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ABSTRACT In order to overcome the extremely time-consuming drawback of deep learning (DL), broad
learning system (BLS) was proposed as an alternative method. This model is simple, fast, and easy to update.
To ensure the fitting and generalization ability of BLS, the hidden layer neurons are often set toomany, in fact,
a lot of neurons are not needed. Greedy BLS (GBLS) is proposed in this paper to deal with the redundancy of
the hidden layer in BLS from another perspective. Different from BLS, the structure of GBLS can be seen as
a combination of unsupervised multi-layer feature representation and supervised classification or regression.
It trains with a greedy learning scheme, performs principal component analysis (PCA) on the previous hidden
layer to form a set of compressed nodes, which are transformed into enhancement nodes and then activated
by nonlinear functions. The new hidden layer is composed of all newly generated compressed nodes and
enhancement nodes, and so on. The last hidden layer of the network contains the higher-order and abstract
essential features of the original data, which is connected to the output layer. Each time a new layer is added to
the model, and there is no need to retrain from the beginning, only the previous layer is trained. Experimental
results demonstrate that the proposed GBLS model outperforms BLS both in classification and regression.

INDEX TERMS Deep learning, broad learning system, principal component analysis, greedy learning.

I. INTRODUCTION
In recent years, neural networks (NNs) have beenwidely used
in a series of challenging fields such as image recognition [1],
computer vision [2], [3] and large-scale data processing [4],
[5]. Among them, deep learning (DL) has performed partic-
ularly well. However, due to the complex structure of deep
neural networks (DNNs), it is difficult to analyze them. So far,
the theory of DNNs is still scarce, and most NNs are used
as black boxes [6]. Although DNNs are so powerful in their
approximation and feature extraction capabilities, they are
limited by complexity of the structure and the large number
of hyperparameters. In order to effectively build a model,
it is necessary to continuously adjust the number of NN
layers and the number of nodes required for each layer. The
iterative method is used to determine the connection weights
between each layer, and the training process is extremely
time-consuming and computationally expensive when the
amount of data is huge. The learning efficiency and speed of
traditional deep structures are far lower than the requirements,
becoming an important bottleneck for many applications.
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To solve this problem, Chen proposed broad learning system
(BLS) [7] in 2017 and proved that it has universal approxima-
tion capabilities [8]. Some subsequent experimental results
also proved that BLS is easy to extend to other NNs. For
example, Chen et al. [9] applied broad learning algorithm
and incremental learning algorithm to the radial basis func-
tion (RBF) network [10] and hierarchical extreme learning
machines (H-ELM) [11]. BLS is a random vector single-layer
NN learning system that uses the random vector functional-
link NN (RVFLNN) [12]–[14] as its carrier and realizes the
horizontal expansion of the network through the increase of
neural nodes in the hidden layer. Unlike RVFLNN, which
directly brings the original data into the network, BLS first
maps the data to feature nodes, in which the input weight
matrix is not randomly generated, but uses the sparse autoen-
coder to obtain the optimal input weights. Compared with the
deep structure, BLS only contains one hidden layer, which
is composed of the feature layer and the enhancement layer.
Considering the high time cost of the classic error back prop-
agation (BP) algorithm [15] and the shortcomings of being
easily trapped in local minimums, the performance of the
network is often affected by the initialization area. Therefore,
the output weights of BLS are solved by ridge regression
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generalized inverse [16] by default, which is consistent with
the approach of RVFLNN. BLS has a simple structure, and
only the output weights need to be solved, which can achieve
satisfactory accuracy in a short training time. In addition, BLS
uses the rapid incremental learning algorithm proposed by
Chen et al. in 1999 [17] to solve the problems caused by
the increase in data volume and data dimensions. New inputs,
feature nodes, and enhancement nodes can be added accord-
ing to actual needs, so the network can be quickly remodeled
without a complete retraining process. For traditional NNs,
the structure of the network is fixed, and the parameters need
to be optimized to obtain better performance. On the contrary,
the parameters of BLS are randomly selected and fixed, and
hidden layer nodes are added through horizontal expansion to
improve the fitting ability of the model.

