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ABSTRACT Fog computing is a potential solution for heterogeneous resource-constrained mobile devices
to collaboratively operate deep learning-driven applications at the edge of the networks, instead of offloading
the computations of these applications to the powerful cloud servers thanks to the latency reduction,
decentralized structure, and privacy concerns. Compared to the mobile cloud computing concept where
computation-intensive deep learning operations are offloaded to the powerful cloud servers, making use
of the computing capabilities of resource-constrained devices can improve the delay performance and lessen
the need for powerful servers to execute such applications by considering a collaborative fog computing
scenario with deep neural network (DNN) partitioning. In this paper, we propose an energy-efficient fine-
grained DNN partitioning scheme for wireless collaborative fog computing systems. The proposed scheme
includes both layer-based partitioning where the DNN model is divided into layer by layer and horizontal
partitioning where the input data of each layer operation is partitioned among multiple devices to encourage
parallel computing. A convex optimization problem is formulated to minimize the energy consumption
of the collaborative part of the system by optimizing the communication and computation parameters as
well as the workload of each participating device and solved by using the primal-dual decomposition and
Lagrange duality theory. As can be observed in the simulation results, the proposed optimized scheme makes
a notable difference in the energy consumption compared to the non-optimized scenario where the workload
distribution is equal for all participating devices but the communication and computation parameters are still
optimized, so it is a quite challenging bound to be compared.

INDEX TERMS Convex optimization, deep convolutional neural network, energy efficiency, fog computing,
DNN partitioning, wireless collaborative computing.

I. INTRODUCTION
Deep learning (DL) is pervasively utilized in a vari-
ety of latency-constrained applications including virtual/
augmented reality, high-quality video processing, voice/face
recognition and autonomous driving due to provid-
ing inferences with high accuracy [1]–[3]. However,
its high accuracy comes together with the high com-
putational demands [4]. Most DL-driven applications
are computation-intensive because of the following two
reasons:

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco Rafael Marques Lima .

• The depth of the DL model (i.e. massive number of
layers),

• Big input data dimension.

Therefore, deploying these applications into a single
resource-constrained mobile node (MN) is infeasible since
it is not able to perform the whole DL operation by itself
due to its limited computing capability, battery level and
memory [5]–[7].

To fulfill the computational requirements of DL-driven
applications, the initial idea is to use the concept of
mobile cloud computing (MCC) [8]–[10], where the
computation-intensive DL operations are implemented in the
centralized powerful cloud servers [11]. In this approach,
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MNs are only utilized as data collectors and they do not have
any DL model implemented on them. However, MCC has
some disadvantages to be used for DL-driven applications
such as intolerable latency [11]–[14], backhaul network con-
gestion [13]–[15], too centralized structure and some privacy
concerns [15], [16]. An alternative solution to mitigate the
effect of the aforementioned problems is the mobile edge
computing (MEC) paradigm [17]–[24] in which the powerful
servers are placed at the edge of the networks in close
proximity toMNs [12], [13]. WithMEC, much lower latency,
reduced network congestion, less centralized structure, and
more privacy can all be achieved [3], [4]. MNs can partially
or fully offload DL operations to a MEC server close to them
so that they make use of the power of MEC servers while
saving their limited energy at the same time.

In the absence of powerful MEC servers nearby, a similar
concept can be considered, called fog computing [25], that
is a generalized form of MEC [26], in which lightweight
DL computations can be operated in not only powerful MEC
servers, but also the resource-constrained MNs, collabora-
tively. The formal definition of fog computing is introduced
by Vaquero and Rodero-Merino [27] as ‘a huge number of
heterogeneous ubiquitous and decentralized devices [that]
communicate and potentially cooperate among them and
with the network to perform storage and processing tasks
without the intervention of third parties’. As there are lots of
MNs connected to the networks like smartphones, wearable
devices, and smart vehicles, some of them surely stay idle for
a while [28] and their computing capabilities can be used by
partitioning DL operations among them and executing them
in parallel.

Some of the articles [4], [24], [29], [30] survey about
deploying deep learning architectures in wireless commu-
nication and mobile edge computing perspectives. In order
to distribute DL operations among multiple MNs, an idea
of deep neural network (DNN) partitioning can be consid-
ered [31]–[37]. Some of the studies [3], [35]–[38] suggest
layer-based DNN partitioning, where the DNN model is par-
titioned layer by layer and some of the layer computations
are operated in MNs and some of them in the cloud. The
layer-based DNN partitioning can solve the depth problem of
the DL-driven applications since the massive amount of lay-
ers in the DNNmodel are divided and some of the layer oper-
ations are offloaded to the cloud, which provides the mobile
devices to save a considerable amount of energy. However,
the system becomes quite cloud-dependent in this case and
there may be no powerful servers nearby to offload the oper-
ations given a limited latency constraint. Also, the layer-based
DNN partitioning still lacks a solution for the big input data
problem because it is not enough to partition the DNN model
only layer by layer due to the fact that a single MN is not
able to perform even a single layer operation. A solution
for this problem is horizontal DNN partitioning in addition
to layer-based DNN partitioning, meaning that the input
data of each layer can be also partitioned among multiple
MNs [39]–[42]. With this approach, all DL operations are

collaboratively executed in MNs in parallel without the need
for any external powerful server to offload the workload.
In this scenario, due to the heterogeneous computing capa-
bilities and different network conditions of MNs, distributing
the workload equally makes the system inefficient. There-
fore, the communication and computation parameters and
the workload of each MN need to be jointly optimized to
minimize the energy consumption of the collaborative part
of the system.

The article [38] proposes NeuroSurgeon that includes
layer-based DNN partitioning with a single cutting point,
meaning that DNN operations are executed in a single MN up
to a specific layer, the output of that specific layer is offloaded
to the cloud and the remaining layer operations are executed
in the cloud server. However, it is claimed in [35] that cutting
the model from a single cutting point is not the most efficient
way and it proposes JointDNN, which investigates the model
layer by layer, operating some of the layers in a single MN
and some of them in the cloud by having multiple cutting
points. The authors of [37] extend the scheme by adding
an edge server to the process and increasing the number of
participating devices and they propose DDNN, a distributed
DNN architecture that partitions the model among multiple
MNs, edge servers, and the cloud server. However, they all
make use of the cloud server power to offload part of DNN
operations, which makes the system too centralized. Also,
because a single MNmay not be able to operate a single layer
operation by itself, they still need a solution for the big input
data problem.

As the first collaborative computing scenario, Mao et al.
propose MoDNN [41] and MeDNN [42], which have a local
distributed mobile device computing system to minimize
the latency of the operations by cutting the 2D input data
into slices and sharing them among multiple mobile devices.
In MoDNN and MeDNN, each participating node sends the
output of each layer operation (i.e. intermediate data) to the
master node that hosts the DL-driven application and the
master node sends the input data of the next layer operation
to each node again, which introduces some communication
burden on the system. However, instead of that, after each
layer operation, each node can keep most of the output data
itself and send only the boundary row of its output data of
each layer operation to its neighboring nodes for next layer
operations so that the communication between the nodes is
reduced and the dependency of the overall system on the
master node is mitigated, meaning that the system becomes
more decentralized. Also, MoDNN and MeDNN only opti-
mize the workload distribution among MNs by fixing all the
other communication and computation parameters.

In order to obtain the most energy-efficient system,
the workload distribution, communication, and computa-
tion parameters need to be jointly optimized. In [6],
Zhao et al. introduce DeepThings, in which a Fused Tile
Partitioning (FTP) method is proposed. Unlike partition-
ing DNN model among multiple MNs only layer by layer,
FTP partitions it vertically in a grid fashion to reduce the
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memory footprint of MNs and makes the model slices inde-
pendently distributable computation tasks [24], [30]. How-
ever, DeepThings is still dependent on a centralized gateway
device to facilitate the operations between edge nodes.

