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ABSTRACT Edge storage, as a supplement to cloud storage, reduces latency by providing services in a
timely and efficient manner near the source. In a collaborative edge storage datacenter network (CESN), not
only does the edge storage datacenter (ESDC) that is closest to the user provide services, but multiple ESDCs
work together to provide better services. In this collaborative work mechanism, different application session
requests create large persistent multicast flows with diverse performance requirements. Existing multicast
scheduling methods such as unicast shortest path (USP) and static single tree (SST) do not consider flow
characteristics or performance requirements. In this paper, we first modeled the multicast flow scheduling
problem in a CESN. The model is based on different types of flows with diverse network requirements. Then,
we tailored a multicast flow scheduling method based on multiple-attribute decision-making and a genetic
algorithm (MDGA). MDGA selects appropriate multicast routing paths for flows in a CESN by considering
the requested flow types and network status. The experimental results show that the proposedMDGAmethod
can balance network loads and reduce the average transmission delay for high-priority flows better than USP
and SST.

INDEX TERMS Collaborative edge storage, datacenter network, multicast flow, multiple-attribute decision-
making, genetic algorithm.

I. INTRODUCTION
With the rapid development of the Internet of Everything
(IoE), the growing data storage requirement is posing a com-
plex technical challenge for the IT community. According
to the white book Data-Age-2025 [1] from the International
Data Corporation (IDC), the global data scale will grow from
33 zettabytes in 2018 to 175 by 2025. At the same time,
the emergence of many new applications such as unmanned
driving and smart cities will lead to a greater demand for
reducing data transmission delay [2]. For the traditional cloud
storage architecture, which has demonstrated effective stor-
age capacity, it is a challenge to satisfy the latency require-
ment, as this centralized cloud storage system is usually
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composed of a few large cloud storage datacenters inter-
connected by long-distance networks and is far from end-
users. This challenge can be overcome by using an edge
storage system, which employs a group of small edge storage
datacenters (ESDCs) to process data in a timely and efficient
manner near the source [3].

Existing works [4], [5] have shown the advantages of
edge storage in improving the efficiency of delay-sensitive
services. However, many applications in edge storage have
become data intensive. These applications need additional
comprehensive databases to support complicated data ana-
lytics. For a single ESDC with limited storage capacity, it is
difficult to meet these data requirements. Although cloud
storage datacenters can be used when edge servers lack the
necessary data for a task, the increased processing latency is
unacceptable for delay-sensitive tasks. To improve the edge
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FIGURE 1. Example of collaborative edge storage architecture.

layer’s performance, the concept of the collaborative edge
network has been introduced [6]. Fig. 1 illustrates an example
infrastructure architecture for collaborative edge storage.

The collaborative edge storage mechanism is a storage
paradigm in which multiple ESDCs collaborate with each
other through the edge network to share data and storage
capacity and satisfy global goals. In this collaborative edge
storage datacenter network (CESN), a variety of applications
often replicate or share data among ESDCs to improve data
reliability and quality of experience (QoE) for end-users [7].
This kind of data transmission in CESNs has created large
persistent network flows amongmultiple ESDCs. Scheduling
these network flows effectively has become a key factor
in improving the service performance of collaborative edge
storage. There are many existing works such as [6], [8]–[11],
which are based on a collaborative edge network. The work
of [11] shows that deploying a collaborative edge mechanism
can achieve better performance in task offloading than using
a single edge device. However, most of these works focus on
data placement or task offloading. The work of [6] shows
that most existing works solve the task scheduling problem
in a collaborative edge network without considering flow
scheduling, which can lead to network congestion and a
long completion time. Although recent works [6], [10] have
studied the network flow scheduling problem in collaborative
edge networks, these works do not consider both multicast
flow scheduling and QoE scheduling. In this paper, we focus
on the flow scheduling problem in CESNs.

Although previous works have shown the effectiveness of
deploying flow scheduling methods to improve service per-
formance in inter-datacenter networks, it is still a challenge
to tailor a specific multicast routing mechanism for CESNs
to improve QoE performance for data flows from diverse
applications. Compared with the flow scheduling problem

in inter-datacenter networks, the routing problem in CESNs
is more complicated. First, the quality of services (QoS)
and QoE of flow scheduling in CESNs have more strict and
diverse requirements [12]. Some online transaction processes
in CESNs, such as unmanned driving and online conversa-
tion, usually have stricter delay requirements, while some
big data storage processes, such as downloading or upload-
ing high-quality movies, usually have higher requirements
in terms of throughput. It is a challenge to guarantee these
diverse requirements in a shared CESN environment. Second,
the flow transmission mechanism in CESNs is more compli-
cated than that in other networks. To improve the security
and reliability of data storage, collaborative edge storage
often uses multicopy storage mechanisms. In this scenario,
the data uploaded by users is first stored in the master storage
node and is then distributed from the master storage node to
multiple slave storage nodes. This mechanism means that the
CESN includes not only unicast transmissions but also a large
number of multicast transmissions to reduce redundant traffic
generated during data distribution. It is a challenge to build
appropriate multicast trees for flow scheduling to achieve
network load balance under the premise of improving QoE
performance for diverse applications.

In this paper, we consider specific flow characteristics and
propose a priority-based multicast flow scheduling method
for CESNs. The main contributions of this paper can be
summarized as follows:

1) A multicast flow scheduling optimization model based
on service priority in CESNs is proposed. The best
multicast transmission path for each service flow can
be found through the model by considering the flow’s
specific network performance requirements and the
real-time network status information. The QoE per-
formance of a CESN can be improved by minimiz-
ing the cumulative weighted delay and balancing link
utilization.

