
Received April 22, 2021, accepted May 17, 2021, date of publication May 28, 2021, date of current version June 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3084807

Efficient Local Navigation Approach
for Autonomous Driving Vehicles
JOAQUÍN LÓPEZ 1, PABLO SÁNCHEZ-VILARIÑO 2, RAFAEL SANZ1, AND ENRIQUE PAZ1
1Department of Systems Engineering and Automation, University of Vigo, 36310 Vigo, Spain
2Imatia Innovation S.L., 15008 A Coruña, Spain

Corresponding author: Joaquín López (joaquin@uvigo.es)

This work was supported by the Spanish Ministerio de Economía y Competitividad / Fondo Europeo de Desenvolvimiento Regional
(MINECO/FEDER) through the Project SmartElderlyCar (CTAN) under Grant TRA2015-70501-C2-2-R.

ABSTRACT This paper presents an efficient and practical approach for a car navigation system (CVM-Car)
based on the velocity space optimization paradigm. The method calculates the velocity control commands
to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has to
follow a road path consisting of a sequence of lanelets. This approach is a lower-level reactive control that
combines the pure pursuit method to obtain a reference curvature and a reactive control algorithm that keeps
the vehicle in the center of the lane’ s free space while avoiding obstacles that can partially block it. CVM-Car
formulates local obstacle avoidance as a constrained optimization problem in the velocity space of the car.
In addition to the vehicle dynamics and obstacles constraints included by the curvature method, car-shape
and non-holonomic restrictions are considered in the CVM-Car velocity space. The method has been applied
to an autonomous vehicle prototype.

INDEX TERMS Autonomous vehicles (AVs), obstacle avoidance, reactive control, vehicle motion control.

I. INTRODUCTION
Academic and industrial research, into self-driving vehicles
has steadily increased over recent decades due to the tech-
nology’ s potential impact and social benefits. Reduced traf-
fic fatalities, shorter commute times, improved road safety,
increased comfort and efficiency, and greater mobility for
more people are just some of those benefits.

Autonomous vehicle control systems must be able to take
driving decisions based on their prior knowledge (road maps,
traffic rules, sensor models and vehicle dynamics) and obser-
vations of the particular traffic situation. Those observations
come from the perception system ([1]) that can include dif-
ferent on-board sensors, such as odometry, cameras, LIDARs,
GPS units and SONARs. At the same time, the decisions are
variables that control the vehicle’ s motion.

Most implementations of these navigation systems are
hierarchically broken down into at least three different com-
ponents ([2]): Route planning, behavioral decision making
and local navigation. Route planning computes the route on
the road map to reach the goal. The route can include diverse
scenarios such as different intersection types: yield, stop,

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

merge, crosswalk, etc. For each scenario, the vehicle might
encounter a variety of situations that must be detected by the
perception system: pedestrians on the crosswalk, cars in the
intersection, car approaching in the left lane, etc. Behavioral
decision-making combines that route with information pro-
vided by the perception system to figure out the situation in
the current scenario. According to the situation, a different
motion goal is sent to the local navigation module. Motion
goals typically take the form of discrete motion goals ([3])
such as driving along a road lane, stopping at a point before
the intersection or maneuvering to a specific point in an open
area.

In the solutions with a clear division between high-level
planning and lower-level control, a path planner calculates
the path according to the map while a local reactive nav-
igation system concentrating on very short-term reasoning
generates the next action for the vehicle ([4]; [5]). The route
obtained by the global planner works as a reference for the
local navigation system. Local navigation is performed in
the control space to dynamically generate feasible actions.
The research presented in this paper falls into this set of solu-
tions. One major limitation of these purely local approaches
is that the vehicle may get stuck in local minima. However,
an executive layer in our approach detects local minima and

79776 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9151-4346
https://orcid.org/0000-0002-0337-7407


J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

uses the route planner to find an alternative [6]. Another
drawback of these approaches is that they are unable to
perform complex multi-stage maneuvers, such as the ones
required in parking ([7]) but in our approach off-road and
unstructured parking lot scenarios are managed as a separate
case, as described in [8].

In this paper, we deal with the local navigation problem by
implementing a new method (CVM-Car) based on the pure
pursuit algorithm ([9]) and the Curvature Velocity Method
(CVM) ([4]). The system has been implemented within an
architecture that deals with the complex maneuvers and local
minima. The first step (based on pure pursuit) obtains the cur-
vature reference to follow the lane regardless of the obstacles.
The curvature reference is the goal reference for the second
step that handles obstacle avoidance while staying in the lane.
The idea of using a curvature method for a car-like vehicle
was also proposed in [10] using BCM instead of CVM. In that
case the BCM curvature method was directly applied to a
car-like vehicle resulting in a very restrictive method. In this
paper, a newmethod based on curvature velocity is developed
to take into account the shape and non-holonomic nature of a
car-like vehicle.

Therefore, the main contribution of this paper is a novel
local navigation algorithm for autonomous driving vehicles
that is very fast (execution times below 2.0 milliseconds) and
safe because of the curvature velocity restrictions. In addition,
themaximum speed is adapted to the curvature of the road and
the vehicle describes a smooth trajectory towards the center
of the lane. The method has been implemented within our
car navigation architecture and tested first in two different
simulators V-REP ([11]) and CARLA ([12]) and finally in an
autonomous vehicle prototype.

