitShuffle, compression ratios are increased through
the use of SFC reordering anywhere between 3 % and 15.5 %
for the SRTM dataset and 0.79 % and 7.56 % for the SKA
dataset. These ranges are expanded further when comparing
SFC reordering with BitShuffle to the Raster Scan without
BitShuffle. The largest increase in compression ratio over
the default unpreprocessed row-major ordering is with RLE,
BitShuffle, and the Hilbert Curve on the SRTM dataset;
increasing R, from 1.13 to 2.46, an increase of 117.7 %.
For the SKA dataset, the largest percentage is 20.39 % for
both the Z-Order and Gray-Code Curves with BitShuffle and
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LZ77. Without BitShuffle, the biggest percentage increase
using an SFC reordering is 37.24 % and 2.19 % with the
Hilbert Curve and LZW for the SRTM and SKA datasets
respectively. Interestingly, the Hilbert Curve loses this lead
to the other two SFCs when BitShuffle is applied to the
SKA dataset. In general, the best SFCs for increasing R,
are the Hilbert Curve for the SRTM dataset and the Z-Order
Curve for the SKA dataset. For the SKA dataset with Bit-
Shuffle, the Z-Order Curve improves R, by an average
of 4.73% compared to the Raster Scan. For the SRTM
dataset, where the Hilbert Curve does improve the compres-
sion ratio, R is increased on average by 13.13 % through
its use.

The Z-Order and Gray-Code Curves consistently achieve
the highest compression ratios for the SKA dataset with
BitShuffle, exceeding R, = 1.2 for BZIP2, GZIP, LZ4,
LZ77, and LZO. The Hilbert Curve achieves between 1.19
and 1.21 ratios for the same compression schemes. The
largest compression ratio for the SKA dataset with BitShuf-
fle, of 1.25, is achieved with GZIP and the Z-Order Curve.
However, the largest absolute increase in R, when applying
SFC reorderings, for the SKA dataset, is with LZ77 and the
Z-Order and Gray-Code Curves, not GZIP; increasing from
Re=103B=0andR,=1.17(=1)to 1.24 (B8 = 1).
The largest absolute increase in R, for the SRTM dataset is
also for LZ77, but instead with the Hilbert Curve, increasing
from 2.96 (8 = 0)and 3.7 (B = 1) t0o 4.03 (8 = 1).
Without BitShuffle, compression ratios are increased by less
than 0.2 for the SKA dataset. However, the largest equivalent
increase for the SRTM dataset is with LZW, from R, = 2.39
to R, = 3.28.

For both datasets, the Lempel-Ziv based compression
schemes perform similarly. Huffman Encoding and RLE
perform the worst while BZIP2 performs the best for the
SRTM dataset and on par with the Lempel-Ziv schemes for
the SKA dataset. The Burrows-Wheeler Transform (BWT)
exploits strong local correlation between adjacent values by
implementing a reversible pseudo-sort. If the local correlation
is weak, the BWT would be less effective. This is most likely
why BZIP2, in which BWT is the core component, performs
worse for the SKA data.

The aforementioned literature for DEM data achieves
higher compression ratios than those shown here. Scarmana
and McDougall achieve compression ratios similar to those in
the work presented here with LZW and GZIP/DEFLATE but
their Hilbert Curve based compression scheme using DPCM
achieves compression ratios above R, = 7, higher than
BZIP2 for the SRTM dataset [42]. None of the compression
schemes investigated in this paper use predictive coding,
the primary technique in DPCM. Furthermore, the dataset
used by Scarmana and McDougall is not the same as the
SRTM dataset, indicating that the two results are not entirely
comparable. The average compression ratio found by Rane
and Sapiro for the JPEG-LS compression scheme on DEM
data is R, = 11.75 [45]. This is significantly higher
than compression ratios achieved here and in the work by
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Scarmana and McDougall [42]. Rane and Sapiro investi-
gate only JPEG-LS, the lossless and near-lossless JPEG
encoding scheme [45]. Scarmana and McDougall also inves-
tigate JPEG-LS with their dataset, but only achieve an aver-
age compression ratio of R, = 5.97 [42], a value much lower
than that achieved by Rane and Sapiro for 16 bit integer DEM
data [45]. This raises the question of how these approaches
to compressing DEM data would perform on a common
dataset.

