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ABSTRACT This paper proposes a wideband circularly polarized antenna with a reconfigurable
2-dimensional axial ratio. For mobile satellite communication, the low profile CP antenna with wide axial
ratio scanning and a wide frequency bandwidth is essential. In this paper, we propose the wideband CP
antenna with an axial ratio controller. The axial ratio deteriorates when the difference between transverse
modes (TM)01 and TM 10 gets larger. Therefore, in the proposed antenna, the axial ratio controller is used to
compensate for the difference by controlling the amplitude and phase of the received signals. The proposed
antenna has three mode states for the 2-dimensional axial ratio region. In a simulation of the wideband CP
antenna, the axial ratio was below 3 dB in the 2-dimensional scanning region from —60° to 60° at every
azimuth angle in the 20% factional frequency bandwidth. To verify the proposed antenna with the axial ratio
controller, the wideband CP antenna is implemented at 5.8 GHz. A low noise amplifier (LNA) and digital
phase shifters are employed for the axial ratio controller. The measured axial ratio was below 3 dB in the
2-dimensional scanning region from —60° to 60° at every azimuth angle in the 20% factional frequency
bandwidth.

INDEX TERMS Wide-angle axial ratio beamwidth, wide band axial ratio, amplitude and phase control,

2-dimensional reconfigurable axial ratio.

I. INTRODUCTION

The circularly polarized (CP) antenna has been used in var-
ious applications to address issues with mobility, weather
penetration, and to reduce multipath reflections. Various
papers have proposed novel CP antennas to improve axial
ratio bandwidth, CP gain, and polarization reconfigurable
performance [1]-[9]. The L-probe feeding patch antenna
with a novel radiator was presented for dual operating band-
width [1]. By designing the proper gap between the L-probe
feeder and patch antenna, the amplitude and phase of the
electrical field are controlled to form circular polarization in
a dual-band. A high gain dual CP antenna using 3D printing
technology was designed in [2]. It employs a high order
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mode cavity for high gain and reducing loss. Orthogonal
feeders were used for dual CP performance. The paper in [3]
presented a folded dipole, metal column, ME dipole for
wide beam and wide band CP performance. For dual CP,
the antenna used a the hybrid coupler at a feeder. CP recon-
figurable antennas have also been researched [4]-[9]. The
CP antennas presented in [4]-[8] employed diode switches
for reconfigurable circular polarizations. As a result, they
can radiate RHCP (Right Handed Circular Polarization) and
LHCP (Left Handed Circular Polarization) by controlling the
on and off of diode switch. The CP antenna in [9] used a phase
shifter and truncated square metal patch to reconfigure the
circular polarization and linear polarization.

The CP antenna is also employed for satellite communi-
cation [10]-[12]. Wide axial ratio beamwidth is especially
essential for mobile satellite communication for automobile
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and unmanned aircraft vehicles (UAVs) due to the variety
of angles of the arriving receiving signal. Conventional CP
antennas [1]-[9] are not suitable because the reported CP
antennas rarely have wide axial ratio beamwidth. Also, when
the wide frequency bandwidth of the satellite communica-
tion is employed, a wideband CP antenna with wide axial
ratio beamwidth is required [13]. For wide axial ratio perfor-
mance, some researchers have proposed low profile CP anten-
nas [14]-[20]. In [14], a single fed CP antenna with stepped
arc-shaped arms was presented. Each arm is split up into two
horizontal arc-shaped parts and one vertical part, broadening
the axial ratio beamwidth. In [15], a single patch antenna with
shorting pins was proposed. The position and radius of these
pins change the amplitude of the dual-polarization, leading
to widening of the axial ratio beamwidth. However, these
antennas have narrow axial ratio bandwidth. In [16], [17],
dual-band CP antennas were investigated. A compact CP
antenna with an annular metal strip loaded ground plane was
employed for wide axial ratio beamwidth [16]. The annular
metal strips served as parasitic radiators on the ground and
improved the axial ratio beamwidth. Also, a stacked patch
antenna with a back modified metallic cavity was studied
for wide axial ratio beamwidth in [17]. The height and
radius of the cavity were the control points of the axial ratio
beamwidth. An aperture coupled CP antenna with a metasur-
face antenna was introduced in [18]. The various lengths of
the slot controlling the phase of the beam pattern and feeding
points resulted in improvement of the axial ratio beamwidth.
Four integrated printed dipoles were proposed in [19]. The
extra thick substrate and metal cavity were designed for wide
beamwidth and axial ratio beamwidth. The bandwidth of the
CP antenna was also wide. In [20], a wideband CP antenna
with two curved arms shaped like an inverted ’s’ was reported.
The distance between the radiator and ground plane of the CP
antenna affected the axial ratio beamwidth. However, these
CP antennas have a narrow bandwidth with a wide-angle axial
ratio [14]-[18]. Also, the 2-dimensional axial ratio region
was rarely studied in [15]-[19]. In particular, the height of
the antenna in [20] is too high for a low profile antenna
application.