As soon as BLS was proposed, it has received exten-
sive attention from the academia, and many scholars have
conducted researches on it. In order to obtain acceptable
performance on more complex data sets, Liu et al. [18] used
the K-means clustering algorithm as an improved feature
extraction method to improve the fitting ability of the model.
Chen et al. [19] proposed a robust BLS based on regulariza-
tion to model uncertain data, and has better generalization
ability for data with noise and outliers. Xu et al. [20] added
recursive connections to the enhancement nodes to make the
network have the ability to remember historical informa-
tion, and proposed recurrent BLS for time series prediction.
Zhao et al. [21] extended the BLS based on the popular reg-
ularization framework and proposed a semi-supervised BLS,
which can use a large number of unlabeled samples and a
small number of labeled samples to achieve semi-supervised
classification. Until very recently, various BLS methods are
summarized by Chen et al. [22] from the aspects of algorithm,
theory, application and future research problems. In practical
application, in order to fully learn the information of input
data and ensure the function approximation and generaliza-
tion ability of the system, BLS often sets too many nodes
in its hidden layer, and partial nodes are actually unneces-
sary. The extra nodes increase the amount of computation,
which is time-consuming and occupies the storage space,
which is not conducive to the practical application of the
model. Our study breaks away from the inertial thinking of
reducing nodes, and finds another way to reduce redundant
information without reducing the number of output hidden
layer nodes. This paper studies how to express features to the
maximum, and proposes a structure that combines width and
depth. The model deeply extracts higher-order and abstract
essential features of the original data in a greedy, layer-by-
layer manner, and obtains a more compact and meaningful
feature representation under the same number of nodes. The
construction method proposed in this paper is as follows.
The first hidden layer of the network is generated just as the
standard BLS. In order to obtain a sparse representation of
the input data, sparse autoencoder is used to fine-tune the
initial weights to obtain optimal feature nodes, which are
transformed into enhancement nodes and then activated by

FIGURE 1. Structure of standard BLS.

nonlinear functions. The first hidden layer is composed of all
feature nodes and enhancement nodes. Taking a page from
CNN-BLS [23], Yang used PCA to reduce the dimensions
of the features resulting from convolution and max pool-
ing. In this paper, PCA is used as a mapping method to
extract the principal components of hidden layer, and they
are called compressed nodes. This approach removes some
redundant nodes that contribute little to the variance. In the
same way as RVFLNN and BLS, the compressed nodes are
then transformed into enhancement nodes. Considering the
training time and complexity of the model, the number of
enhancement nodes is set to the number of nodes deleted by
PCA, so that the number of nodes in each hidden layer of
GBLS is the same. The second hidden layer is composed of all
newly generated compressed nodes and enhancement nodes,
and so on. The last hidden layer is connected to the output
layer, and the output weights are also obtained by the ridge
regression algorithm. This paper refers to this kind of layer-
by-layer training scheme as greedy learning, and the proposed
method is named greedy BLS (GBLS).

The paper is organized as follows. In Section II, BLS is
briefly reviewed and the specific algorithm of PCA is also
shown here. Section III presents the structure and training
method of the proposed GBLS. In Section IV, we conduct
experiments on MNIST and 10 UCI data sets to verify the
proposed method and present the results and analysis. At last,
Section V draws the conclusion.

II. PRELIMINARY WORK
In this section we briefly introduce several basic concepts,
including standard BLS and the theory of principal compo-
nent analysis.

A. STANDARD BROAD LEARNING SYSTEM
BLS is a typical forward NN, and its structure draws on the
idea of RVFLNN. It has three layers: input layer, hidden layer,
and output layer. The structure of standard BLS is shown
in Figure 1, it can be quickly updated by expanding the width
of the hidden layer.

For supervised learning task, when given the training data
set {X ,Y}, BLS first maps the input to n sets of feature
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nodes through n feature mapping φ, which is the feature
mapping function. φi and φp can be different functions for
i 6= p. Without loss of generality, the subscripts of the ith are
omitted in this paper. The ith group of feature nodes can be
represented as

Ti = φ (XWei + βei) , i = 1, 2, · · · , n (1)

where X ∈ RN×R, Y ∈ RN×M , it means that the input data X
equips with N samples, each with R dimensions, andM is the
dimension of corresponding outputs. Weights Wei and bias
terms βei are randomly generated matrices with the proper
dimensions. BLS uses linear transformation by default and set
feature map φ(x) = x to reduce computational complexity.
Denote all the feature nodes as

T n ≡ [T1,T2, · · · ,Tn] (2)

In order to obtain more appropriate and sparse feature
nodes, BLS uses a sparse autoencoder to fine-tune the initial
random weight matrixWei, and then use T n to formm groups
of enhancement nodes and perform nonlinear transformations
on them. Suppose ε is a nonlinear activation function, and εj
and εq can be different functions for j 6= q. Without loss of
generality, the subscripts of the jth are omitted in this paper.
So, the jth group of enhancement nodes can be represented as