For the SKA dataset, the lossy BitShuffle technique
defined by Masui et al. attains compression ratios of approx-
imately R.3.58, higher than that attained through lossless
compression of the SKA dataset [46]. Though, this significant
performance is achieved with lossy compression, which is
outside the scope of this work. But it does highlight that
radio astronomy data is far more redundant when some pre-
cision is lost for the sake of size requirements. The work by
Zheng et al., in compressing astronomy data using an effective
bit-width transform with GZIP, shows that there is still room
for lossless compression schemes for similar datasets [49].
Even so, their dataset, and that used by Masui et al., contains
integer data and not floating-point data as is the case with
the SKA dataset. Regardless of the comparative performance
between previous works and the results conveyed here, it is
evident that astronomy data requires some bit-level manip-
ulation to compress effectively. Whether this is BitShuffle,
an effective bit-width, or an alternative scheme, compression
is dependent on the underlying bit-level statistics of the data
type and dataset.

C. COMPRESSION AND DECOMPRESSION SPEEDS

The compression and decompression speeds observed are
somewhat correlated with the compression ratios achieved.
This relationship is evident in Fig. 7, where lower R,
values have higher compression and decompression rates.
The numerical results in Table 4 also show how differ-
ent configurations change processing speeds. Decompression
is generally slower than compression by about 20 %, for
all compression schemes except RLE, while decompression
is up to 26 % and 42 % slower for the SRTM and SKA
datasets respectively. However, RLE is the fastest compres-
sion scheme in all cases, as no dictionary or encoding table
is needed to process the data. Compression speeds are pre-
dominantly slower for the SRTM dataset when some prepro-
cessing is applied (SFCs and/or BitShuffle). The application
of SFC reordering to the SRTM dataset only improves com-
pression and decompression speeds for GZIP and LZO with
BitShuffle. When compared to the unpreprocessed configura-
tion, their improvements are significantly diminished, if not
negated entirely. Without BitShuffle, the Raster Scan always
performs faster than the other three SFCs for the SRTM
dataset.

Nearly all compression schemes, applied to the SKA
dataset, are slowed down through the use of BitShuffle. The
impact is different for the SRTM dataset where it sometimes
benefits the overall speed. In many cases, it has very little
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FIGURE 7. Compression and decompression speed versus compression
ratio for all compression schemes, SFCs, and with and without BitShuffle.
Note that the application of BitShuffle is denoted by g = 1.

impact on compression and decompression speeds for the
SRTM dataset. It is possible that the reduced shuffle rate
for three-dimensional floating-point data shown in Fig. 5 is
the cause for the lower speeds in the SKA dataset when
BitShuffle is applied. However, the time elapsed to conduct
BitShuffle is a few milliseconds at most and is independent
of the compression scheme used. Therefore, any difference in
compression and decompression speed between compression
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techniques, for a given dataset and §, must be because of the
compression scheme and its interaction with BitShuffle and
the SFCs, and not the BitShuffle implementation itself.