Generally, as the beamwidth and bandwidth become wider,
the axial ratio becomes worse. The degradation of the axial
ratio results from the amplitude and phase difference between
TMI10 and TMOI. In particular, with wideband frequency
bandwidth and in the 2-dimensional region, the amplitude and
phase difference are hard to maintain properly. The degra-
dation of the axial ratio causes polarization mismatching
loss [21]. In this paper, we propose a wideband circularly
polarized antenna with a reconfigurable 2-dimensional axial
ratio, as shown in Fig. 1. The antenna is designed as a stacked
patch antenna for wide bandwidth and operates at 5.2 GHz
to 6.4 GHz, with a fractional bandwidth of 20 %. Using a
controller, the amplitude of the received signal is controlled
by the gain of the low noise amplifier (LNA), and the phase
of the received signal is controlled by the digital phase shifter
to compensate the difference between TM10 and TMOI.
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FIGURE 1. Proposed antenna structure.

r

Axial Ratio

dB
™I
5

Amplitude difference (dB)

-

80 a0 100
Phase difference (°)
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The controller can produce a three-mode state for a
2-dimensional axial ratio region in the wide frequency band-
width. In conclusion, the axial ratio can be controlled under
3 dB in every frequency band and with a region of elevation
angle from —60° to 60° in every azimuth angle. The proposed
antenna with the axial ratio controller was implemented for
validation. The measured axial ratio in the 2-dimensional
region was under 3 dB in 20 % fractional frequency
bandwidth.

Il. ANTENNA DESIGN

A. THEORETICAL ANALYSIS

The axial ratio of a received dual polarized signal is expressed
as follows:

1+ a2 4+ (a* + 202cosQAD) + 1)

AR
14+ a2 — (a* + 202cosQAD) + 1)
E
o = ™10 (2)
Ermot
Ad = Pry10 — Prmor, 3)
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where Ery10 and Erpyo1 are the amplitude, and $7pr10
and ®7y701 are the phase of the received TM10 signal and
TMO1 signal respectively, and « is the amplitude difference,
and A® is the phase difference between the TM10 and
TMOLI signals as shown in (2) and (3).

Fig. 2 shows the axial ratio distribution according to the
amplitude difference (o) and phase difference (A®) of the
TM10 and TMOI signals. As shown in Fig. 2, the large
difference in amplitude and phase makes the axial ratio worse.
Under ideal axial ratio conditions, the amplitude difference
(o) is 0 dB, and the phase difference (A®) is 90°, which
makes the axial ratio 0 dB. However, in the wide-angle region
in the wide frequency bandwidth, the ideal condition is hardly
achieved. Therefore, by controlling the gain of the LNA
(A1ar10, ATmo1) and phase offset of the digital phase shifter
(WTam10, Wraro1), the axial ratio can be controlled. The gain
in LNA and the phase offset of the phase shifter for the ideal
axial ratio are given by,

ATM10,ctrl = ﬁizz — EZ Z 8; 4)
ATMO1,ctrl = ;‘izz o EZ Z 8; (%)
Yrm10,cr1 = (1)800 —AP EEESII:)) (6)
S -