Motivated by these ideas, we propose an energy-efficient
fine-grained DNN partitioning scheme for wireless collabo-
rative fog computing systems, considering both layer-based
and horizontal DNN partitioning. We use the convolutional
neural network (CNN) as the DNN model since it is the
most popular one in many deep learning-driven applications.
However, the system can be adapted to any DNN model
with minor modifications. In the proposed CNN model, each
layer operation is locally performed in a collaborative manner
by partitioning the workload of each single layer operation
among multiple MNs. Before the collaborative local compu-
tation, the MN that receives a 2D input data sample acts as a
master node, and the other participating MNs become slaves.
The master node horizontally cuts the 2D input data sample
into slices and it optimally distributes these slices among all
MNs including itself. This procedure is called the first round
distribution (FRD). After that, MNs perform their local com-
putations for each layer by using the assigned slices as inputs.
After each layer operation, MNs exchange the boundary rows
of the 2D output data with their neighboring MNs that are
responsible for the adjacent slices above and below for next
layer operations. The process continues until all collaborative
layer operations are finished. Our contributions in this paper
can be listed as follows:
• We propose a novel wireless collaborative distributed
fog computing scheme considering a fine-grained par-
titioning that includes both layer-based and horizontal
DNN partitioning for deep learning-driven applications.

• Because most of the output data of each layer operation
stay in the same node and is not sent to another node
throughout the whole DNN operation, the communica-
tion overhead between MNs after each layer operation
is significantly mitigated. Only a single row (boundary
row) of the output data after each layer operation needs
to be sent to the neighboring nodes, which provides
communication efficiency to the system. Also, not all
nodes communicate with each other during the opera-
tion, only neighboring nodes do it, which provides even
more communication efficiency.

• Instead of the pure workload distribution optimization
by fixing the other dynamic parameters in the system,
we jointly optimize the communication and computation
parameters and the workload distribution.

• The structure makes use of all the computing resources
of participating MNs without needing any powerful
server, which makes the system decentralized.

• The final problem is formulated as a convex optimiza-
tion problem where an analytical solution is obtained by
using primal-dual decomposition and Lagrange duality
theory, and the analytical results are shown to converge
to the ones obtained in CVX software of MATLAB [43].
The resulting problem is proposed to be solved at

two iterative stages by using primal-dual decomposition.
In the external stage, the workload assigned to each
MN, the time needed to operate for each layer operation,
and the communication parameters of the first round
distribution such as transmitted power of themaster node
and the time needed to transmit each slice are opti-
mized whereas in the internal stage, CPU frequencies of
MNs in the local computation for each layer, transmitted
power and the times needed to communicate between
the neighboringMNs to exchange boundary rows are the
optimizing parameters.

The comparison of similar studies with our scheme is
provided in Table 1 while the list of abbreviations used
throughout the paper can be found in Table 2.

TABLE 1. Comparison of the similar studies with our scheme.

TABLE 2. List of abbreviations.

Section II describes the CNN model considered in the
proposed scheme whereas section III introduces the system
model and the scenario. Section IV, V, and VI present the
energy consumptionmodel formulations for first round distri-
bution, collaborative local computation, and exchange com-
munication, respectively. Section VII shows the final problem
formulation of the overall scheme and section VIII includes
the solution of the final problem. Section IX demonstrates
the simulation results and interpretation of them. Lastly,
Section X discusses the results, the improvable points on the
proposed scheme, and possible future research ideas.

II. CNN MODEL
A typical 2D CNN model can be seen in Fig. 1 where
NLAY is the number of layers that are locally operated among
MNs collaboratively and NTOT is the total number of layers
in the entire CNN model. By using CNN properties, we can
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FIGURE 1. CNN model.

define the relationship between the input and output sizes of
a single layer as

oconvk,n =

⌊ iconvk,n − f
conv
n + 2 ZPn
sconvn

⌋
+ 1 (1)

and

opoolk,n =

⌊
oconvk,n − f

pool
n

spooln

⌋
+ 1 (2)

where {k, n} corresponds to the layer-pack n in MN k , iconvk,n
and oconvk,n are the input and output sizes of the convolutional

layer n, respectively, opoolk,n is the output size of the pooling

layer n, f convn and f pooln are the filter (kernel) sizes of the
convolutional layer n and the pooling layer n, respectively,
ZPn is the zero-padding setting parameter of the convolu-
tional layer n, sconvn and spooln are the stride setting parameters
of the convolutional layer n and the pooling layer n, respec-
tively. In this paper, for convolutional layers, we have 3 × 3
filters (f convn = 3), unity stride (sconvn = 1) and zero-padding
is applied (ZPn = (f convn − 1)/2) so that the input and output
sizes of a convolutional layer become equal. For pooling
layers, we have 2 × 2 filter size (f pooln = 2) and two strides
(spooln = 2) so that both the number of rows and number of
columns become half of their initial values while the total
dimension of the output data becomes a quarter of its initial
value. With these hyper-parameter assignments, (1) and (2)
can be modified as

oconvk,n = iconvk,n , opoolk,n =

⌊oconvk,n

2

⌋
=

⌊ iconvk,n

2

⌋
(3)

III. SYSTEM MODEL
We consider that there is a set of K active single antenna
MNs, indexed by k ∈ [K ] and an access point/a base station
(AP/BS) in the system, together with the cloud nearby. The
cloud is only needed for training of the CNN model. After
training, the system does not need any cloud server avail-
ability to facilitate the scenario. Each node is a wirelessly
connected device and all nodes have an identical CNNmodel.

The proposed scenario which can be seen in Fig. 2 works
as follows: (i) The CNN model is trained completely in the
cloud by offline data sets before the operation starts. We work
on already trained CNN models to only focus on the energy

FIGURE 2. Illustration of the system model.

consumption of the inference phase of the CNN model since
the training phase is operated only once at the beginningwhile
the inference phase is a continuous process and the training
is generally operated offline on powerful cloud servers [3].
Also, since we have a latency-constrained scenario, perform-
ing the training in a given limited time is not optimal since
it needs to be operated with full performance without any
time limitation to obtain maximum accuracy of the model.
Thus, we consider the inference phase rather than the training
phase in this paper. (ii) The trained model weights w are
offloaded to the nodes. (iii) When node k receives a 2D input
data sample d , having dy number of rows and dx number of
columns, it starts to act as a master node whereas the other
active nodes become slaves. Each node has a specific time
frame allocated to it to be themaster node of the system. Thus,
no collision exists in the system when there is more than one
node having a 2D input data sample to perform collaborative
DNN execution. (iv) The master node horizontally cuts the
2D input data sample into slices and optimally shares out
them among all participating nodes, including itself, by tak-
ing the computing capabilities and network conditions of all
nodes into account. This operation is called the first round
distribution (FRD). During FRD, the only parameters that the
master node needs to have are the computing capability of
each node and the channel gain between the master node and
the other nodes. These parameters do not change and they are
fixed during the deep learning operations, so this information
is given to the nodes once before the deep learning operations.
It is assumed that the placement of each node on the input
data is assigned by the master node before the operation
starts. Consequently, every node is aware of its adjacent
nodes throughout the operation. After FRD, the master node
sends the partial input data to each node with the additional
boundary row of its neighboring node as shown in Fig. 3.
Because the nodes have a single antenna, all of the data cannot
be sent simultaneously by the master node, so all input data
should be sent in a pre-determined time frame structure. For
the sake of tractability, we assume that the sending order
is pre-determined and the local computations start after all
nodes receive their partial input data for the synchroniza-
tion of the nodes for each layer operation. After a single
convolutional layer operation in each node, if all bits are
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FIGURE 3. An example scenario for the first layer computation with 3 nodes, showing the first round distribution, collaborative local computation
and the resulting intermediate output data (Zero padding activated).

max-pooled, the boundary rows of the output data are sent
to the neighboring nodes for next layer operations since each
node needs the boundary rows to operate next layer convo-
lution operations. If there remains a boundary row that max-
imum pooling operation cannot be done because of lack of
the other part of the output data, this row remains unchanged
without operating any maximum pooling operation. This is
the case between node 2 and node 3 in Fig. 3 where the
boundary rows of the output data in node 2 and node 3 should
be max-pooled but they both lack the partial bits to complete
the max-pooling operation. Except for the boundary rows,
there is no need to send the remaining non-boundary rows
since the next layer operations of the data are performed in the
same node. Sending only boundary row from the output data
significantly reduces the communication overhead between
the neighboring nodes.