Though SFC reorderings do not positively impact com-
pression speeds without BitShuffle for the SRTM dataset,
the SKA dataset does benefit from their usage. When
applying the Gray-Code Curve without BitShuffle to the
SKA dataset, the compression and decompression speeds
of LZ4 are increased by 19% and 22.5% respectively.
This benefit is diminished when BitShuffle is applied,
improving decompression speeds by under 10 % but slowing
compression down by 10.6 %. However, the introduction of
BitShuffle to any configuration for the SKA dataset nearly
always reduces speeds. The only exceptions are LZ77 and
LZW which are approximately 0.4 MB/s and 0.04 MB/s
faster respectively. For all compression schemes and config-
urations, the Hilbert Curve is always the slowest. This can
be partially attributed to the significantly slower mapping
rate shown in Fig. 4. The total runtime for each compression
scheme has a roughly-constant delay when using the Hilbert
Curve compared to the Raster Scan and other two SFCs. For
the SKA and SRTM datasets, this offset is 400 s to 500 s and
approximately 1000 s respectively. The shorter delay when
using the Hilbert Curve for the SKA dataset is caused by
the approximately 1.5 x 10° Hz higher mapping rate for the
three-dimensional Hilbert mapping with a sidelength of 2’
compared to the two-dimensional Hilbert Mapping with a
sidelength of 211

For both datasets, the second fastest compression scheme
is Huffman Encoding with the Raster Scan. This may be
owing to the generation and processing of the Huffman
tree but further research is required to identify the cause.
Huffman Encoding is slowed down through the applica-
tion of BitShuffle for both datasets, even with the Raster
Scan. LZ77 is the third fastest scheme for the SRTM dataset
but the slowest for the SKA dataset. This may be owing
to the lack of an optimized dictionary search algorithm in
the LZ77 implementation used, as the other LZ77-based
schemes (GZIP, LZ4, and LZO) are faster. Of the compres-
sion schemes that achieve greater than unity compression
ratios for the SKA dataset, the fastest is LZ4 with BitShuffle
and the Z-Order Curve. In fact, the Z-Order and Gray-Code
Curves improve the compression and decompression speeds
of BZIP2 and LZ4 for the SKA dataset, when compared to the
Raster Scan.

When compared to the unpreprocessed configurations,
the biggest percentage increase in speeds for the SRTM and
SKA datasets are for LZ4 with the Z-Order Curve (8 = 1)
and the Gray-Code Curve (8 = 0) respectively. This is also
the case for the biggest absolute increase in compression and
decompression speeds, ignoring RLE for the SKA dataset as
it does not achieve a reduction in dataset size. With LZ4,
BitShuffle, and the Z-Order Curve, the SRTM dataset is
compressed at 11 MB/s and decompressed at 8.92 MB/s.
With LZ4 and the Gray-Code Curve, the SKA dataset is
compressed at 14.4MB/s and decompressed at 12 MB/s.
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However, LZ4 only achieves a compression ratio of 1.03
for the SKA dataset without BitShuffle. With BitShuffle,
the Z-Order Curve is better, with compression and decom-
pression speeds of 9.84 MB/s and 9.01 MB/s respectively.
This is slower than if the Raster Scan was used without
BitShuffle. If BitShuffle is to be used on the SRTM dataset,
the benefit of SFC reordering on the speed of LZ4 is lost, indi-
cating that the majority of the speed improvement comes from
the usage of BitShuffle and not SFCs. However, the speeds of
GZIP and LZO (8 = 1) are increased anywhere between 5 %
and 15 % by applying the Z-Order or Gray-Code Curve, with
the former introducing the biggest improvement.

The speed of LZ77 on the SKA dataset is increased by 15 %
to 20 % by using BitShuffle, with no substantial improve-
ment through the use of SFC reorderings. The accompanying
speeds never reach 3 MB/s. Without BitShuffle, LZ77 is
slower, more so when SFCs are applied. However, when
LZ77 is used on the SRTM dataset, BitShuffle has the
opposite effect, slowing down speeds with the Raster Scan
always achieving the fastest compression and decompres-
sion. The significant improvement to compression ratios for
LZW by using SFC reordering on the SRTM dataset does
not translate to increases in speed. Compression and decom-
pression speeds are 2% to 6 % slower without BitShuffle
and 4 % to 7 % slower with BitShuffle than when using the
Raster Scan.