2) A multicast flow scheduling method based on
multiple-attribute decision-making and a genetic algo-
rithm MDGA) is proposed to solve the optimiza-
tion model. A multicast path finding task is first
decomposed into multiple unicast path finding tasks,
which are processed by a multi-attribute decision-
making-based method. Then, a genetic-algorithm-
based method is used to select the appropriate
combination of unicast paths to construct the multicast
path.

3) We use Mininet to build a simulated CESN envi-
ronment to verify the effectiveness of MDGA. The
experimental results show that MDGA can reduce the
transmission delay of high-priority flows and improve
the network load balancing performance.

The rest of this paper is organized as follows: The second
part summarizes the related work. The third part describes
the multicast scheduling problem in CESNs and provides the
optimization model. The fourth part introduces the details of
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our MDGA method. The implementation and performance
evaluation are presented in the fifth part. The sixth part con-
cludes the paper.

II. RELATED WORK
In this section, we look at the related work in two areas:
(A) CESNs and (B) network flow scheduling.

A. CESNs
Collaborative edge storage is an effective method for improv-
ing storage efficiency and reliability in an edge computing
environment. The work of [8] proposes an edge-side col-
laborative storage framework called ECS, which solves the
data placement problem by using a graph-based iterative
algorithm. By applying edge-side collaboration, ECS reduces
the data-processing latency because fewer tasks are offloaded
to cloud datacenters. ACMES [9] is a multiplier-based collab-
orative storage scheduling algorithm that aims to improve the
execution efficiency of storage and optimize storage resource
utilization. With ACMES, storage tasks can be adaptively
distributed to individual edge nodes through comprehensive
consideration of the total cost, reliability, power usage and
risk of node withdrawal. However, the works of [8] and [9]
solve the problem of data placement without considering net-
work flow scheduling, which can lead to network congestion.

The work of [6] shows that most existing works solve
the task scheduling problem in collaborative edge networks
without considering network flow scheduling. To address this
challenge, [6] proposes a multistage greedy adjustment algo-
rithm called MSGA for data-aware task allocation. By con-
sidering both data placement and the network bandwidth
consumption, MSGA achieves better performance in terms of
task completion time. JPOFH [10] is an extension of MSGA.
By jointly scheduling tasks and network flows, JPOFH
achieves a significant improvement in the average comple-
tion time in multihop collaborative edge networks. How-
ever, [6], [10] do not consider both multicast flow scheduling
and QoE scheduling, both of which are important in CESNs.
Multicast flow scheduling can reduce the redundant traf-
fic generated during data distribution. In CESNs, services,
including video and audio distribution for internet protocol
television (IPTV) [13], multicopy replication of data stor-
age [14], and distribution of sensor monitoring data [15], all
have a large number of multicast transmission requirements.
For QoE scheduling, an effective method is to reduce the
average transmission delay of high-priority flows and balance
the network link utilization. Multicast flow scheduling and
QoE scheduling should be jointly considered in CESNs.

B. NETWORK FLOW SCHEDULING
The flow scheduling problem in datacenter networks [16]
has been well studied. For routing with optimizing flow
transmission paths, ECMP [17] is the most widely used
scheduling method. It uses a hash-based path selection strat-
egy and aims to spread traffic equally across redundant paths.
NetStitcher [18] aims to reduce the flow transmission delay

between long-distance datacenters. The data flow is first
transmitted to a low-load transfer datacenter and then for-
warded to the destination datacenter. As an effective method
for collecting network information and performing network
management, SDN has received extensive attention for flow
scheduling. B4 [19] is an SDN-based routing method pro-
posed by Google. It uses SDN to measure network infor-
mation and distributes data flows by link utilization. Jin
et al. [20] proposed another centralized routing method based
on SDN. They used SDN to collect network global informa-
tion, which is used to select the transmission path and deter-
mine the transmission rate. Their method improves network
utilization.

The aforementioned methods [17]–[20] have shown effec-
tiveness in improving network performance in inter-datacenter
networks. However, most of these methods aim at unicast
transmission, and it is difficult for them to deal with mul-
ticast transmission scenarios. To deal with multicast schedul-
ing scenarios, RMMR [21] uses an SDN-based multipath
multicast flow scheduling mechanism. RMMR achieves a
lower packet loss rate and better load balancing performance
than the traditional IP multicast mechanism in video stream
distribution scenarios. BCMS [22] is the first multicast flow
scheduling method for fat-tree datacenter networks. It cal-
culates the best transmission path for each multicast flow
according to the flow’s bandwidth demand and the residual
bandwidth of each link to perform network congestion control
and load balancing. MSaSDN [23] is another multicast rout-
ing mechanism for fat-tree datacenter networks. It constructs
the appropriate multicast tree for flow transmission based on
minimizing the link congestion overhead, and it improves
the network load balancing performance. To address the lag
problem of SDN-based network measurement, MSaMC [24]
uses Markov chains to predict the link congestion probability
of the next time slot. This prediction-based routing method
improves the network throughput and reduces the average
transmission delay of the data flow.