During FRD, since the overall energy consumption of the
collaborative part is a function of the communication and
computation parameters of each participating node, the mas-
ter node considers them to minimize the overall energy con-
sumption of the collaborative part and distributes the rows of
the input data accordingly. Also, the intermediate boundary
rows without max-pooling need to be assigned one of the
neighboring nodes to be operated for the next layer opera-
tions. This is the case between node 2 and node 3 in Fig. 3 in
which the boundary rows without max-pooling in node 2 and
node 3 together constitute the input data of the next layer,
so the resulting row should be operated in either node 2 or
node 3. There is a communication-computation trade-off in
this point. If the undetermined row is operated in node 2
meaning that node 3 needs to send its boundary row without

max-pooling together with the next additional max-pooled
data to node 2, so it sacrifices from the communication while
gaining from the computation. In this paper, for the sake of
simplicity of the resulting optimization problem, it is assumed
that always upper neighboring node operates the undeter-
mined row for next layer operations. This assumption does
not substantially change the optimization problem since the
considered trade-off point consists of just one-row operation.
As can be understood from Fig. 3, this undetermined row is
assigned to node 2 which is the upper neighbor of node 3.

IV. ENERGY CONSUMPTION OF THE FIRST ROUND
DISTRIBUTION
Since all rows in the input data should be assigned to the
active nodes, the following equation is held

K∑
k=1

dyk,1 = dy (4)

where dyk,n is the number of rows from which node k is
responsible in layer n computations. Except itself, the master
node (shown as k̃) sends the input data slices toK−1 number
of slave nodes at the achievable rate

rFRDk = B ln(1+
pFRDk hFRDk

N0B
) (5)

where pFRDk is the RF transmit power of the master node k̃
while sending the input data slice to node k , hFRDk is the
channel gain between the master node k̃ and node k , B is the
communication bandwidth between the nodes and N0 is the
noise power. The energy consumption to transmit the input
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data slice to node k is

EFRD
k = tFRDk (pFRDk + Pck̃ ) (6)

where Pck is the constant energy consumption of the commu-
nication circuitry in node k and tFRDk is the time needed to
transmit the input data slice of node k . Because the transmis-
sion rate cannot be greater than the achievable rate and the
RF transmit power cannot exceed the maximum RF power
allowed for a node, we have

dFRDk ≤ tFRDk rFRDk (7)

and

pFRDk ≤ pmax
k̃ (8)

where pmax
k is the maximum RF transmit power of node k and

dFRDk is the number of bits sent to node k by the master node
k̃ during FRD and it is defined as

dFRDk =

{
dx(dyk,1 + 1) for top & bottom nodes
dx(dyk,1 + 2) for other nodes

= dx(dyk,1 + 1+ I ak,1I
b
k,1) (9)

where I {a,b}k,n are the binary indicators such that they are 1 if
node k has a neighbor above or below, respectively after layer
n operation and they are 0 otherwise. Thus, the constraint
in (7) becomes

dx(dyk,1 + 1+ I ak,1I
b
k,1) ≤ t

FRD
k rFRDk (10)

V. PER LAYER ENERGY CONSUMPTION OF LOCAL
COMPUTATION
After FRD, all participating nodes execute their layer
operations using their partial input data. Among each
layer-pack, convolutional layers dominate the overall energy
consumption for CNNs [41], [42], [44]. Also, although the
fully connected layers are the most memory-consuming lay-
ers, convolutional layers consume more energy than fully
connected layers [44]. Besides, since our CNN model has
a single fully connected layer and it is placed at the end of
the model, its input data dimension is so small. Therefore,
the proposed scheme focuses on the energy consumption of
convolutional layers.

The convolution operation in convolutional layers can be
decomposed into lots of multiply-accumulate (MAC) opera-
tions [44], [45]. MAC is defined as taking one element from
the filter and one from the shaded input map, i.e. the portion
of the 2D input data that the filter is hovering, multiplying
them, and accumulating to the previous sum. For example, for
each element-wise dot product of two 3 × 3 matrices, there
are 32 = 9 MAC operations.

In order to find the per layer energy consumption of the
local computation for a single node, we need to know how
many CPU cycles are needed to accomplish it. Thus, we cal-
culate the number of MACs needed for this computation
and multiply it with ck which is the number of CPU cycles
to perform a single MAC operation for node k . From the

properties of convolution operation, the number of MACs
NMAC
k,n to be performed by node k in layer n computations

can be found as

NMAC
k,n = (f convn )2dxnd

y
k,n = 9dxnd

y
k,n (11)

where dxn is the number of columns of the 2D input data at
the beginning of layer n computations and we have dxn =
bdx1 /2

n−1
c. The energy consumption of layer n computations

performed in node k under the assumption of low CPU volt-
age [46]–[48] is

ELOC
k,n =

κkc3k (N
MAC
k,n )3

(tLOCk,n )2
=

36κkc3k (d
x
n )

3(dyk,n)
3

(tLOCk,n )2
(12)

where κk is the effective capacitance coefficient depending on
the hardware architecture and tLOCk,n is the local computation
time for the layer-pack n in MN k . The number of CPU cycles
used in the local computation cannot exceed the CPU cycles
obtained by working at its maximum CPU frequency νmax

k
such that

ckNMAC
k,n = 9ckdxnd

y
k,n ≤ t

LOC
k,n νmax

k (13)

for ∀k ∈ [K ] and ∀n ∈ [NLAY].

VI. PER LAYER ENERGY CONSUMPTION OF EXCHANGE
COMMUNICATION
After convolutional layer operations, we have several scenar-
ios depending on the distribution of the input data (dyk,n’s) for
the example scenario in Fig. 3:
• If a node has a neighbor below:

– If the row number index of the boundary row ends
with an even number, max. pooled boundary row is
sent to the neighbor below (dxn /2 bits). This is the
case for node 1 in Fig. 3.

– If the row number index of the boundary row
ends with an odd number, the row that cannot be
max-pooled because of lack of the adjacent row
is sent without max-pooling to the neighbor below
(dxn bits). This is the case for node 2 in Fig. 3.

• If a node has a neighbor above:
– If the row number index of the boundary row starts

with an odd number, max. pooled boundary row is
sent to the neighbor above (dxn /2 bits). This is the
case for node 2 in Fig. 3.

– If the row number index of the boundary row
starts with an even number, the row that cannot be
max-pooled because of lack of the adjacent row and
the previous max-pooled row are sent together to
the neighbor above for next layer operations (3 dxn /2
bits). This is the case for node 3 in Fig. 3.