Within the same literature covered at the end of
Section IV-B, only three explore compression speeds. The
Hilbert Curve and DPCM-based compression scheme by
Scarmana and McDougall has a compression speed of
approximately 4 MB/s [42], which is around the middle
for all compression schemes in Fig. 7 for the SRTM
dataset. Their compression speeds for LZW and DEFLATE
are comparable to those achieved in this work, though
GZIP (DEFLATE) is slightly slower for the SRTM dataset.
This may be because the results for GZIP in Table 4 and Fig. 7
use the highest compression level and thus take longer than
with the default DEFLATE parameters from PNG, used by
Scarmana and McDougall.

Comparing compression speeds for the SKA dataset, with
the results obtained by Zheng et al. [49] and Masui et al. [46],
is not appropriate as they use hardware configurations that
differ greatly from that used here. Masui et al. execute their
tests on data files stored entirely in memory, removing any
I/O overhead of a permanent storage medium such as an
SSD [46]. This is why they are able to achieve a write-speed
of 749 MiB/s. Zheng et al. do not store their data files in
memory, but they do use an FPGA as an external accelera-
tor [49]. They do experiment with executing their technique
on a CPU alone, but it is nearly seven times slower than
BitShuftle with LZ4.

V. DISCUSSION

SFC reordering has a significant impact on file-entropy and
block-entropy for the SRTM dataset, without BitShuffle.
Block-entropy values are on average 0.1 lower with SFCs
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than with the Raster Scan. When BitShuffle is applied,
this impact is significantly reduced as BitShuffle is the
primary reason for the reduction in entropy. However,
the block-entropy for the most significant bits is effectively
zero for at least half of the files when SFC orderings are
used. The block-entropy with BitShuffle is about 0.15 lower
with SFCs than with the Raster Scan. The high redundancy
in the most significant bits of the SRTM data is caused by
its high local-correlation and the integer representation used.
The opposite effect is observed in the SKA dataset, with
SFCs having a greater effect with BitShuffle than without.
SFC reordering has little to no effect on block-entropies
for the SKA dataset when BitShuffle is not applied, with
block-entropies just above 0.9. One reason for this is the
low local-correlation in the SKA data, indicating that val-
ues are more dissimilar than alike within a small neigh-
bouring region. The floating-point values are compact in
their structure, but there are redundant sections within the
binary representation. BitShuffle allows the components of
the single-precision floating-point values with the smallest
variation to be compressed: the exponent and sign bits. With
BitShuffle and the Raster Scan, the block-entropy for the
exponent and sign bit regions of the SKA dataset is around
0.4 lower than without BitShuffle. SFC reordering lowers this
by a further 0.2, a massive reduction over the block-entropy
without preprocessing. However, the mantissa makes up 72 %
of each BitShuffled SKA file, resulting in file-entropies above
0.85 with SFC reordering and above 0.9 with the Raster Scan.

Of the three SFCs, the Hilbert Curve achieves the best
compression ratios for the SRTM dataset without BitShuffle.
However, the Raster Scan has the largest R, for all com-
pression schemes except for GZIP, LZO, and LZW. With
BitShuffle applied to the SRTM dataset, the Raster Scan
always has the smallest compression ratio while the Hilbert
Curve has the largest; though it misses out by 0.01 to the
Z-Order and Gray-Code Curves for Huffman Encoding. For
the SKA dataset, the Hilbert Curve only achieves the largest
compression ratio with LZW and no BitShuffle but lands up
increasing the dataset size anyway (R, = 0.84). Regardless
of whether BitShuffle is used, the Z-Order and Gray-Code
Curves consistently achieve compression ratios larger than
if the Raster Scan was used. Without BitShuffle, the largest
R value is 1.12 with GZIP and either of the Z-Order or
Gray-Code Curves. None of the other compression schemes
achieve more than R, = 1.1 without BitShuffle. The top
compressors for the SKA dataset — with BitShuffle — are
BZIP2, GZIP, LZ4, LZ77, and LZO (all within compression
ratios of 1.22 < R, < 1.25). Without BitShuffle, the same
compressors achieve maximum compression ratios of 1.07,
1.12, 1.03, 1.03, 1.03 respectively. The top compressors
for the SRTM dataset are BZIP2 and GZIP with BitShuffle
(Re = 4.47 and R, = 4.33) and without BitShuffle (R, =
6.54 and R, = 3.76).