The gain in LNA (A7am10,ctr1> ATMO1,c1r1) 18 controlled to
compensate the amplitude difference (o). When the ampli-
tude difference (o) is larger than O dB, the ideal gain of
the LNA of the TM10 signal (Ara10,c1r1) 1 controlled by a
decrease in the amplitude difference (o) over the typical gain
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FIGURE 4. Axial ratio distribution of original state at 5.8 GHz.

of LNA (Azna). Then, the gain in the LNA of the TMO1 sig-
nal (Armo1,c1) maintains the typical LNA gain (Azna).
The phase offset of the digital phase shifter (Wras10,ceri,
Wramo1,c1r1) 1S also controlled to compensate the phase differ-
ence (A ®). To make the phase difference (A ®) 90°, the phase
offset of 180-A® is selected instead of 90°. Then, the con-
trolled amplitude and phase of the TM10 and TMO1 signals
are given by

iD1110.c
Erpmi0,coe ™ M 104
v D 1100,
= Arpm10,cme’” M0 (ETMIO(Q:d))e] ol ¢)>, ®)
@
ETMOl,ctrle] TMO1,ctrl

= A7mo1.cine VO (ETMOl(O, ¢)e’q’TM01(9’¢)> . 9)

where Erp10(0,¢) and Egpo1(0, ¢) are the amplitude,
Drar10(0, @) and P1pr01(0, @) are the phase of the TM10 and
TMOLI signals, respectively.

Also, the CP beam pattern is as follows:

A i®
Ecn(0, ¢, a, AD) = aTMlOETMIO,ctrlel ™10 ctri
A id
+ armo1 Ermon e ™00t (10)

where arpyr10 and appyop are the unit vector of TM10 signal
and TMO1 signal, respectively. By controlling LNA gain
and phase offset, the controlled amplitude difference (o¢s7)
becomes 0 dB and the phase difference (A®.,;) changes to
90°. Then, the axial ratio is controlled to be 0 dB.

B. SIMULATION RESULTS

Based on the theoretical analysis, the CP antenna was
designed as shown in Fig. 3. Fig. 3 presents the simulation
results of the return loss and isolation and the structure of
the single antenna. The antenna is a dual-polarized stacked
microstrip patch whose operating frequency is from 5.2 GHz
to 6.4 GHz. Due to the effect of the stacked patch, the frac-
tional bandwidth is 20 %, which is wider than the typical
patch antenna. The antenna has two ports for TM10 and
TMOI. In its original state, the gain in the LNA of the

79929



IEEE Access

J.-W. KIM et al.: Wideband CP Antenna With Reconfigurable 2-Dimensional Axial Ratio Beamwidth

= Original Statd Original State 135 0 Original State Originalj State 2 40 Original State Originalf State 133
—_ —e—Mode | —&— Mode | —_ —a— Maode 2 —h— Mode 2 —_ —¥—Mode 3 —¥—Mode 3
_%i 30 120 _ % 304 W — 1120 _ %i 304 1120 _
é E g ot 1105 T;}' é 105 :3:
;: 2 E N - )} g
3 g E 90 g = T v P 90 ;f
2 a o 10 a > 104 )
=1 o =]
g é E 175 § E 175 é
) = E o lo = E 0 o feo =
< < <

-10 T T T T 45 -10 T T T T T 45
90  -60 30 30 60 90 90 -60  -30 0 30 60 90
Theta (°) Theta (°) Theta (°)

(a)

(c)

FIGURE 5. Amplitude difference and phase difference at 5.8 GHz: (a) $=60° (b) $=60° (c) ¢=160°.
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FIGURE 6. CP Gain and axial ratio at 5.8 GHz: (a) $=60° (b) ¢=60° (c) $=160°.

TMI10 and TMO1 signals is the same (Arna), and the phase
offset is 90°. The axial ratio distribution of the antenna in
the original state is shown in Fig. 4. The distribution is a
2-dimensional axial ratio value in the region from —60°
to 60° of O in every azimuth angle. The axial ratio near
(¢=0°,0=30°) and (¢=0°,0=—30°) is low enough. How-
ever, the axial ratio near the center of the antenna is close to
3 dB. Also, the axial ratio degrades as the 6 becomes wider.
Ata¢ = 60° and ¢ = 160°, the axial ratio becomes seriously
deteriorated as 6 gets wider.