However, the aforementioned multicast flow scheduling
methods [21]–[24] are mostly designed for intra-datacenter
networks. It is usually difficult for these methods to deal with
the routing problem in CESNs. Because the routing problem
is often fairly easy to solve if the regular CLOS-based intra-
datacenter network topology structure is represented in the
problem formulation [25]. An efficient way to build a mul-
ticast tree in unstructured inter-datacenter networks is to use
a Steiner tree [26], which can minimize the number of links
in the tree required for a multicast task [27]. Iris [28] is a
Steiner-tree-based multicast traffic scheduler for optimizing
different completion time objectives for various requests.
However, Iris is designed for bulk transfers between long-
distance inter-datacenter networks, which is not appropriate
for the routing requirements in CESNs, as the traffic flow
in CESNs is fairly small but has greater requirements on
transmission delay.

Most of the aforementioned multicast flow schedul-
ing methods [21]–[24], [27], [28] give general scheduling
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FIGURE 2. Example of multicast scheduling in a CESN. The blue lines
indicate the multicast request [1, (2, 7, 9)].

strategies for all data flows. However, a CESN is often shared
by multiple services for cost considerations, and the data
flows generated by different services usually have different
requirements for network performance. For example, in a
network environment dominated by video services, network
bandwidth is more important [29], while in a network envi-
ronment dominated by game services, latency is the focus
for users [30]. Therefore, it is difficult to achieve ideal per-
formance for different services in CESNs by using a general
scheduling strategy.

The network flow scheduling method should provide tai-
lored solutions according to different services performance
requirements. In this paper, we propose a multicast flow
scheduling method called MDGA for CESN. The motivation
of MDGA is to reduce the average transmission delay of
high-priority flows and improve the network load balancing
performance.

III. MULTICAST SCHEDULING PROBLEM IN THE CESN
In this section, we first state the multicast flow scheduling
problem in CESNs. Our motivation is to find the best mul-
ticast transmission path, called the multicast tree, for each
multicast request. Then, we give the problem formulation
and propose a multicast flow scheduling optimization model
based on flow priority.

A. PROBLEM STATEMENT
Fig. 2 shows an example CESN based on Equinix’s datacen-
ters [31] in New York city. Unlike inter-datacenter networks,
which are usually interconnected by long-distance networks,
a CESN connects a group of small ESDCs, which process
data near the source to reduce latency. However, in order
to increase the data reliability and QoE for end-users, not
only does the ESDC closest to the user provide services,
but multiple ESDCs work together to provide better services.
This mechanism will generate a large number of multicast
transmission requests in a CESN.Ourmotivation is to find the
best multicast tree for each multicast transmission request.

To illustrate the multicast scheduling problem in a CESN,
we show a simple multicast transmission problem in Fig. 2.
The blue lines in Fig. 2 indicate a multicast transmission
request, which moves from ESDC1 to ESDC2, ESDC7, and
ESDC9. We formulate this request as [1, (2, 7, 9)]. As we can
see in Fig. 2, the path fromESDC1 to ESDC2may be (1, 4, 2),
(1, 5, 2), (1, 4, 6, 2), etc. We call these paths sub-path set1.
Similarly, sub-path set2 from ESDC1 to ESDC7 contains
(1, 5, 7), (1, 4, 7), (1, 9, 7), etc. Sub-path set3 from ESDC1 to
ESDC9 contains (1, 9), (1, 4, 9), (1, 5, 7, 9), etc. A multicast
tree is formed by selecting one path from each sub-path set.
For example, a path combination [(1, 5, 2), (1, 5, 7), (1, 5,
7, 9)] of paths selected from each sub-path set is a multicast
tree for [1, (2, 7, 9)].

The aforementioned path selection method needs to con-
sider the load conditions of each link in the CESN to improve
the network load balancing performance. Additionally, dif-
ferent types of flows have different network performance
requirements. It is also necessary to consider the performance
requirements of these different service flows in path selection
to improve QoE performance. In our previous work, we found
that the storage system mainly contains the following three
service flows [32]:
• Heartbeat flows are used to monitor whether the stor-
age nodes are working properly. These flows have the
highest transmission priority. They are highly sensitive
to transmission delay and need little network bandwidth.

• User data flows are generated by upload or download
tasks performed by end-users. Their completion time
directly affects the user experience. These flows have
the second highest transmission priority. They are sen-
sitive to transmission delay and require a large scale of
transmission bandwidth.

• Migration flows are generated by the load balancing
mechanism of the storage system. Their completion time
has little effect on the user experience. These flows have
the lowest transmission priority and need a large scale
of network bandwidth.

The details of the mathematical model for multi-
cast path selection in CESNs will be introduced in
section III-B.

B. PROBLEM FORMULATION
The network topology of a CESN can be modeled by a
graph G(V , E), in which V denotes the set of ESDCs
and E indicates the set of links between adjacent ESDCs.
As analyzed in section III-A, the multicast scheduling prob-
lem in CESNs is to find the best multicast path for each
multicast request that minimizes the cumulative weighted
transmission delay and improves the network load balancing
performance. Additionally, the network hops are important
for path selection in CESNs. A multicast path with fewer
network hops can save more link bandwidth overhead. For
easy reference, the symbols used in this section are listed
in Table 1.
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TABLE 1. Symbols in the problem formulation.

1) CUMULATIVE WEIGHTED TRANSMISSION DELAY
The cumulative weighted transmission delay of a type of flow
is defined as Dcu(xϕk ) in equation (1).