Hj = ε
(
T nWhj + βhj

)
, j = 1, 2, · · · ,m (3)

where Whj and βhj are randomly generated weights and bias
terms connecting the outputs of feature layer to enhance-
ment nodes. BLS uses ε=tanh(·) by default. Denote all the
enhancement nodes as

Hm
≡ [H1,H2, · · · ,Hm] (4)

Hence, the hidden layer of the broad model can be
expressed as

A = [T n|Hm] ∈ RN×L (5)

where L is the total number of nodes in the hidden layer.
The output matrix of BLS can be represented as

Y = AWm
n (6)

where Wm
n are the weights connecting the hidden layer and

the output layer, and it can be calculated rapidly by the ridge
regression approximation of pseudoinverseA+ using (7). This
is a classic convex optimization problem, also known as ridge
regression problem.

argmin
Wm
n

:
∥∥AWm

n − Y
∥∥2
2 +

λ

2

∥∥Wm
n

∥∥2
2 (7)

where Y is given output, and value λ is regularization coef-
ficient, which further restricts the sum of squared weights.
The addition of regular l2 norm regularization can effectively
suppress the overfitting of the network. The solution of the
optimal problem is formulated as

Wm
n =

(
ATA+ λI

)−1
ATY ∈ RL×M (8)

where I is identity matrix, AT is the transposed matrix of A.
If λ → ∞, the solution is strictly limited and tends to 0.
If λ = 0, the inverse problem degenerates into the least square
problem, and it is easy to derive the solution of the original
pseudo-inverse.

At last, we have

Wm
n = A+Y (9)

where

A+ = lim
λ→0

(
ATA+ λI

)−1
AT (10)

The above scheme is the default method of BLS to solve
the output weights. Especially for some ill-conditioned prob-
lems, it is helpful to improve generalization ability of the
system. This approach provides a unified solution for solving
optimal weights of regression and classification problems.

B. PRINCIPAL COMPONENT ANALYSIS
The goal of PCA is to map high-dimensional data to low-
dimensional data through a certain linear projection, and
expect to maximize variance of the data in the projected
dimension, so as to use fewer dimensions while retaining
more dimensions of original data. The solution process of
PCA is as follows.

1) Standardize the original data. This step can solve the
problem that generalization ability of the model is
reduced due to different dimensions between variables.
The Z-Score method is used to standardize the mean
and standard deviation of the original data, and conver-
sion function is shown in equation (11), the processed
data conforms to the standard normal distribution.
Then, we can calculate the covariance matrix between
the variables of the data.

x∗ =
x − x̄
σ

(11)

where x̄ and σ are the mean and standard deviation of
the original data, respectively.

2) Solve the eigenvalues and eigenvectors of the covari-
ance matrix. Assuming that the dimension of the origi-
nal data X is n, define the eigenvalues of the covariance
matrix as λi, i = 1, 2, . . . , n, arrange them from the
largest to the smallest, we get λ1 ≥ λ2 ≥ . . .≥ λn.
The corresponding eigenvectors are V1, V2, . . . , Vn.
According to the variance contribution rates, select first
k (k < n) principal components to obtain the conver-
sion matrix V =[V1, V2, . . . , Vk ]. So the output matrix
is Y=XV, which means each principal component is
a linear combination of the original variables. What’s
more, the variance of ith principal component Yi is
equal to ith eigenvalue of the covariance matrix.

3) Calculate the variance contribution rate. Extract the
first k principal components and the cumulative
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FIGURE 2. Structure of the proposed GBLS.

contribution rate is

p =

k∑
i=1
λi

n∑
i=1
λi

(12)

4) Select the number of principal components. Generally,
take the top k principal components whose cumulative
variance contribution rate is more than 95% to reason-
ably explain the original data. The variance of the first
principal component is the largest, and the subsequent
ones gradually decrease. The corresponding informa-
tion of the first k principal components contains most
of information of the original data.

PCA refers to the formation of new feature sets after
orthogonal transformation, then select more important parts
of the sub-feature sets to achieve dimensionality reduction.
This way is not to choose among the original features, so the
linear dimensionality reduction method of PCA retains fea-
tures of the original data to the greatest extent. Furthermore,
these new features are spatially orthogonal, which means that
they are uncorrelated.