The reason for the degradation of the axial ratio is shown
in Fig. 5. In Fig. 5. (a), the amplitude difference (o) and
phase difference (A®) at ¢ = 60° are shown according
to 6 at 5.8 GHz. The amplitude difference («) increases
when 6 becomes wider. The phase difference (A®) also
becomes bigger than 90° as 6 becomes wider. Therefore,
the axial ratio becomes worse. To improve the poor axial ratio
region, a reconfigurable mode is proposed to fully control the
2-dimensional axial ratio distribution.

Firstly, the axial ratio near the antenna center is controlled.
As shown in Fig. 5(a), the amplitude difference () and phase
difference (A ®) at the & = 0° are 2.24 dB and 87.1°. To make
the amplitude difference 0 dB and the phase difference 90°,
the gain in the LNA of the TM10 signal (A7ps10) should be
2.24 dB smaller than the gain of LNA of TMO01 signal, and the
phase offset of the TM10 signal (W7p7109) must become 92.9°
to compensate the phase difference. Then, the amplitude
difference (o) and phase difference (A®) become 0 dB and
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90° at & = 0° and that state is model. The region with under
the 3 dB axial ratio becomes wider than the original state,
as shown in Fig. 6 (a). We consider this state to be model.

Even in model, the wide angle axial ratios at ¢ = 60°
and ¢ = 160° are seriously degraded as shown
in Fig. 6 (b) and (c). To control the axial ratio at ¢ = 60°,
a point at ¢ = 60°, § = 50° is selected. In Fig. 5(b),
the amplitude difference () and phase difference (A®) at
¢ = 60°, 60 = 50° are 8 dB and 75.7°. The same control
method is used as the first control. This makes the gain of the
LNA of the TM10 signal (Arpr10) 8 dB smaller than that of
the TMO1 signal and the phase offset of the TM10 (W7p10)
must become 104.3° to compensate the phase difference.
We consider this state to be mode2. The CP gain and axial
ratio of model and mode2 are shown in Fig. 6(b). The region
(—50°< 6 <30 °) can be used as model and other region
(—60°< 0 <—50°, 30°< 0 <60°) can be used as mode2.
Then, the axial ratio of all regions is under 3 dB.

Finally, we only have to control the axial ratio at ¢ = 160°.
To control the axial ratio, a point at ¢ = 160°, 8§ = 50° is
selected. Using the same method as the first and second con-
trol, the axial ratio can be controlled. As shown in Fig. 5(c),
the amplitude difference (o) and phase difference (A®) are
close to 0 dB and 90° at ¢ = 160°, 8 = 50° and the axial
ratio is improved as shown in Fig. 6(c). In Fig. 6(c), The
region (—40°< 6 <32°) can be used as model and other
region (—60°< 6 <—40°, 32°< 6 <60°) can be used as
mode3.
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In Fig. 7, the axial ratio distribution of each frequency and
region can be observed. As shown in Fig. 7(b), for model,
the region near the center of the antenna has a low axial
ratio level. In the mode2 and mode3 regions the axial ratio
is controlled for ¢ = 60°, 6 = 50° and ¢ = 160°,
6 = 50°. The axial ratio of the region near the control
point is improved simultaneously. Also, in Fig. 7(a) and
Fig. 7(c), the axial ratio at 5.2 GHz and 6.4 GHz are con-
trolled by the same method used for 5.8 GHz. We note
that the axial ratio is controllable in all regions and the
frequency band. Furthermore, by reconfiguring mode 1,2 and
3, the axial ratio of all regions can be maintained under
3 dB.

VOLUME 9, 2021

Ill. IMPLEMENTATION AND MEASUREMENT

To verify the proposed CP antenna with the reconfigurable
2D axial ratio, the antenna, and the controller were fabricated,
as shown in Fig. 8. The dual-polarized stacked patch antenna
was implemented in Fig. 8(a). The controller consists of
an LNA, 4-bit digital phase shifter, and Wilkinson power
divider. The attenuator for LNA can control gain in steps
of 0.5 dB, and the phase can be controlled in steps of 22.5°.
The controller has 16 channels. Each channel had amplitude
and phase errors depending on the phase state. Therefore,
we measured the amplitude and phase offset of the RF chains
and calibrated them. Before the board calibration, at some
phase states, the amplitude errors of the RF chain were over
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TABLE 1. Comparison with the previously reported circularly polarized antennas.