Dcu(xϕk ) =
M∑
ϕ=1

L∑
k=1

wϕ max
p∈k
{dϕp}xϕk (1)

where wϕ denotes the delay sensitivity coefficient of multi-
cast flow ϕ. A flow ϕ that has higher priority corresponds to
a larger value of wϕ . P denotes a unicast path in the multicast
path K . max

p∈k
{dϕp} is the transmission delay of multicast flow

ϕ routing through multicast path k. xϕk denotes a binary vari-
able: it is 1 if flow ϕ is routed through path k and 0 otherwise.

2) NETWORK LOAD BALANCING PERFORMANCE
We use the residual bandwidth of links to evaluate the
network load balancing performance, which is defined as
follows:

Lbp(xϕk ) =
M∑
ϕ=1

L∑
k=1

min
e∈k
{Re}xϕk (2)

where e is a link between two adjacent ESDCs. Re denotes
the residual bandwidth of link e. min

e∈k
{Re} is the bottleneck

of the residual bandwidth of multicast path k . A path with
more residual bandwidth should be chosen for a flow with
large bandwidth consumption to improve the network load
balancing performance. The larger the residual bandwidth of
the bottleneck link is, the better the network load balancing
performance.

3) NETWORK HOPS
The network hops are defined as the number of nonrepeating
links in each multicast tree. The cumulative network hops of

L multicast trees are defined as follows:

Hop(xϕk ) =
M∑
ϕ=1

L∑
k=1

nekxϕk (3)

where nek denotes the number of nonrepeating links in the k-
th multicast tree. A multicast tree with fewer network hops
can save more link bandwidth overhead.

4) OBJECTIVE FUNCTION
Our goal is to minimize Dcu(xϕk ) and Hop(xϕk ) and maxi-
mize Lbp(xϕk ). The objective function of this paper is defined
as follows:

min f = [Dcu(xϕk ),
1

Lbp(xϕk )
,Hop(xϕk )] (4)

However, it is difficult to achieve the minimum values of
Dcu(xϕk ), 1

/
Lbp(xϕk ), and Hop(xϕk ) at the same time. For

example, the multicast tree with the minimum Hop(xϕk ) is
called the minimum-edge Steiner tree. However, it is usu-
ally difficult for the minimum-edge Steiner tree to minimize
Dcu(xϕk ) and 1

/
Lbp(xϕk ). To deal with this problem, we use

the component weights to transform the objective function in
equation (4) into the optimization problem in equation (5).

min f =
M∑
ϕ=1

L∑
k=1

(wdϕwϕ max
p∈k
{dϕp}

+wbϕ
1

min
e∈k
{Re}
+ whϕnek )xϕk (5)

s.t. wdϕ + wbϕ + whϕ = 1 (6)
L∑
k=1

max
p∈k
{dϕp}xϕk ≤ dϕb, ∀ϕ ∈ {1, . . . ,M} (7)

M∑
ϕ=1

bϕxϕk ≤ min
e∈k
{be}, ∀k ∈ {1, . . . ,L} (8)

L∑
k=1

xϕk = 1, ∀ϕ ∈ {1, . . . ,M} (9)

xϕk ∈ {0, 1} , ∀ϕ ∈ {1, . . . ,M} , ∀k ∈ {1, . . . ,L} (10)

wdϕ , wbϕ , and whϕ in constraint (6) denote the weight coef-
ficients of the delay, residual bandwidth, and network hops,
respectively. Constraint (7) satisfies the delay requirement
dϕb for flow ϕ. Constraint (8) ensures that the total bandwidth
overhead for all multicast flows routing through path k does
not exceed the bottleneck bandwidth. Constraint (9) means
that only one path will be assigned to each multicast flow ϕ.
In constraint (10), xϕk denotes a binary variable: it is 1 if flow
ϕ is routed through path k , and 0 otherwise. The details of our
flow scheduling solution are given in section IV.

IV. MDGA MULTICAST FLOW SCHEDULING METHOD
To solve the objective function in equations (5-10), MDGA
is proposed. Fig. 3 presents the system architecture of
our MDGA method, which includes three main modules:
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FIGURE 3. Architecture of the MDGA method. The path info, path RBW,
and path delay with an orange background denote the network
information in equations (11), (12), and (13), respectively.

a network measurement (NM) module, unicast path selec-
tion (UPS) module, and multicast path selection (MPS)
module.

The process of MDGA finding the best multicast tree for a
multicast request can be described briefly as follows: First,
MDGA employs the NM module to update the real-time
network information. Second, the UPS module is used to
find the k-best path set for each unicast task of the multicast
request, where a unicast task moves from the source node of
the multicast request to one of the destination nodes of the
multicast request. Last, MDGA employs the MPS module
to find the appropriate combination of paths such that one
path is selected from each k-best path set. The result of this
combination is the multicast tree.

A. THE NM MODULE
The NM module follows the OpenFlow protocol of SDN
to discover the network topology and update the real-time
network information. It sends a network information request
to each ESDC’s switch periodically and handles the reply to
calculate the network information. The network information
recorded by the NM module is as follows:

P = {p1, p2, . . . , pn} (11)

where P is the set of unicast paths between each pair of
ESDCs. This path set can be found by using the Dijkstra [33]
algorithm.

Bp = {b1, b2, . . . , bn} (12)

where Bp denotes the set of residual bandwidths of each path
p. The residual bandwidth of a path can be calculated by using
the SDN-based networkmeasurement method in our previous
work [34].

DP = {d1, d2, . . . , dn} (13)

where DP denotes the set of end-to-end delay of each path p.
The delay can be obtained by using the SDN-based network
measurement method [34].