Even though SFC reorderings have a generally positive
impact on compression ratios, in only a few cases are
the compression or decompression speeds also increased.
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The time requirements of the Hilbert Curve algorithm and
implementation used [77] results in impractical speed reduc-
tions, for both compression and decompression, across the
board. Given that DEM data are not found in file-formats that
support BitShuffle, the best compression configuration does
appear to be BZIP2 with the Raster Scan and without BitShuf-
fle: achieving a compression ratio of 6.54 and compression
and decompression speeds of 7.43 MB /s. Of the compression
schemes investigated, only Huffman Encoding, LZ77, LZW,
and RLE are in the DEM file-formats identified in Table 2.
Of these four schemes, LZW is improved the most by SFC
reordering (Z-Order Curve), increasing the compression ratio
from 2.39 to 3.09 while effectively maintaining compression
and decompression speeds within a margin of 0.24 MB/s.
If a faster Hilbert Curve mapping implementation were to
be integrated, a compression ratio of 3.28 could be obtained
without the substantial speed penalty present in these results.
Interestingly, GZIP is improved in all regards through the use
of the Gray-Code Curve when applied to the SKA dataset
without BitShuffle. The fastest scheme for the SRTM dataset
is RLE followed by Huffman Encoding. In fact, RLE achieves
faster compression and larger compression ratios than Huff-
man Encoding, when BitShuffle is used. The general lacklus-
tre speeds with preprocessing are more than likely because of
implementation specific details as is the case with the Hilbert
Curve and BitShuffle on three-dimensional floating-point
data. Further research in this regard is needed to determine
how the speeds can be brought to be on par with the Raster
Scan while maintaining the better compression ratios mea-
sured. If the Hilbert Curve and BitShuffle implementations
are optimized for faster computation, then the compression
ratio advantages they provide can be exploited without the
speed penalty found in this work.

The SKA dataset is highly incompressible, as shown by
the low compression ratios in Table 4. As is evident in the
literature, BitShuffle has a significant impact on compression
ratios, achieving a maximum of R, = 1.25 with GZIP and the
Z-Order Curve compared to the maximum without BitShuffle
of R, = 1.12 with the same scheme and SFC. Unlike for the
SRTM data, the Hilbert Curve is never the best compressor
for the SKA Dataset, with or without BitShuffle. Secondly,
the Raster Scan is never the best compressor by itself, always
tied with the Z-Order and Gray-Code Curves. Furthermore,
the Raster Scan is always the worst ordering for compression
with BitShuffle for both datasets. This shows that the best
SFC reordering scheme is different for these two types of
datasets. The strong differences in their autocorrelations, cou-
pled with their data types, is the clearest reason behind why
the Hilbert Curve is best for the SRTM data and the Z-Order
and Gray-Code Curves are best for the SKA data. As is shown
by Mokbel, Aref, and Kamel, the Hilbert Curve has no bias
to any given dimension whereas the Raster Scan, Z-Order,
and Gray-Code curves have strong biases towards specific
dimensions [56]. Given the SKA data’s strong correlation in
the time-dimension, compared to the channel and correlator
dimensions, it is natural to ask whether a variant of the Raster
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Scan that traverses the dimensions in a different order would
result in better compression performance than the orderings
investigated here.