III. PROPOSED ALGORITHM MODEL
Broadening and deepening are two ways to improve the gen-
eralization ability of NNs, and this study attempts to combine
the structure of width and depth to explore deep character-
istics of data and reduce the redundancy of the model. The

horizontal expansion in broad learning can directly change
the size of the hidden layer and extract more features of
the original data, while increasing the number of layers will
increase the degree of feature transformation.

The principle of GBLS is to build a layered model, extract
features from the data at the bottom and pass them layer by
layer to the upper layer in order to express the input data
hierarchically and extract essential features from the data
efficiently. Each time a new layer is added, there is no need
to train from the beginning, but to continue from the previous
layer. In addition, due to avoiding gradient descent, it has
extremely fast calculation speed. GBLS inherits characteris-
tics of rapidity of standard BLS, that is, in addition to the
output weights, all other weights and biases involved are
randomly generated, so GBLS can quickly complete tasks
such as classification and regression. The structure of the
proposed GBLS is shown in Figure 2.

The first hidden layer, which is the hidden layer of the
standard BLS, is expressed as

A0 = [T n|Hm] ∈ RN×L (13)

where generation methods of T n andHm have been described
in Section II.A and will not be repeated here.

The newly added hidden layer is represented by Au, where
u represents the number of newly added hidden layers, u = 1,
2, . . . , U . All new hidden layers are generated as follows.
Firstly, perform PCA on previous hidden layer Au−1 to

obtain its conversion matrix Uu−1 . Standardize the features

79310 VOLUME 9, 2021



W. Ding et al.: Greedy Broad Learning System

of the hidden layer A0 with equation (11) and its covariance
matrix can be expressed as

C = A0AT0 (14)

Calculate the eigenvalues λi of the covariance matrix C ,
i = 1, 2, . . . , n, sort them from largest to smallest, we have
λ1 ≥ λ2 ≥ . . .≥ λn, the corresponding eigenvectors are V1,
V2, . . . , Vn. Calculate the cumulative contribution rate p with
equation (12) to extract the first k principal components to
obtain the conversion matrix Uu−1

Uu−1 = [V1,V2, · · · ,Vk ] (15)

Then the compressed nodesCu in the latter hidden layer Au
is defined as

Cu = Au−1Uu−1 ∈ RN×K (16)

where K (K < L) is the number of compressed nodes.
Secondly, transform the compressed nodes into enhance-

ment nodes and activate them with a nonlinear function. For
the latter hidden layer Au, the new enhancement nodes are

Eu = ε (CuWu + βu) ∈ RN×(L−K ) (17)

where ε is nonlinear activation function, Wu and βu are ran-
domly generated. So we have the latter hidden layer

Au = [Cu|Eu] ∈ RN×L (18)

Consequently, the last hidden layer, which is output hidden
layer, that is

AU = [CU |EU ] ∈ RN×L (19)

Hence, we have the output of the model

Y = AUW (20)

whereW ∈ RL×M is connecting weight of the model and can
be calculated easily by ridge regression algorithm:

W =
(
ATUAU + λI

)−1
ATUY (21)

where I is identity matrix.
The training steps of the proposed GBLS are shown in

detail in algorithm 1. Take two-layer GBLS as an example,
the flow chart of the algorithm is illustrated in Figure 3. It is
worth noting that only the training set can be dimensionalized
and the current conversion matrix is saved for dimensionality
reduction of testing set, which is because the latter is unknow-
able to us until the model is generated, so we cannot use any
information about the testing set.

IV. CASES STUDY
In this section, experiments of classification and regression
are conducted to demonstrate the proposed model, and com-
parisons are presented between the mainstream algorithms
and the proposedmethodology. Table 1 gives a brief overview
of the main differences between the proposed GBLS and
BLS. We hope that these descriptions will give readers a
better understanding of the proposed GBLS, which may be
of some help in future research.

Algorithm 1Greedy Learning - Increment ofU hidden layers
Input: training samples X ;
Output:W
1: for i = 0; i ≤ n do
2: Random Wei, βei
3: Calculate Ti = φ (XWei + βei) , i = 1, 2, · · · , n
4: end
5: Set the feature group T n ≡ [T1,T2, · · · ,Tn]
6: for j = 1; j ≤ m do
7: Random Whj, βhj
8: Calculate Hj = ε

(
T nWhj + βhj

)
, j = 1, 2, · · · ,m

9: end
10: Set the enhancement group Hm

≡ [H1,H2, · · · ,Hm]
11: Set the first hidden layer A0 = [T n|Hm]
12: for u = 1; u ≤ U do
13: Calculate C = A0AT0
14: Calculate λi and Vi of C , i = 1, 2, · · · , n
15: Sort λi and its Vi from largest to the smallest
16: Calculate Uu−1 = [V1,V2, · · · ,Vk ]
17: Calculate Cu = Au−1Uu−1
18: Random Wu, βu
19: Calculate Eu = ε (CuWu + βu)

20: Calculate the uth hidden layer Au = [Cu|Eu]
21: end
22: Calculate W by Eq.(21)

FIGURE 3. Flow chart of the algorithm.