HP = {h1, h2, . . . , hn} (14)

where HP denotes the set of network hops of each path p.
A path p is composed of multiple adjacent links. The value
of the network hops of path p is the number of nonrepeating
links in p.

When the proposed algorithm in equations (5-10) is imple-
mented in the actual environment shown in Fig. 3, the neces-
sary actual information such as the candidate paths, average
path transmission delay, residual path bandwidth and path
hops can be obtained by equations (11-14), respectively.
Another challenge in deploying the proposed algorithm in an
actual environment is to classify network flows with different
priorities. In a dedicated storage network, the network port of
flow can be used as the label to distinguish different types of
flows.

In MDGA, the path set discovery method that uses the
Dijkstra algorithm is executed only once when the program is
initialized. The discovered path set can be accessed directly
in the subsequent path selection processes. This mecha-
nism reduces the computational overhead of duplicate path
discovery.

B. THE UPS MODULE
When MDGA processes a point-to-multipoint multicast
request, it first decomposes the multicast request into mul-
tiple point-to-point unicast tasks. Each unicast task moves
from the source node of the multicast request to one of the
destination nodes of the multicast request. The UPS module
is used to find the k-best path set for each unicast task by
using multiple-attribute decision-making. The process of the
UPS module finding the k-best path set for a unicast task is
described below.

1) CONSTRUCTING THE DECISION-MAKING MATRIX

M =

 b1 b2 ... bn
d1 d2 ... dn
h1 h2 ... hn

 (15)

whereM is the decision-making matrix for finding the k-best
path set for each unicast task. Each column inM represents a
candidate path. The symbols b, d , and h in each column rep-
resent the residual bandwidth, end-to-end delay and network
hops of each path, respectively. These network attributes are
obtained by the NM module.

2) NORMALIZING THE NETWORK ATTRIBUTES
To eliminate the dimension of each network attribute,
the min-max normalization method is used. Equation (16)
is used for the end-to-end delay attribute and the network
hop attribute, which can achieve a better effect with smaller
values. Equation (17) is used for the residual bandwidth
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attribute, which can achieve a better effect with larger values.

u(x) =
xmax
− x

xmax − xmin (16)

v(x) =
x − xmin

xmax − xmin (17)

Then, the normalization decision-making matrix M∗ can
be obtained as follows:

M∗ =

 b∗1 b∗2 ... b∗n
d∗1 d∗2 ... d∗n
h∗1 h∗2 ... h∗n

 (18)

where b∗j = v
(
bj
)
, d∗j = u

(
dj
)
, h∗j = u

(
hj
)
, and j ∈

{1, 2, . . . , n}. j represents the sequence number of the matrix
column, corresponding to the sequence number of the candi-
date path.

3) CALCULATING THE WEIGHTED SUMMATION OF THE
NORMALIZED ATTRIBUTES
The weighted summation of each candidate path can be cal-
culated by equation (19).

Zj = wbb∗j + wdd
∗
j + whh

∗
j (19)

where W = [wb,wd ,wh] is the vector of weighted coeffi-
cients for the residual bandwidth, end-to-end delay, and net-
work hops, respectively. Different flow types have different
vectors W due to their different performance requirements.
Zj represents the weighted summation of the normalized
attributes of candidate path j. A path j with a larger Zj value
is a better path. In a unicast task, the top k paths with larger
Zj values are used to construct the k-best path set.
The pseudocode of the function of the UPS module is

shown in Function 1.

C. THE MPS MODULE
When processing amulticast request with s destination nodes,
MDGA first employs the UPS module to find sk-best path
sets. Then, the MPS module is used to find the multicast
tree by constructing an appropriate combination of paths
such that one path is selected from each k-best path set.
To improve the efficiency of searching for the best com-
bination, the MPS module uses a genetic-algorithm-based
search method. As adaptive methods based on the mechanics
of natural selection, genetic algorithms are very efficient in
directing the search toward relatively good prospects [35].
The structure of the search solution in the MPS module is
presented in Fig. 4.

For simplicity, we suppose that a multicast request with
s destination nodes has been processed by the UPS module.
The results are s k-best path sets, which are denoted as set_1
= {p11, p12, . . . , p1k}, set_2 = {p21, p22, . . . , p2k},. . . , and
set_s = {ps1, ps2, . . . , psk}. The details of the search solution
for this s-destination multicast request are presented below.

Function 1 Unicast Path Selection (UPS)
Input: candidate unicast path set P; path residual

bandwidth set Bp; path delay set DP; path hops set
HP; source node nsrc and destination node ndst of
the unicast request; delay requirement dϕb of the
unicast request; threshold value k; vector of
weighted coefficients for the residual bandwidth,
end-to-end delay, and network hops
W = [wb,wd ,wh].

Output: the k-best unicast path set kb_set from nsrc to ndst .
1: for path p in path set P do
2: if p is from nsrc to ndst and dp ≤ dϕb do
3: add p to path set Pn;
4: end if
5: end for
6: construct the decision-making matrixM based on Pn
according to equation (15);

7: normalizeM to M∗ according to equations (16-18);
8: calculate the weighted summation of each candidate
path inM∗ according to equation (19);

9: sort Pn from the path p that has the largest weighted
summation to that with the smallest one;

10: Add the first k paths of the sorted Pn to kb_set;
11: return kb_set.

FIGURE 4. The search solution in MPS, where the modules with blue
backgrounds indicate the stages of the solution.

1) ENCODING
The encoding is used to denote a multicast tree constructed
from s k-best path sets. The MPS module employs one s-
dimensional vector as the encoded value. This vector is shown
in equation (20).