Thus, there is a relationship between dyk,n and d
y
k,1, depending

on the previous starting row number index in the overall input
data of a layer and the previous distributed number of rows
dyk,n−1 assigned to node k . However, because this relationship
cannot be analytically shown as a general expression, in aver-
age, it is assumed that dyk,n = dyk,1/2

n−1. Therefore, in the
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previous section, we rewrite (11), (12) and (13) as

NMAC
k,n =

9dxn
2n−1

dyk,1 (14)

ELOC
k,n =

36κkc3k (d
x
n )

3(dyk,1)
3

(2n−1)3(tLOCk,n )2
(15)

and
9ckdxn
2n−1

dyk,1 ≤ t
LOC
k,n νmax

k (16)

In addition, it can be seen from the scenario itemized previ-
ously that each node sends either dxn /2, d

x
n or 3 dxn /2 number

of bits to its neighbors after a single layer computation.
Therefore, in average, the number of bits that should be sent
to each neighbor after a single layer computation is assumed
to be as dxn bits.

After the local computation, each node exchanges the
boundary rows with its neighbors at the achievable rate

r
EXC{a,b}
k,n = B ln(1+

p
EXC{a,b}
k,n h

EXC{a,b}
k,n

N0B
) (17)

where {a, b} index can become either a for the exchange
communication expressions of neighbor above or b for the
exchange communication expressions of neighbor below.
Also, p

EXC{a,b}
k,n and h

EXC{a,b}
k,n are the RF transmit power of

node k and the channel gain while transmitting the boundary
row of its layer n output data to its neighbor above and below,
respectively. Per layer energy consumption of the exchange
communication is

E
EXC{a,b}
k,n = t

EXC{a,b}
k,n (p

EXC{a,b}
k,n + Pck ) (18)

where t
EXC{a,b}
k,n are the exchange time for node k to transmit

the boundary row to its neighbor above and below, respec-
tively. Also, since the number of bits sent during exchange
communication cannot exceed the number of bits that can be
sent with the achievable rate, we have

I {a,b}k,n dxn ≤ t
EXC{a,b}
k,n r

EXC{a,b}
k,n (19)

and each node has a maximum transmitted power constraint
such that

p
EXC{a,b}
k,n ≤ pmax

k (20)

Finally, we can write the energy consumption of the exchange
communication after layer n operations for node k as

EEXC
k,n = I ak,nE

EXCa
k,n + Ibk,nE

EXCb
k,n (21)

VII. PROBLEM FORMULATION
Because the participating nodes cannot start the next layer
operation without receiving the previous layer boundary rows
from their neighbors, for each layer, the total time tn spent
during local computation and exchange communication is
assumed to be the same for all nodes, optimized by the master
node and it is the upper bound of the following inequality:

tLOCk,n + I
a
k,nt

EXCa
k,n + Ibk,nt

EXCb
k,n ≤ tn (22)

Also, we have a latency requirement such that the whole
operation should be finished in less than τ seconds and we
can express it mathematically as

K∑
k=1
k 6=k̃

tFRDk +

NLAY∑
n=1

tn ≤ τ (23)

The final optimization problem is as follows:

min.
x1

K∑
k=1
k 6=k̃

EFRD
k +

K∑
k=1

NLAY∑
n=1

(ELOC
k,n + E

EXC
k,n )

s.t. (4), (8), (10), (16), (19), (20), (22), (23)

0 ≤ pFRDk , p
EXC{a,b}
k,n , 0 ≤ dyk,1 ≤ d

y

0 ≤ tLOCk,n , t
EXC{a,b}
k,n ≤ tn, 0 ≤ tn, tFRDk ≤ τ (24)

where x1 = {{tn}N
LAY

n=1 , {d
y
k,1}

K
k=1, {t

FRD
k , pFRDk }

K
k=1
k 6=k̃

,

{{p
EXC{a,b}
k,n , t

EXC{a,b}
k,n , tLOCk,n }

K
k=1}

NLAY

n=1 }.

VIII. PROBLEM SOLUTION
The final optimization problem in (24) is not convex because
of the communication energy expressions. Therefore, we can
convexify the optimization problem by introducing two new

parameters as EFRDRF
k = pFRDk tFRDk and E

EXCRF{a,b}
k,n =

t
EXC{a,b}
k,n p

EXC{a,b}
k,n where EFRDRF

k and E
EXCRF{a,b}
k,n are defined

as the RF energy consumed during the first round distribu-
tion and exchange communication, respectively. After these
assignments, we modify (5), (6), (8), (17), (18) and (20) as

rFRDk = B ln(1+
(EFRDRF

k /tFRDk )hFRDk

N0B
) (25)

EFRD
k = EFRDRF

k + tFRDk Pck̃ (26)

EFRDRF
k ≤ tFRDk pmax

k̃ (27)

r
EXC{a,b}
k,n = B ln(1+

(E
EXCRF{a,b}
k,n /t

EXC{a,b}
k,n )h

EXC{a,b}
k,n

N0B
) (28)

E
EXC{a,b}
k,n = E

EXCRF{a,b}
k,n + t

EXC{a,b}
k,n Pck (29)

and

E
EXCRF{a,b}
k,n ≤ t

EXC{a,b}
k,n pmax

k (30)

After these modifications, the optimization problem becomes
convex and is expressed as

min.
x2

K∑
k=1
k 6=k̃

EFRD
k +

K∑
k=1

NLAY∑
n=1

(ELOC
k,n + E

EXC
k,n )

s.t. (4), (10), (16), (19), (22), (23), (27), (30)

0 ≤ EFRDRF
k ,E

EXCRF{a,b}
k,n , 0 ≤ dyk,1 ≤ d

y

0 ≤ tLOCk,n , t
EXC{a,b}
k,n ≤ tn, 0 ≤ tn, tFRDk ≤ τ (31)
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where x2 = {{tn}N
LAY

n=1 , {d
y
k,1}

K
k=1, {t

FRD
k ,EFRDRF

k }
K
k=1
k 6=k̃

,

{{E
EXCRF{a,b}
k,n , t

EXC{a,b}
k,n , tLOCk,n }

K
k=1}

NLAY

n=1 }.
The problem can be easily solved via convex optimization

techniques, but in order to make it easier to solve the problem
and obtain some analytical insight for each optimizing param-
eter, we decompose the problem into two sub-problems with
hierarchical order in an iterative manner. The decomposition
type is the primal-dual decomposition consisting of an exter-
nal master primal problem operated in the master node and
an internal sub-problem operated in each slave node for each
layer operation separately. Solving part of the optimization
problem locally in the slave nodes makes the optimization
distributed and this is also one of the reasons that the decom-
position is preferred. The external problem optimizes the time
duration tn for each layer operation, the number of rows dyk,1
assigned to node k and the first round distribution commu-
nication parameters tFRDk and EFRDRF

k whereas the internal
one optimizes the parameters of the local computation and

exchange communication, i.e. tLOCk,n , t
EXC{a,b}
k,n and E

EXCRF{a,b}
k,n

given the parameter values tn and d
y
k,1. The internal optimiza-

tion problem is shown as

(EPL
k,n(tn, d

y
k,1))

∗
= min.

x3
ELOC
k,n + E

EXC
k,n

s.t. (16), (19), (22), (30)

0 ≤ E
EXCRF{a,b}
k,n

0 ≤ tLOCk,n , t
EXC{a,b}
k,n ≤ tn (32)

where x3 = {tLOCk,n , t
EXC{a,b}
k,n , p

EXC{a,b}
k,n } and (EPL

k,n(tn, d
y
k,1))

∗

is the optimal per layer energy consumption of the sum of
local computation and exchange communication in layer n
operations for node k given the time duration tn and the
distribution dyk,1. The external optimization problem can be
expressed as

min.
x4

K∑
k=1
k 6=k̃

EFRD
k +

K∑
k=1

NLAY∑
n=1

(EPL
k,n(tn, d

y
k,1))

∗

s.t. (4), (10), (23), (27)

0 ≤ EFRDRF
k

0 ≤ tn, tFRDk ≤ τ

0 ≤ dyk,1 ≤ d
y (33)

where x4 = {{tn}N
LAY

n=1 , {d
y
k,1}

K
k=1, {t

FRD
k ,EFRDRF

k }
K
k=1
k 6=k̃

}.