Wide Angle 2D Axial ratio CP Gain
Reference |\ ;a1 Ratio Bandwidth (%) | CenterFred- (GHz) | Zono 6 60°) | in Bandwidth (aB) | Lo Profile
[147 (2017) 0.36 25 0 05 0
[15] (2017) 0.29 244 X 7 0
[16] (2019) - 3};‘11 ]??g) X 1.98, 4.1 0
[17] (2019) - (]?“2*‘31 ]?f‘;’;l) X 2.59,3.4 0
(187 (2019) 4.6 151 X 7 0
[19] (2018) 345 145 X 35 0
[20] (2017) 70 5 X 7 X
Proposed 20 5.8 (0] 7 (0]

LNA

4 Bit Digital Phase Shifter

Wilkinson Power Divider

(b)

FIGURE 8. Implemented (a) antenna (b) controller.

40.5 dB. After the board amplitude calibration, the amplitude
errors were less than 0.3 dB. Also, we chose a channel
whose phase error was under £1°.

Fig. 9 shows a comparison of the simulated and measured
return loss and isolation of the antenna. The antenna’s mea-
sured return loss and isolation were similar to the simula-
tion. The implemented antenna operated from 5.2 GHz to
6.4 GHz. Fig. 10 (a) and (b) show the axial ratio in each
mode at 5.2 GHz, Fig. 10(c) and (d) is at 5.8 GHz, and
Fig. 10(e) and (f) are the axial ratio at 6.4 GHz. As shown
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in Fig. 10, in each mode, the axial ratio can be controlled
as in the simulation. In the center and edge frequency of
the operating frequency bandwidth, the axial ratio was under
3 dB in the region from —60° to 60°.

Fig. 11 shows the CP radiation pattern at 5.8 GHz in each
mode. As the mode changed, the radiation patterns varied.
However, the CP gain had only a slight difference. The
results of the simulation and measurement showed similar
tendencies.

Table 1 summarizes the performance of the proposed
antenna and previously reported CP antennas. The meaning
of the wide angle ARBW is the frequency bandwidth at which
the antenna can maintain under 3 dB axial ratio at elevation
angles from —60° to 60 °. Also, ‘O’ in the 2-dimensional
axial ratio indicates whether the antenna can have an axial
ratio below 3 dB in the 2-dimensional region, a 360 ° azimuth
angle and elevation angle from —60° to 60°. The CP anten-
nas in [14]-[18] have a narrow bandwidth wide-angle axial
ratio. Furthermore, the 2-dimensional axial ratio region was
rarely studied in [15]-[19]. In particular, the antenna in [20]
is not suitable for low profile antenna applications. On the
other hand, the proposed antenna has wide axial ratio band-
width, and the antenna shows a 2-dimensional low axial ratio
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FIGURE 11. Measured CP radiation pattern: (a) ¢ = 60°, (b) ¢ = 160°.

performance. Also, the antenna has a low profile structure,
which is suitable for mobile communication.

IV. CONCLUSION

In this paper, a wideband circularly polarized antenna with a
reconfigurable 2-dimensional axial ratio has been proposed.
For mobile communication applications, a low-profile CP
antenna is necessary. However, conventional CP antennas
have a limited axial ratio bandwidth and scanning region. The
reason for the low axial ratio is the amplitude difference («)
and phase difference (A ®) of the TM10 and TMOI signals.
By controlling the amplitude and phase of the TM10 and
TMOLI signals, respectively, the axial ratio in a 2-dimensional
region in a wide frequency bandwidth can be controlled.
In the simulation, the axial ratio of the wideband CP antenna
with the axial ratio controller was below 3 dB in the
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2-dimensional region from —60° to 60° with a 20% fractional
frequency bandwidth. Also, the wideband CP antenna with an
axial ratio controller was implemented for verification. In the
experiment, the proposed antenna had an axial ratio under
3 dB in the 2-dimensional region from —60° to 60° in the
20% fractional frequency bandwidth.
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