V = [p1φ, p2$ , . . . , psδ] (20)
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where p1φ denotes the φ-th path in set_1, p2$ denotes the
$ -th path in set_2, and psδ denotes the δ-th path in set_s.
φ, $ , and δ are random integers from 1 to k . The vector V
represents an encoded multicast tree.

2) POPULATION INITIALIZATION
The population initialization process is used to construct an
encoded vector pool for subsequent evolutionary calcula-
tions. The encoded vectors in this pool are called individuals.
The pool is shown in equation (21).

pool = {V1,V2, . . . ,Vn} (21)

where each individual Vi, i ∈ {1, 2, . . . , n} is obtained ran-
domly by using equation (20).

3) FITNESS FUNCTION
The fitness function is used to evaluate each individual
Vi in the pool. The individual Vi that meets the selection
criteria or the best individual during a specific number of
evolutionary calculations will be selected as the multicast
tree. The calculation method of the fitness function follows
equations (5-10).

4) SELECTION OPERATION
The MPS module employs the selection operation to select
several individuals from the pool with a certain probability.
Generally, the selection method is a process of survival of the
fittest based on the fitness function. The selected pool with
the surviving individuals is shown in equation (22).

s_pool = {Vσ ,Vς , . . . ,Vτ }, s_pool ⊆ pool (22)

where s_pool denotes the selected population pool, in which
the selected individuals have the best fitness values in the
unselected pool.

5) CROSSOVER OPERATION
After the selection operation, the number of individuals
in s_pool is less than the number of individuals in pool.
To increase the number of individuals in s_pool so that it is
the same as that of pool, the crossover operation is used. The
crossover operation is employed to create a new child indi-
vidual based on two chosen parent individuals from s_pool.
An individual with a larger fitness value has a higher prob-
ability of being chosen as the parent individual. Supposing
there are two parent-individuals V1 = [p1, p2, . . . , ps] and
V2 = [p1∗ , p2∗ , . . . , ps∗ ], the child-individual Vc is shown in
equation (23).

Vc = [p1, . . . , pθ∗ , . . . , pυ∗ , . . . , ps] (23)

where pθ∗ and pυ∗ are the θ∗-th and υ∗-th elements in V2,
respectively, and 1 < θ∗ ≤ υ∗ < s.

6) MUTATION OPERATION
To avoid falling into a local optimum in the search process,
a mutation operation is introduced. In the MPS module,

Function 2Multicast Path Selection (MPS)
Input: s kb_sets for a multicast request with s destination

nodes; the vector of weighted coefficients for the
residual bandwidth, end-to-end delay, and network
hopsW = [wb,wd ,wh]; individual number Nind ;
iteration number Nite; retention rate rre; cross rate
rcr ; mutation rate rmr .

Output: the multicast tree Vend .
1: for (i = 0, i++, i < Nind ) do
2: construct Vi using equation (20);
3: add Vi to pool;
4: end for
5: while (j < Nite) do
6: j = j + 1;
7: calculate the fitness value of each Vi in pool using

equation (5);
8: select

⌊
N ∗ind rre

⌋
individuals in pool using

equation (22) and add them to s_pool;
9: while(len(s_pool) < Nind ) do
10: construct a random float value vf 1 from 0 to 1;
11: if vf 1 < rcr do
12: construct a new individual Vc by equation (23);
13: else do
14: select an individual Vc from pool according to its

fitness value (an individual with a larger fitness
value has a higher probability of being selected);

15: end if
15: construct a random float value vf 2 from 0 to 1;
16: if vf 2 < rmr do
17: mutate Vc to V∗c using equation (24);
18: add V∗c to s_pool;
19: else do
20: add Vc to s_pool;
21: end if
22: end while
22: pool = s_pool;
23: delete s_pool.
24: end while
25: calculate the fitness value of each individual in pool

using equation (5);
26: select the individual Vend that has the largest fitness

value.
27: return Vend

the mutation operation is used for the child individual with
a certain probability. Supposing there is a child individual
Vc = [p1, p2, . . . , ps], the mutated child individual V∗c is
shown in equation (24).

V∗c = [p1, . . . , pλ∗ , . . . , ps] (24)

where pλ∗ is a random path selected from set_λ, which con-
tains all possible paths for the λ-th unicast task and is obtained
by the UPS module. pλ∗ is used to replace the original pλ in
child individual Vc to generate the mutated child-individual
V∗c . The parameter λ∗ is such that 1 ≤ λ∗ ≤ s.
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Algorithm 1MDGA
Input: a multicast request from source node nsrc to

destination node set {ndst−1, ndst−2, . . . , ndst−s};
the delay requirement dϕb of the multicast request;
the network information P, Bp, DP, and HP; the
threshold value k , W = [wb,wd ,wh]; the
thresholds in the GA-based algorithm: individual
number Nind , iteration number Nite, retention rate
rre, cross rate rcr , and mutation rate rmr .

Output: the multicast tree Vend .
1: for ndst−i in ndst−1, ndst−2, . . . , ndst−s do
2: calculate the k-best unicast path set i_kb_set from

nsrc to ndst−i using the UPS Function;
3: end for
4: s kb_sets = 1_kb_set + 2_ kb_set +. . .+s_ kb_set
5: calculate the multicast tree Vend by using the
MPS Function

6: return Vend

The pseudocode of the function of the MPS module is
shown in Function 2.