Inspired by [49], the solution of the primal-dual decompo-
sition of the convex optimization problem converges to the
solution of the overall problem with the iterative convergence
algorithm approach mentioned in Algorithm 1.

A. SOLUTION OF INTERNAL OPTIMIZATION PROBLEM
The detailed solution steps of the internal optimization prob-
lem is given in Appendix A. The optimal parameters of the

Algorithm 1 Iterative Convergence Algorithm to Solve the
Internal and External Optimization Problems

1: Initialize the parameters dyk,1 and tn.
2: Given the parameters dyk,1 and tn, solve the convex

internal optimization problem (32) for the parameters

tLOCk,n , t
EXC{a,b}
k,n ,E

EXCRF{a,b}
k,n .

3: By using (EPL
k,n(tn, d

y
k,1))

∗, solve the convex exter-
nal optimization problem (33) for the parameters
tn, d

y
k,1, t

FRD
k ,EFRDRF

k .
4: By using the parameters dyk,1 and tn found in item 3,

repeat the process from item 2 until convergence is
reached and the results do not change anymore.

internal optimization problem are found as

(tLOCk,n )∗ =



mk,n
νmax
k

βk,n ≥ 2κk (νmax
k )3

mk,n

(
2κk
βk,n

)1/3 2κk (mk,n)3

(tn)3

< βk,n<2κk (νmax
k )3

tn βk,n ≤
2κk (mk,n)3

(tn)3

(34)

(pEXCb
k,n )∗ =



0 µ
1©
k,n ≤

N0

hEXCb
k,n

B

(
µ
1©
k,n−

N0

hEXCb
k,n

)
N0

hEXCb
k,n

<µ
1©
k,n

<
N0

hEXCb
k,n

+
pmax
k

B

pmax
k

N0

hEXCb
k,n

+
pmax
k

B

≤ µ
1©
k,n

(35)

and

(tEXCb
k,n )∗=



tn µ
1©
k,n ≤

N0

hEXCb
k,n

e
dxn
Btn

dxn

B ln
(
h
EXCb
k,n
N0

µ
1©
k,n

) N0

hEXCb
k,n

e
dxn
Btn <µ

1©
k,n

<
N0

hEXCb
k,n

+
pmax
k

B
dxn

B ln
(
1+

h
EXCb
k,n
BN0

pmax
k

) N0

hEXCb
k,n

+
pmax
k

B

≤ µ
1©
k,n

(36)

where µ
1©
k,n and βk,n are the Lagrange multipliers asso-

ciated with (19) and (22), respectively and mk,n = 9
ckdxnd

y
k,1/2

n−1 is assigned to collect the parameters in a single
term.
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B. SOLUTION OF EXTERNAL OPTIMIZATION PROBLEM
The optimal parameters of the external optimization problem
can be obtained as

(tn)∗=



0 φ >

K∑
k=1

βk,n

(0, τ ) φ =

K∑
k=1

βk,n

τ φ <

K∑
k=1

βk,n

(37)

(dyk,1)
∗
=



0 ψk ≤ 0√√√√√√
ψk

3

(
NLAY∑
n=1

cons
1©
k,n

) 0<ψk

<3

NLAY∑
n=1

cons
1©
k,n

(dy)2

dy ψk ≥ 3

NLAY∑
n=1

cons
1©
k,n


(dy)2

(38)

(pFRDk )∗=



0 θk ≤
N0

hFRDk

B

(
θk −

N0

hFRDk

)
N0

hFRDk

< θk

<
N0

hFRDk

+
pmax
k̃

B

pmax
k̃

N0

hFRDk

+
pmax
k̃

B
≤ θk

(39)

and

(tFRDk )∗ =


0 θk < cons

3©
k

(0, τ ) θk = cons
3©
k

τ θk > cons
3©
k

(40)

where θk and φ are the Lagrange multipliers associated
with (10) and (23),

ψk =


λ−

NLAY∑
n=1

γ
1©
k,n cons

2©
k,n k = k̃

λ−

NLAY∑
n=1

γ
1©
k,n cons

2©
k,n − θkd

x k 6= k̃

(41)

cons
1©
k,n =

36κkc3k (d
x
n )

3

(2n−1)3((tLOCk,n )∗)2
(42)

cons
2©
k,n =

9 ckdxn
2n−1νmax

k
(43)

cons
3©
k =

Pc
k̃
+ φ − ξ

2©
k pmax

k̃rFRDk

(
(pFRDk )∗

)
−

hFRDk
N0

(pFRDk )∗

1+
hFRDk
BN0

(pFRDk )∗

 (44)

ξ
2©
k =


0 (pFRDk )∗ < pmax

k̃

θk
hFRDk

N0+
hFRDk
B pmax

k̃

−1 (pFRDk )∗=pmax
k̃

(45)

and γ
1©
k,n is the Lagrange multiplier associated with (16). The

proof of the solutions can be found in Appendix B.

IX. SIMULATION RESULTS
In this section, the performance of the optimal analytical
findings for the iterative two-stage primal-dual decomposed
problem are observed and it is proved that the performance
results of the decomposed approach converges to the results
thatMATLABCVXobtains by using the overall optimization
problem in (31). Also, the proposed algorithm is compared
with a scenario in which the distribution dyk,1 is not optimized
and shared out equally among the participating nodes, i.e.
dyk,1 = dy/K . By this way, this scenario does not optimize the
distribution dyk,1 but it can still optimize the communication
and computation parameters as well as the time tn allocated
for each layer operation. We show this scenario asNoOptDist
in the plots. Although this scenario does not optimize the
distribution, it still optimizes the communication and com-
putation parameters, which makes this bound still quite ideal
to be compared.

Inspired mainly by the articles [11], [18], [22], [47],
the parameters are selected as in Table 3. The minimized col-
laborative computing energy consumption EMAC per MAC
operation, including first round distribution, local computa-
tion, and exchange communication of all collaborative layer
operations (i.e. the solution of the external optimization prob-
lem (33) /

∑K
k=1

∑NLAY

n=1 NMAC
k,n ) is observed for three dif-

ferent scenarios shown as Opt − Decomp (found by using
analytical results obtained in Appendices), Opt − Overall
(found by solving the overall optimization problem without
decomposing it) and NoOptDist by varying different param-
eters in the system. The common result for all figures below
is that the optimal distribution of the input data among the
heterogeneous nodes makes a considerable improvement on
the energy consumption per MAC operation compared to the
scenario that the distribution is performed equally among the
nodes. Since there could be millions of MAC operations to
be performed in a typical CNN model, multiplying EMAC

values with the number of MAC operations in the entire
model makes even the tiny differences between the curves in
the figures quite important. Another finding is that the results
of the decomposed approach converge to the results found by
using the overall optimization problem without decomposing
it, which means we can analytically find the minimized total
energy consumption without using any toolbox and modify it
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TABLE 3. Selected parameters for the simulation results.

mathematically, depending on the energy and latency require-
ments of the application to be operated.

In Fig. 4, the optimal tn values allocated to each layer
operation are compared as a bar graph by changing the
total number of rows dy of a 2D input data sample. As the
layer-pack number increases, the optimization allocates less
time to complete the given layer-pack operations since the
data dimension at the back-end layers is so small compared to
the first layers of the model. Therefore, the time tn allocated
to each layer-pack operation exponentially decreases while
the data passes through the layers.

FIGURE 4. tn vs. dy for NLAY = 4, dx = 512 bits, K = 10 and τ = 0.5 s.