A. CLASSIFICATION
To verify the effectiveness of the proposed GBLS, classifica-
tion experiments are performed on the MNIST data [24], its
typical image is shown in Figure 4.

This dataset consists of black and white handwritten digital
images from 0 to 9, and the size of each digital image is
28 × 28. The training set has 60, 000 images and the test-
ing set has 10, 000 images. In addition, in order to prove
the efficiency, the proposed model is compared with some
mainstream methods.

For all the experiments, the structure of GBLS in the first
hidden layer consists of 10 × 10 feature nodes and 1×N
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TABLE 1. Brief descriptions of BLS and GBLS.

FIGURE 4. MNIST data set.

TABLE 2. Classification accuracies.

enhancement nodes, where N is the number of enhancement
nodes. What’s more, the last 5 groups are replicated exper-
iments in [7] and the corresponding classification results
of the original BLS are cited for fairness of comparison.
In GBLS, all weights and biases corresponding to enhance-
ment nodes are randomly generated, which are drawn from
standard uniform distributions on interval [-1,1]. The value of
regularization parameter λ in ridge regression algorithm is set
as 10−8. In this paper, our real goal is to remove the redundant
nodes in the hidden layer and retain more information of the
original data asmuch as possible. Dimensionality reduction is
only an incidental result. If a low contribution rate is set, large
numbers of nodes will be deleted, which may contain useful
information for the model, so the interval of variance contri-
bution rate is set to (0.99,1). The searching step is a user-set
parameter according to the actual problem. Eight groups of
different structures are selected, the optimal test accuracies
corresponding to different models under different structures
are shown in Table 2 and the best results corresponding to
each model are expressed in bold.

Results show that features of the original BLS in its hidden
layer contain a lot of redundancy, the proposed GBLS, as an

TABLE 3. Structure of best model.

improvement plan of the standard BLS, greatly exploits the
potential of the nodes. The upper limit of the layer num-
ber selected in this paper is three, for MNIST, three-layer
GBLS has almost approached the limit of the recognition
rate. Let F0,M0, Cu and Eu represent feature nodes, mapping
groups, compressed nodes and enhancement nodes respec-
tively, where u is the number of hidden layers. Table 3 shows
the structure corresponding to the optimal result 98.82% and
Table 4 presents the training times and results of this structure
for each greedy learning.

Under the same feature nodes, when only 9500 enhance-
ment nodes are used, GBLS has obtained better generaliza-
tion ability than standard BLS using 11000 enhancement
nodes. The training time used for the optimal result 98.82%
is 237.26s, compared with 59.87s for the best result 98.74%
of BLS, the GBLS model increases some acceptable training
time, which to a certain extent improves the performance of
the model while dealing with the structural redundancy.

In addition, we also compare GBLS with existing
mainstream methods, including BLS, deep Boltzmann
machines (DBM) [25], deep belief nets (DBN) [26],
stacked auto encoders (SAE) [27], another version of
stacked autoencoder (SDA) [28], multilayer perceptron-
based methods (MLP) [29], fuzzy restricted boltzmann
machine (FRBM) [30]. The classification results of above
comparative experiments are quoted from [7] and all these
experiments are tested using MATLAB software platform on
a laptop equipped with Intel-i7 2.4GHz CPU, 16GBmemory.
All classification accuracies are given in Table 5. It is worth
noting that GBLS and the duplicate experiment of BLS are
done on a computer equipped with Intel(R) Xeon(R) CPU
E5-2678 v3 @ 2.50GHz 2.50 GHz (2 processors), 32GB
memory, and these two experiments are indicated by a special
superscript ∗.
Except for BLS, all the other comparison methods men-

tioned above are deep structures, hyperparameters involved
are adjusted by BP algorithm, where the initial learning rate
is set to 0.1, the decay rate of each learning iteration is set
to 0.95, and the remaining more detailed parameters can
be verified in [11]. In BLS and GBLS, the hyperparameter
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TABLE 4. Snapshot results of the best structure.