VI. FUTURE WORK

As discussed in Sections IV and V, the implementation
of the Hilbert Curve mapping is the biggest opportunity
for improvement as its usage improves compression ratios
for the SRTM dataset but is significantly slower owing to
the slow mapping rate. The mapping implementation for
the Z-Order and Gray-Code Curves exploits AVX2 and
BMI2 x86 instruction sets [76] whereas the Hilbert Curve
implementation does not [78]. As is previously highlighted,
the Z-Order and Gray-Code Curves perform best for the
SKA dataset. However, given the stronger autocorrelation
in the time-dimension, there is the possibility that a variant
of the Raster Scan or another SFC would result in better
compression performance if it can exploit this dimensional
bias. Mokbel, Aref, and Kamel develop an appropriate met-
ric to quantify any bias in d-dimensional orderings, called
a description vector [56]. If further work is conducted on
reordering radio-astronomy data for the purpose of compres-
sion, the description vector is an appropriate and necessary
tool. The compression ratios achieved are good, but com-
paring these results to those in the literature indicates that
there may be other compression schemes that are better suited
for the datasets with SFC reorderings [42], [45], [46], [49].
Applying the following methodology to other compression
schemes would expand upon the knowledge of how such
reorderings effect compression performance. The most inter-
esting candidates, in the authors’ opinions, are arithmetic
encoding, predictive coding (such as DPCM), and domain
specific lossy compression schemes. Furthermore, compress-
ing floating-point DEM data using this methodology would
help identify the impact of different data types on similar
IGRF data-models.

VIi. CONCLUSION

The application of SFC reordering to DEM and radio-
astronomy data gives varying results that are dependent more
on the compression scheme than the curve used and whether
BitShuffle is applied. SFCs are shown to reduce file-entropy
and block-entropy for the SRTM dataset (without BitShuffle)
and the SKA dataset (with BitShuffle). However, there is
little difference between the Z-Order, Gray-Code, and Hilbert
Curves, as they are all Recursive Space-Filling Curves with
the same subquadrants and thus data extents. BitShuffle is
shown to improve compression ratios across the board with
varying speeds. The Z-Order and Gray-Code Curves improve
compression ratios and maintain compression speeds for
both datasets, when compared to the Raster Scan. However,
the Hilbert Curve gives larger compression ratios for the
SRTM dataset. Using the three curves, the compression ratio
of the SRTM dataset using LZW is increased from 2.39
to 3.09 while maintaining a speed of around 7 MB/s using
the Z-Order Curve. GZIP and LZ4, combined with BitShuf-
fle and the Z-Order Curve, achieve compression ratios of
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1.24 and 1.22 for the SKA Dataset, with average speeds
of 5.87MB/s and 9.43 MB/s respectively. In fact, the com-
pression performance of GZIP on the SKA dataset, without
BitShuffle, is improved in all regards by using the Gray-Code
Curve (R, from 1.1 to 1.2 and speeds from approximately
10 MB/s to approximately 11 MB/s).

The Hilbert Curve consistently achieves higher compres-
sion ratios for the SRTM data with and without BitShuf-
fle but loses to the Z-Order and Gray-Code Curves for the
SKA dataset. However, compression speeds are significantly
biased towards the standard Row-Major Order for the SRTM
dataset, with the fastest configuration on the SKA dataset
varying between Row-Major Order, the Z-Order Curve, and
the Gray-Code Curve. Furthermore, the Hilbert Curve map-
ping implementation introduces a significant runtime penalty
— compared to the Row-Major, Z-Order, and Gray-Code
Curves — making its usage in these contexts impractical
unless a faster mapping algorithm is identified and inte-
grated. The Z-Order and Gray-Code Curves show consistent
improvement to compression ratios and varying improvement
to processing speeds over the Raster Scan, for the SKA
dataset with BitShuffle, indicating that alternative orderings
do benefit compression performance for radio-astronomy
data. If a faster Hilbert Mapping algorithm is identified,
its use as a reordering scheme for DEM data shows sig-
nificant promise for improving already existing compres-
sion schemes. Some additional speed improvements may be
gained by further optimizing the BitShuffle implementation
similarly to the Hilbert Curve implementation.
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