In Fig. 5, unlike the optimal tn values, the optimal distri-
bution dyk,1 for each node is investigated for some dy values.
Each color represents the assignment of a single node and
as can be seen, the optimal distribution does not converge
to the equal sharing scenario due to having heterogeneous
computing capabilities. The partial input data with a higher
number of rows is assigned to the node having higher com-
puting capability. The optimal distribution gives much more
efficiency to the system compared to the equal distribution
(NoOptDist scenario) as we observe in the next figures.
In Fig. 6, the maximum latency allowed for the whole oper-

ation is varied and the scenarios where dx = 256, 512 bits are
investigated. For dx = 512 bits, it can be seen that the energy
consumption EMAC of NoOptDist scenario is approximately
50% larger than that of the proposed optimal distribution for
small values of τ whereas these curves approach each other
towards the end of the plot as they both have sufficient latency
to achieve a very small energy consumption for large values

FIGURE 5. dy
k,1 vs. dy for NLAY = 4, dx = 512 bits, K = 10 and τ = 0.5 s.

FIGURE 6. EMAC vs. latency (τ ) for dy = 1024 bits, K = 20 and NLAY = 3.

of τ . For dx = 256 bits, the optimal distribution still makes
a difference on the energy consumption but not that much
compared to the case where dx = 512 bits.
In Fig. 7, we test the scheme with the different number of

columns of the input data and place two different scenarios
where K = 10 and K = 20. As the number of columns in the
input data increases, the difference between optimized and
non-optimized curves increases since the number of opera-
tions to be performed is larger and the optimal distribution
becomes crucial for large values of dx . Also, less energy
consumption can be obtained with more participating MNs
as compared between K = 10 and K = 20 curves in the
figure where the curve for K = 20 has almost three times
less energy consumption per MAC operation than the curve
forK = 10. As the number of participatingMNs is increased,
the energy consumption difference between optimized and
non-optimized cases decreases since the optimal distribution
approaches to the equal distribution for a massive number of
participating MNs.

In Fig. 8, the number of participating MNs K is changed to
analyze its effect on the energy consumption. As K increases,
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FIGURE 7. EMAC vs. dx for dy = 1024 bits, NLAY = 3 and τ = 0.5 s.

FIGURE 8. EMAC vs. K for dy = 1024 bits, NLAY = 3 and τ = 1 s.

the energy consumption EMAC massively decreases and
approaches very close to zero. The reason for it comes from
the issue that when there are more nodes in the system,
the effect of the less energy efficient nodes starts to disappear
in the overall system performance because these less energy
efficient nodes have less number of bits to perform with the
increasing number of nodes. Also, the effectiveness of adding
more nodes to the system decreases after some point in the
plots since the number of nodes is increased by 50% from
K = 4 to K = 6 while it is increased by 11% from K = 18
to K = 20. This is also one of the reasons that a massive
decrease occurs at the beginning of the curves.

In Fig. 9, we observe the effect of the number of rows dy

of the input data on the energy consumption for two different
scenarios where NLAY

= 2 and NLAY
= 4. The energy con-

sumption difference between optimized and non-optimized

FIGURE 9. EMAC vs. dy for dx = 512 bits, K = 10 and τ = 0.5 s.

scenario is evident, having almost 33%more efficient than the
non-optimized ones for dy = 1024 bits and NLAY

= 4. Also,
as expected, increasing the number of layersNLAY of the deep
learning model makes the collaborative part of the system
consume more energy but the overall energy consumption
decreases when the number of layers NLAY operated collab-
oratively increases as can be seen in the next figure (Fig. 10).

In Fig. 10, different than EMAC, a new performance
parameter Eoverall is investigated. It is defined as the energy
consumption of the overall system covering up the collabo-
rative operations of the front-end layers (NLAY) as well as
the back-end layers which are completely operated in the
master node (NTOT-NLAY number of layers). For this figure,
the CNN model has NTOT = 5 total number of layers and
three scenarios are compared where NLAY

= 3, NLAY
= 4

and NLAY
= 5. As can be seen from Fig. 10, if the collabora-

tive computation part is increased even one more layer for a
5-layer CNNmodel, a considerable amount of energy is saved
in MNs (approximately 23% reduction in energy consump-
tion between NLAY

= 3 and NLAY
= 4 for dy = 896 bits),

which shows the importance of the collaborative computation
for this type of DNN applications. Increasing the number
of layers that are collaboratively performed is more energy
efficient than performing them in a single master node itself.
If more layers are performed collaboratively, the master node
becomes responsible for less number of local computation
operations at the back-end layers so that it can easily deal
with the reduced number of bits assigned to them. There
is a trade-off at this point between the communication and
computation. It is better for the front-end layer computations
to be collaboratively performed in multiple nodes due to the
high input data dimensions, while it is more advantageous
to perform back-end layer computations at the master node
alone since the input data dimensions of the back-end layers
are so small and the cost of sending this data for collaborative
computation becomes more expensive than performing these
layer operations at the master node itself. Thus, the master
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FIGURE 10. Eoverall vs. dy for dx = 256 bits, K = 10, τ = 1 and NTOT = 5.

node sacrifices from its communication energy and saves
its computational energy at the front-end layer operations,
while it sacrifices from its computational energy and saves
its communication energy at the back-end layer operations.

X. DISCUSSION, CONCLUSION AND FUTURE WORK
In this paper, we propose a novel scheme proposing
a cloud-independent edge-based collaborative computing
structure that can work efficiently in the absence of powerful
MEC servers for deep learning-driven applications by consid-
ering both layer-based and horizontal DNN partitioning. The
optimization over the distribution of the input data, commu-
nication, and computation parameters makes a considerable
performance difference on the energy consumption of the
system. Although the results are satisfying, there are some
improvable points in this paper that we will work on as our
future work. First of all, the interference between the mobile
nodes in the communication model proposed in this paper is
neglected. As the active number of mobile nodes increases
considerably, the interference should be taken into account
at some point. We also assume that the channel gains are
known perfectly and the optimization is operated offline to
purely observe the effect of the algorithmwithout the channel
gain uncertainty, which is unrealistic for practical scenarios.
Also, optimizing the placement of the mobile nodes on the
input data, the time frame ordering during the first round
distribution, the undetermined row assignment mentioned in
Section III for next layer operations are some points that we
plan to work on as our future research.

APPENDIX A
SOLUTION OF INTERNAL OPTIMIZATION PROBLEM
According to Lagrange duality theory, we have the following
partial Lagrangian

L(xk,n, dyk,1, tn, βk,n)

=
36κkc3k (d

x
n )

3(dyk,1)
3

(2n−1)3(tLOCk,n )2

+ I ak,n(E
EXCRFa
k,n + tEXCa

k,n Pck )

+ Ibk,n(E
EXCRFb
k,n + tEXCb

k,n Pck )

+βk,n(tLOCk,n + I
a
k,nt

EXCa
k,n + Ibk,nt

EXCb
k,n − tn) (46)

where xk,n = {tLOCk,n , t
EXC{a,b}
k,n ,E

EXCRF{a,b}
k,n } and βk,n ≥ 0 is the

Lagrange multiplier associated with (22). The dual function
is defined as

g(dyk,1, tn, βk,n) = min.
xk,n

L(xk,n, dyk,1, tn, βk,n)

s.t. (16), (19), (30)

0 ≤ E
EXCRF{a,b}
k,n

0 ≤ tLOCk,n , t
EXC{a,b}
k,n ≤ tn (47)

where the problem can be decomposed into three sub-
problems. The first part is the local computation optimization
problem,

min.
tLOCk,n

36κkc3k (d
x
n )

3(dyk,1)
3

(2n−1)3(tLOCk,n )2
+ βk,ntLOCk,n

s.t.
9ckdxnd

y
k,1

2n−1νmax
k
≤ tLOCk,n ≤ tn (48)

The second one is the exchange communication with the
neighbor below (assuming that Ibk,n = 1 if there is any
neighbor below),

min.
t
EXCb
k,n ,E

EXCRFb
k,n

E
EXCRFb
k,n + tEXCb

k,n (Pck + βk,n)

s.t. (19), (30), 0 ≤ E
EXCRFb
k,n , 0 ≤ tEXCb

k,n ≤ tn (49)

Finally, the exchange communication problem with the
neighbor above can be solved just like (49).