With the UPS and MPS functions, we give the pseudocode
of the proposed MDGA method as Algorithm 1.

The proposed MDGA algorithm is a genetic-algorithm-
based online optimization method for finding the appropriate
multicast tree for each multicast request. To improve the
real-time performance of the algorithm, MDGA employs the
UPS module to reduce the search space before performing
the GA search. In the UPS module, the multiple-attribute
decision-makingmethod is used to ensure that the better solu-
tions have a larger probability of being retained. Additionally,
the crossover function in equation (23) and themutation func-
tion in equation (24) are designed to maintain the diversity of
the individuals and prevent the algorithm from falling into a
local optimum, respectively. The experimental performance
in section V shows the effectiveness of the proposed MDGA
algorithm.

V. IMPLEMENTATION AND EVALUATION
The performance of the proposed multicast flow schedul-
ing method is evaluated in this section. We implement our
MDGA method in Ryu [36], which is an open-source SDN
controller that supports the OpenFlow protocol. Mininet [37]
is used to simulate a CESN topology to perform the experi-
ments. Iperf [38] is used to generate the network flows that
are introduced in section III-A to simulate a real collaborative
edge storage environment. The entire experimental program
is deployed on an Ubuntu 16.04 system on a Sugon A840r-G
server. This server has 64∗2.1 GHz AMD processors and
128 GB of memory.

In terms of the experimental topology, we use Mininet
2.3.0 to simulate a topology based on Equinix’s datacen-
ters [31] in New York city. The topology is shown in Fig. 2.
The bandwidth capacity of each link in the experimental

TABLE 2. The statistical information of the different types of flows in the
storage system.

topology is set to 200 Mbps because the simulation experi-
ment assumes limited resources. The link propagation delay
is set as 5 us/km. The geographical distance between each
pair of ESDCs is obtained by Google map.

In terms of the flow traffic pattern, we simulate ESDCs
sending flows to other ESDCs according to the step (i) pat-
tern, which is similar to previous work [25]. The step (i) pat-
tern means that an ESDC with index x sends flows to an
ESDC with index (x+i) MOD (14), where 14 is the number
of ESDCs. The statistical information of the different types
of flows in the storage system is based on the measurements
in our previous work [32] and is shown in Table 2.

During the simulation test, we assume that there are five
storage nodes in each ESDC exchanging data with other
ESDCs at one multicast request. This means that in the
simulation experiment, the sending speed of each type of
flow is five times that of the corresponding speed in Table 2.
The speed of heartbeat flows is set to 1 Mbps to reduce the
packet loss rate in the simulation environment. Additionally,
limited by the test duration of the simulation experiment,
the duration time of the migration flows is set to 80 seconds.
To further evaluate the performance of the flow scheduling
method under different network loads, three kinds of flow
load scenarios are set in the experiment, as follows:

• Low-load (LL) scenario: 10 heartbeat flow requests,
10 user data flow requests and 10 migration flow
requests.

• Middle-load (ML) scenario: 20 heartbeat flow requests,
20 user data flow requests and 20 migration flow
requests.

• High-load (HL) scenario: 30 heartbeat flow requests,
30 user data flow requests and 30 migration flow
requests.

Each flow request mentioned above is a multicast flow
request that has three destination ESDCs. All multicast
requests are started periodically within 180 seconds by Iperf.
In the simulation experiment, we set W = [wb,wd ,wh]
mentioned in equation (19) to [0, 1, 0], [0.3, 0.3, 0.4] and
[0.5, 0, 0.5] for heartbeat flows, user data flows andmigration
flows, respectively. The parameters of the genetic algorithm
used in the MPS module are shown in Table 3.

To the best of our knowledge, there has not been a spe-
cializedmulticast algorithm considering diverse flow require-
ments in an edge storage datacenter network. Therefore,
we compare MDGA with the two multicast algorithms
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TABLE 3. The parameters of the genetic algorithm used in the MPS
module.

FIGURE 5. The theoretical total link overhead incurred by all the
multicast flows in different load scenarios. Note that the theoretical link
overhead here is not a measured value but is calculated according to the
number of edges of each multicast tree.

mentioned in [28], called unicast shortest path (USP) and
static single tree (SST). For USP, the multicast tree is com-
posed of the shortest path of each unicast task. For SST, the
multicast tree is the minimum-edge Steiner tree, which uses
the minimum possible bandwidth.

A. NETWORK LOAD BALANCING PERFORMANCE
First, we compare the overall link overhead of each method.
The theoretical total link overhead incurred by multicast flow
ϕ can be calculated with equation (25).

Cϕ = bϕnϕ (25)

where bϕ is the flow speed of multicast flow ϕ and nϕ is the
number of edges of the corresponding multicast tree. Each
edge of the multicast tree corresponds to a network link.
According to equation (25), we give the theoretical total link
overhead incurred by all the multicast flows in Fig. 5.

When SST is deployed, the theoretical total link overhead
reaches the minimum possible value. This is because SST
constructs a minimum-edge Steiner tree for each multicast
flow as the multicast tree. Reducing the network overhead is
the only objective of SST. However, as mentioned at the end
of section III, the major objective of our MDGA method is
to improve the flow’s QoE performance and the network load
balancing performance. A small amount of extra link over-
head will be used to achieve these goals. The experimental
results in Fig. 5 show that compared to the minimum possible
link overhead, MDGA consumes 6.5%, 9.3%, and 8.5%more
bandwidth in the LL scenario, ML scenario, and HL scenario,
respectively. Compared with USP, MDGA consumes 3.6%,

FIGURE 6. The average link utilization in the HL scenario. The link
utilization here is measured in real time by the OpenFlow protocol.