TABLE 5. Accuracy corresponding to different methods.

corresponding to ridge regression is set to 10−8. The hyper-
bolic tangent function is chosen to activate the enhancement
nodes. Furthermore, except that the output weights are calcu-
lated by ridge regression, all other weights and biases used are
randomly generated, which are drawn from the standard uni-
form distributions on interval [-1,1]. In particular, the input
weights are first randomly generated in this way, then use the
advantages of the sparse encoder to fine-tune initial weights
to obtain better feature nodes.

As shown in Table 5, although 98.82% is not the best one,
in fact, in terms of network complexity and training time, the
performance of GBLS is much better than other networks.
Compared with the use of high-performance computers in
deep structures that take hours or even days to go through
hundreds of iterations, GBLS can be easily constructed in a
few minutes.

B. REGRESSION
In the following experiments, 10 real-world regression data
sets are chosen from the University of California, Irvine
(UCI) database [31] in the categories of small size, medium
size and large size. The details of these data sets are put up
in Table 6. We selected the optimal results for each data set
from 10 trials. All relevant parameters are provided in Table 7.

Table 8 gives the best results for different models. In addi-
tion, the optimal testing results for each dataset are indicated
in bold.

Typical models like SVM [32], LSSVM and ELM are
compared to GBLS. The corresponding parameters and
results of the three typical models and BLS can be checked
in [8]. For fair comparison, we also perform a grid search
from [1,10]×[1,30]×[1,200] to determine the numbers of

TABLE 6. Details of data sets.

feature nodes, mapping groups and enhancement nodes,
and the searching step is set to 1. Root mean square error
(RMSE) [33] is selected as the performance evaluation indice
to measure the prediction errors of different models.

RMSE =

√√√√ 1
N

N∑
i=1

(yi − y∗i )
2 (22)

where yi is the actual value, y∗i is the predicted value and N
is the number of samples.

Experiments on 10 function approximation data sets show
that BLS outperforms SVM, LSSVM and ELM in data pre-
diction. However, the fitting results of some data sets are not
satisfactory, after calculation, for housing, mortgage, cleve-
land and pyrim, the optimal testing results of GBLS are
5.33%, 6.98%, 11.51% and 34.08% higher than those of the
original BLS, and the improvement effect of the remaining
data sets is less than 5%.

On the one hand, although the improvement effects of
some data sets are not obvious, the fitting result of GBLS for
these data sets is already the best conclusion in the existing
literatures. On the other hand, as can be seen from Table 7,
the original hidden layer of BLS contains many redundant
nodes, which is better improved by the greedy learning pro-
posed in this paper and this effect is more obvious in the third
layer.

From the above experimental results, including the clas-
sification problem, it can be seen that the performance of
three-layer GBLS is better than that of two-layer GBLS,
except for the dataset of quake. The possible reason is that
the conversion matrix extracted by PCA is extracted from the
training set, and those features that contribute less to the vari-
ance may contain important information that may be useful
for the testing set.
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TABLE 7. Structures of different models.

TABLE 8. RMSE results on data sets.

V. CONCLUSION
The proposed GBLS in this paper uses a greedy layer-by-
layer scheme for training, constructs a structure that combines
width and depth, removes most of the redundancy and extract
deep features to supplement it, transforms low-level fea-
tures into higher-level abstract features, which significantly
improves the model’s feature expression ability and general-
ization performance. Since all weights and biases involved
are generated randomly, so the construction of the model
is extremely simple and fast. Actually, the establishment of
the system is based on the ideas of RVFLNN and BLS.
The RVFLNN proposed by Pao and Takefuji has confirmed
that weights from input layer to enhancement layer can be
randomly generated. The construction of BLS is based on
theory of RVFLNN,which once again verified the correctness
of this theory and laid a theoretical foundation for GBLS.
The performance on MNIST and 10 UCI regression data sets
confirms the effectiveness and efficiency of GBLS.

Taking into account the training speed and generalization
ability, the structure of GBLS, is significantly better than the
existing structure that simply increases the width or depth.
Although some training time is increased while enhancing
the fitting ability, it is insignificant compared with hardly
tolerable repeated parameter adjustment and lengthy training
process in deep learning. It is worth mentioning that each
hidden layer sets the same number of nodes, and the output
hidden layer of GBLS is obtained through greedy learning,
so almost all nodes are effective nodes. Therefore, the biggest
advantage of GBLS is that it makes the best use of computing
resources, rather than wasting them on plenty of redundant

nodes. It is foreseeable that this kind of greedy training
method could extend to the processing of hidden layers in
other neural networks, and this is also our next research work.
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