A. LOCAL COMPUTATION SOLUTION OF PROBLEM (48)
The Lagrangian is

L 1©
k,n =

36κkc3k (d
x
n )

3(dyk,1)
3

(2n−1)3(tLOCk,n )2
+ βk,ntLOCk,n

+ γ
1©
k,n (

9ckdxnd
y
k,1

2n−1νmax
k
−tLOCk,n )+γ

2©
k,n

(
tLOCk,n −tn

)
(50)

where γ
1©
k,n , γ

2©
k,n ≥ 0 are the Lagrange multipliers and with

respect to the variable tLOCk,n , we have the KKT condition

∂L 1©
k,n

∂tLOCk,n

= −
2 36κkc3k (d

x
n )

3(dyk,1)
3

(2n−1)3(tLOCk,n )3
+ βk,n − γ

1©
k,n + γ

2©
k,n =0

(51)

where the complementary slackness conditions are

γ
1©
k,n (

9ckdxnd
y
k,1

2n−1νmax
k
− tLOCk,n ) = 0 (52)

γ
2©
k,n (t

LOC
k,n − tn) = 0 (53)
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We can find the optimal value of tLOCk,n as

• tLOCk,n =
9 ckdxn d

y
k,1

2n−1νmax
k

< tn ⇒ γ
1©
k,n > 0, γ

2©
k,n = 0:

node k works at its highest CPU frequency and we sub-

stitute tLOCk,n into (51)⇒ γ
1©
k,n = −2κk (ν

max
k )3+βk,n > 0

⇒ βk,n > 2κk (νmax
k )3.

•
9 ckdxn d

y
k,1

2n−1νmax
k

< tLOCk,n < tn ⇒ γ
1©
k,n = γ

2©
k,n = 0:

node k works not at its full CPU frequency. From (51),

tLOCk,n =
9 ckdxn d

y
k,1

2n−1
( 2κk
βk,n

)1/3 and we substitute tLOCk,n

into the inequality ⇒
2 36κkc3k (d

x
n )

3(dyk,1)
3

(2n−1)3(tn)3
< βk,n <

2κk (νmax
k )3.

• tLOCk,n = tn ⇒ γ
1©
k,n = 0, γ

2©
k,n > 0:

We substitute tLOCk,n into (51)⇒ γ
2©
k,n =

2 36κkc3k (d
x
n )

3(dyk,1)
3

(2n−1)3(tn)3
−

βk,n > 0⇒ βk,n <
2 36κkc3k (d

x
n )

3(dyk,1)
3

(2n−1)3(tn)3
.

Finally, we collect these results and obtain (34).

B. EXHANGE COMMUNICATION SOLUTION
OF PROBLEM (49)
The Lagrangian is

L 2©
k,n = E

EXCRFb
k,n + tEXCb

k,n

(
Pck + βk,n

)
+µ

1©
k,n(d

x
n − t

EXCb
k,n rEXCb

k,n )− µ
2©
k,nE

EXCRFb
k,n

+µ
3©
k,n(E

EXCRFb
k,n − tEXCb

k,n pmax
k )+ µ

4©
k,n(t

EXCb
k,n − tn)

(54)

whereµ
1©
k,n, µ

2©
k,n, µ

3©
k,n, µ

4©
k,n ≥ 0 are the Lagrangemultipliers

and we have the following KKT conditions

∂L 2©
k,n

∂E
EXCRFb
k,n

= 1−µ
2©
k,n+µ

3©
k,n − µ

1©
k,n

hEXCb
k,n

N0+
h
EXCb
k,n
B

E
EXCRFb
k,n

t
EXCb
k,n

=0

(55)

and

∂L 2©
k,n

∂tEXCb
k,n

= Pck + βk,n − µ
3©
k,np

max
k + µ

4©
k,n

−µ
1©
k,nr

EXCb
k,n + µ

1©
k,n

h
EXCb
k,n
N0

E
EXCRFb
k,n

t
EXCb
k,n

1+
h
EXCb
k,n
BN0

E
EXCRFb
k,n

t
EXCb
k,n

=0 (56)

where the complementary slackness conditions are

µ
1©
k,n(d

x
n − t

EXCb
k,n rEXCb

k,n ) = 0 (57)

µ
2©
k,nE

EXCRFb
k,n = 0 (58)

µ
3©
k,n(E

EXCRFb
k,n − tEXCb

k,n pmax
k ) = 0 (59)

µ
4©
k,n(t

EXCb
k,n − tn) = 0 (60)

We can find the optimal values of E
EXCRFb
k,n and tEXCb

k,n as

• E
EXCRFb
k,n = 0, 0 < tEXCb

k,n < tn ⇒ µ
2©
k,n > 0, µ

3©
k,n = 0

and µ
4©
k,n = 0:

By using (55), µ
2©
k,n = 1 − µ

1©
k,n

h
EXCb
k,n
N0

> 0 ⇒

µ
1©
k,n <

N0

h
EXCb
k,n

.

• 0 < E
EXCRFb
k,n < tEXCb

k,n pmax
k ⇒ µ

2©
k,n = µ

3©
k,n = 0:

From (55), µ
1©
k,n =

N0

h
EXCb
k,n

+
E
EXCRFb
k,n

Bt
EXCb
k,n

> 0 and we obtain

the following relation

E
EXCRFb
k,n

tEXCb
k,n

= B(µ
1©
k,n −

N0

hEXCb
k,n

) (61)

Also, because themultiplierµ
1©
k,n is greater than zero, i.e.

µ
1©
k,n > 0, the related constraint should be satisfied with

equality to obey the complementary slackness condition
in (57) so that the following equation occurs

dxn = tEXCb
k,n B ln(1+

hEXCb
k,n

BN0

E
EXCRFb
k,n

tEXCb
k,n

) (62)

which means that the exchange communication is per-
formed at the achievable information rate. By substitut-
ing (61) into (62), we can find an expression for tEXCb

k,n
as

tEXCb
k,n =

dxn

B ln(
h
EXCb
k,n
N0

µ
1©
k,n)

(63)

where because we also have the constraint tEXCb
k,n ≤ tn,

the multiplier µ
1©
k,n should satisfy

µ
1©
k,n ≥

N0

hEXCb
k,n

e
dxn
Btn (64)

In addition, from the definition 0 <
E
EXCRFb
k,n

t
EXCb
k,n

= B(µ
1©
k,n−

N0

h
EXCb
k,n

) < pmax
k , we have

N0

hEXCb
k,n

< µ
1©
k,n <

N0

hEXCb
k,n

+
pmax
k

B
(65)

• E
EXCRFb
k,n = tEXCb

k,n pmax
k ⇒ µ

2©
k,n = 0, µ

3©
k,n > 0:

From (55), we have

µ
3©
k,n = µ

1©
k,n

hEXCb
k,n

N0 +
h
EXCb
k,n
B pmax

k

− 1 > 0 (66)

where if µ
1©
k,n = 0, the multiplier µ

3©
k,n is equal to −1,

which is not possible. Therefore, the multiplier µ
1©
k,n
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should satisfy µ
1©
k,n > 0 and to obey the complemen-

tary slackness condition in (57), we have the following
equation

dxn = tEXCb
k,n B ln(1+

hEXCb
k,n

BN0
pmax
k ) (67)

and therefore, we have the following expression
for tEXCb

k,n

tEXCb
k,n =

dxn

B ln(1+
h
EXCb
k,n
BN0

pmax
k )

=
dxn

rEXCb
k,n

(
pmax
k

) (68)

Also, from (66),

µ
1©
k,n >

N0

hEXCb
k,n

+
pmax
k

B
(69)

Finally, the optimal values for the optimization parameters
can be found as (35) and (36).