6.1%, and 4.7% more bandwidth in the LL scenario, ML sce-
nario, and HL scenario, respectively.

Note that the theoretical link overhead mentioned above
is not a measured value but is calculated from the number
of edges of each multicast tree. The actual real-time link
overhead is shown in Fig. 6.

In Fig. 6, we measure the real-time average link utiliza-
tion of all links in the HL scenario. The overhead of each
link is measured every 6 seconds. We observe that the uti-
lization increases during 0 to 90 seconds. This finding is
because the migration flows have a duration time of 80 sec-
onds. The first migration flow is completed in approximately
90 seconds, after which the overall load of the network is
relatively stable. During the load stable time from 90 to
180 seconds, we observe that MDGA actually consumes an
average of 14.3% and 6% more bandwidth than SST and
USP, respectively. This actual extra bandwidth consumption
is larger than the corresponding theoretical extra bandwidth
consumption, which is 8.5% and 4.7%, respectively. These
results indicate that there is network congestion when SST
and USP are deployed in the HL scenario. Even in high-load
scenarios, the extra network bandwidth used by MDGA will
not cause more serious network congestion. MDGA can
achieve larger network throughput due to a better load bal-
ancing performance.

To compare the load balancing performance of the can-
didate methods, we measure the standard deviation of link
utilization, as shown in Fig. 7.

Specifically, the lower the standard deviation is, the more
balanced the link loads. We observe that MDGA achieves
the lowest standard deviation in all three scenarios. MDGA
achieves 9.6%, 14.7%, and 25.7% lower average standard
deviation than SST in the LL, ML, and HL scenarios, respec-
tively. Compared with USP, MDGA achieves 8.4%, 9.2%,
and 15.9% lower average standard deviation. These results
mean that MDGA can perform better load balancing than
other candidate methods. The reason for these results is that
MDGA considers the residual bandwidth of paths during
path selection. A path with larger residual bandwidth is
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FIGURE 7. Standard deviation of link utilization: (a) measured in the LL
scenario; (b) measured in the ML scenario; (c) measured in the HL
scenario.

selected preferentially to improve the network load balancing
performance.

B. AVERAGE TRANSMISSION DELAY FOR DIFFERENT
TYPES OF FLOWS
The average transmission delay of different types of flows are
depicted in Fig. 8. The average transmission delay here repre-
sents the average end-to-end transmission time of the packets

FIGURE 8. Average transmission delay of different types of flows.
Heartbeat, user data, and migration in the figures represent the heartbeat
flows, user data flows, and migration flows, respectively. (a) Measured in
the LL scenario; (b) measured in the ML scenario; (c) measured in the HL
scenario.

in the flows. In the LL scenario, the three candidate meth-
ods achieve comparable average transmission delay. This is
because when the network load is low, the path selection
and data forwarding can be effectively handled by the SDN
controller and switch, respectively. The user data flows have
the lowest transmission delay in the LL scenario. This is
because the limited multicast requests of user data flows are
routed between closer ESDCs.
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However, in the ML and HL scenarios, MDGA shows the
advantages of processing high-priority flows. As mentioned
in section III-A, the flows with higher priority are more
sensitive to the transmission delay. These delay-sensitive
flows should have shorter completion time to improve QoE
performance. For the heartbeat flows, which have the high-
est priority, MDGA achieves 23.8% and 20% less average
transmission delay than SST in the ML and HL scenarios,
respectively. Compared with USP, MDGA achieves 26.1%
and 15.4% less average transmission delay for heartbeat flows
in the ML and HL scenarios, respectively. For the user data
flows, which have the second highest priority, the average
transmission delay is 17.5% and 18.1% lower when we use
MDGA compared to SST in the ML and HL scenarios,
respectively. Compared with USP, MDGA achieves 15.1%
and 6.4% less transmission delay for user data flows in
the ML and HL scenarios, respectively. These results mean
that MDGA can reduce the average transmission delay for
high-priority flows and improve the QoE performance of the
CESN environment. This is because MDGA considers the
flows’ priority and network conditions during path selection.
A path with lower average transmission delay is selected
preferentially for high-priority flows. For migration flows,
we observe that the average transmission delay is higher when
MDGA is deployed. This is because of the larger compu-
tational complexity of the genetic-algorithm-based method
in MDGA. However, the average transmission time of these
non-delay-sensitive flows has little influence on the QoE
performance of the CESN environment.

VI. CONCLUSION
In this paper, we discussed the multicast flow scheduling
problem in an edge storage datacenter network. The motiva-
tion of this work is to improve the network load balancing
and QoE performance. We first proposed a multicast flow
scheduling optimization model based on different types of
flows with diverse network requirements. Then, we pre-
sented MDGA, a multicast flow scheduling method based on
multiple-attribute decision-making and a genetic algorithm,
to solve the optimization model that finds the appropriate
multicast tree for each multicast request. Finally, we con-
ducted extensive experiments to show that MDGA can bal-
ance network loads and reduce the average transmission delay
for high-priority flows in high-load scenarios.

Moreover, we will consider implementing MDGA in a
real edge storage datacenter network testbed in the future.
Another direction for future work is to consider issues related
to real-time flow classification in a more complex network
environment and joint consideration of cloud-edge collabo-
ration and edge-edge collaboration.
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