APPENDIX B
SOLUTION OF EXTERNAL OPTIMIZATION PROBLEM
We have the following partial Lagrangian

L(yk,n, zk,n)

=

K∑
k=1
k 6=k̃

(EFRDRF
k + tFRDk Pck̃ )

+

K∑
k=1

NLAY∑
n=1

[cons
1©
k,n(d

y
k,1)

3
− βk,ntn + γ

1©
k,n cons

2©
k,nd

y
k,1]

+ λ(dy −
K∑
k=1

dyk,1)+ φ(
K∑
k=1
k 6=k̃

tFRDk +

NLAY∑
n=1

tn − τ )

+

K∑
k=1
k 6=k̃

θk [dx(d
y
k,1 + 1+ I ak,1I

b
k,1)− t

FRD
k rFRDk ] (70)

where yk,n = {EFRDRF
k , tFRDk , dyk,1, tn} and zk,n =

{βk,n, γ
1©
k,n , θk , λ, φ} and the constant terms in the Lagrangian

can be expressed as

cons
1©
k,n =

36κkc3k (d
x
n )

3

(2n−1)3((tLOCk,n )∗)2
, cons

2©
k,n =

9ckdxn
2n−1νmax

k
(71)

Also, φ, θk ≥ 0 and λ ∈ < are the Lagrange multipliers. The
dual function is given as

g(zk,n) = min.
yk,n

L(yk,n, zk,n)

s.t. 0 ≤ EFRDRF
k ≤ tFRDk pmax

k̃

0 ≤ tFRDk , tn ≤ τ

0 ≤ dyk,1 ≤ d
y (72)

where the problem can be decomposed into three sub-
problems. The first problem is

min.
tn

tn(φ −
K∑
k=1

βk,n)

s.t. 0 ≤ tn ≤ τ, (73)

the second problem is

min.
dyk,1

K∑
k=1

(dyk,1)
3
NLAY∑
n=1

cons
1©
k,n +

K∑
k=1

dyk,1

NLAY∑
n=1

γ
1©
k,n cons

2©
k,n

−

K∑
k=1

λ dyk,1 +
K∑
k=1
k 6=k̃

θkdxd
y
k,1

s.t. 0 ≤ dyk,1 ≤ d
y (74)

and the last problem is

min.
E
FRDRF
k ,tFRDk

EFRDRF
k + tFRDk (Pck̃ + φ)− θk t

FRD
k rFRDk

s.t. 0 ≤ EFRDRF
k ≤ tFRDk pmax

k̃ , 0 ≤ tFRDk ≤ τ (75)

A. SOLUTION OF PROBLEM (73)
The Lagrangian is

L 3©
n = tn(φ −

K∑
k=1

βk,n)+ ε
1©
n (tn − τ )− ε

2©
n tn (76)

where ε
1©
n , ε

2©
n ≥ 0 are the Lagrangemultipliers andwe have

the KKT conditions with respect to the variable tn as

∂L 3©
n

∂tn
= φ −

K∑
k=1

βk,n + ε
1©
n − ε

2©
n = 0 (77)

where the complementary slackness conditions are

ε
1©
n (tn − τ ) = 0 (78)

ε
2©
n tn = 0 (79)

We can easily find the optimal value of tn as in (37).

B. SOLUTION OF PROBLEM (74)
The problem (74) can be modified as

min.
dyk,1

(dyk,1)
3(
NLAY∑
n=1

cons
1©
k,n)− d

y
k,1ψk

s.t. 0 ≤ dyk,1 ≤ d
y (80)

where

ψk =


λ−

NLAY∑
n=1

γ
1©
k,n cons

2©
k,n k = k̃

λ−

NLAY∑
n=1

γ
1©
k,n cons

2©
k,n − θkd

x k 6= k̃

(81)
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The Lagrangian for (80) is

L 4©
k = (dyk,1)

3(
NLAY∑
n=1

cons
1©
k,n)− d

y
k,1ψk

+ δ
1©
k (dyk,1 − d

y)− δ
2©
k dyk,1 (82)

where δ
1©
k , δ

2©
k ≥ 0 are the Lagrangemultipliers andwe have

the KKT conditions with respect to the variable dyk,1

∂L 4©
k

∂dyk,1
= 3(

NLAY∑
n=1

cons
1©
k,n)(d

y
k,1)

2
− ψk + δ

1©
k − δ

2©
k = 0

(83)

where the complementary slackness conditions are

δ
1©
k (dyk,1 − d

y) = 0 (84)

δ
2©
k dyk,1 = 0 (85)

We can find the optimal value of dyk,1 as

• dyk,1 = 0⇒ δ
1©
k = 0, δ

2©
k > 0:

From (83), δ
2©
k = −ψk > 0⇒ ψk < 0

• 0 < dyk,1 < dy ⇒ δ
1©
k = δ

2©
k = 0:

From (83), dyk,1 =
√

ψk

3(
∑NLAY

n=1 cons
1©
k,n )

and we have

the following inequality by substituting dyk,1 expression:

0 < ψk < 3(
∑NLAY

n=1 cons
1©
k,n)(d

y)2

• dyk,1 = dy ⇒ δ
1©
k > 0, δ

2©
k = 0:

From (83), δ
1©
k = ψk − 3(

∑NLAY

n=1 cons
1©
k,n)(d

y)2 > 0⇒

ψk > 3(
∑NLAY

n=1 cons
1©
k,n)(d

y)2

We obtain the optimal (dyk,1)
∗ as in (38).

C. SOLUTION OF PROBLEM (75)
This problem is similar to the problem that we have in the
exchange communication in Appendix A-Bwith some excep-
tions. The Lagrangian is

L 5©
k =E

FRDRF
k +tFRDk (Pck̃+φ)−θk t

FRD
k rFRDk −ξ

1©
k EFRDRF

k

+ξ
2©
k (EFRDRF

k −tFRDk pmax
k̃ )−ξ

3©
k tFRDk +ξ

4©
k (tFRDk −τ )

(86)

where ξ
1©
k , ξ

2©
k , ξ

3©
k , ξ

4©
k ≥ 0 are the Lagrange multipliers

and we have the KKT conditions with respect to the variables
are

∂L 5©
k

∂EFRDRF
k

= 1− ξ
1©
k + ξ

2©
k − θk

hFRDk

N0 +
hFRDk
B

E
FRDRF
k
tFRDk

= 0

(87)

and

∂L 5©
k

∂tFRDk

= Pck̃ + φ − ξ
2©
k pmax

k̃ − ξ
3©
k + ξ

4©
k − θkr

FRD
k

+ θk

hFRDk
N0

E
FRDRF
k
tFRDk

1+
hFRDk
BN0

E
FRDRF
k
tFRDk

= 0 (88)

where the complementary slackness conditions are

ξ
1©
k EFRDRF

k = 0 (89)

ξ
2©
k (EFRDRF

k − tFRDk pmax
k̃ ) = 0 (90)

ξ
3©
k tFRDk = 0 (91)

ξ
4©
k (tFRDk − τ ) = 0 (92)

By following the same path with the exchange communi-
cation solution in Appendix A-B, we can find the optimal
value of (pFRDk )∗ = (EFRDRF

k )∗/(tFRDk )∗ as in (39) where by
using (88) and complementary slackness conditions, the opti-
mal value of (tFRDk )∗ can be found as in (40).
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