This paper is organized as follows. The next section
introduces works related to this research. Section III defines
the basics of the solution proposed for local navigation.
Sections IV and V include a detailed description of the obsta-
cle avoidance part of the algorithm. Tests to evaluate the
performance of this solution and their results are presented
in Section VI, which concludes the paper.

II. RELATED WORK
Local navigation involves reaching a motion goal safely,
avoiding all the obstacles that appear during navigation. The
motion goal is given in different ways according to the global
navigation framework. For example, it can consist of a set
of waypoints, a lane to follow, a point where the vehicle has
to stop once reached, or even a global path. The problem is
commonly solved using reactive algorithms, which at each
control step decide the desired motion towards the target
while accounting for the presence and expectedmotion of any
perceived obstacles.

The most basic local navigation algorithms are path-
tracking methods that do not avoid obstacles. These algo-
rithms use vehicle position and odometry to control vehicle
speed and steering to follow a specified path. A number of
these local navigation approaches such as Follow-the-carrots,

pure pursuit ([9]) and Follow-the-past have been described
in the literature. In [13] the vehicle velocity is set according
to the scenario and the steering is obtained as a function of
lateral offset and heading offset with respect to the trajectory.
These techniques have the advantages of needing, in general,
low computational requirements and providing good perfor-
mance, although they require obstacle-free trajectories.

Pure pursuit is probably the most common and one of the
most robust and reliable geometric path tracking methods
currently available. This approach and its adaptations have
been employed for explicit path tracking inmany vehicle nav-
igation applications, including some of the vehicles that par-
ticipated in competitions sponsored by the Defense Advanced
Research Projects Agency (DARPA) for autonomous vehi-
cles: the DARPA Grand Challenge and the DARPA Urban
challenge.

Recently, some approaches have presented the navigation
problem as finding the sequence of motions (trajectories) to
reach the goal ([2]). For example, in [3] the motion planner
tracks a path by generating a set of candidate trajectories
that follow the path to varying degrees and then selecting the
best trajectory from this set. The chosen trajectory is then
directly executed by the vehicle according to an evaluation
function. The trajectory in these cases is a set of feasible
actions between initial and desired vehicle states computed
using a predictive trajectory generator model [14]. In order
to ensure no collisions with obstacles, some kind of convo-
lution might need to be performed between the vehicle’ s
footprint and the local map for the different positions on the
trajectory ([8]).

Once an obstacle-free local trajectory is obtained, a track-
ing algorithm can coordinate the steering, engine and brakes
to follow the desired path ([15]). There are approaches that
propose enhancements to the path tracking accuracy, some
of which require a detailed system model such as those
based on PID controllers. For example, [16] uses general-
ized gain scheduling and [17] adds Speed-based Acceleration
Maps (SpAM) to the PID controller. Others, such as the Fuzzy
logic controllers ([18]; [19]), do not require a detailed model
even though they need a considerable number of vehicle tests
for parameter calibration. Additional methods include a pre-
dictive control framework model like the one in [20] and [21].

A slightly different scheme is presented in [22], which
uses state-space sampling-based trajectory planning to take
obstacles into account. As in [3], the algorithm generates
a set of candidate trajectories and selects one. The set of
smooth and kinematically feasible paths are generated by
using a model-based predictive path generation algorithm.
The best trajectory is selected on the basis of an objective
function that considers both safety and comfort performance.
A collision test is performed to trim the trajectories that hit
obstacles. To reduce computational complexity, the rectan-
gular shape of the vehicle is approximated as a set of circles
with the same radius that contains the vehicle. This avoids
computationally complex convolutions. Even so, an occu-
pancy grid map is used to represent the local environment

VOLUME 9, 2021 79777



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

perception information and the collision test has to be per-
formed on each point of the trajectory. An obstacle space-time
grid map was also used in [23] to define a velocity control
strategy for collision avoidance in autonomous agricultural
vehicles.

A hybrid method that independently handles the geometric
constraints (obstacles) on one layer and the kinematic and
nonholonomic constraints on another layer is shown in [24].
The method uses a search-based global path modification to
deal with the geometry constraints and a multi-stage state
sampling method to generate a kinematically feasible path.
However, the search, and therefore optimization, is performed
separately instead of by searching for an optimal trajectory
for all the restrictions combined.

Another approach to the local navigation problem, widely
used in the mobile robot field, is to use a local reac-
tive obstacle avoidance method to avoid unexpected static
and dynamic obstacles in a partially known environment.
The most well-known methods from the extensive literature
on local navigation approaches include Artificial Potential
Fields, the Vector Field Histogram, Dynamic Window, and
Curvature Velocity.

In the recent years, several solutions based on Model Pre-
dictive Controllers (MPC) have also been presented. Most
of them are only aimed at following the path [25] but lately
some of them include restrictions to avoid the obstacles
[26], [27]. The performance obtained by these methods is
very good but with high processing requirements since they
need to integrate the obstacles in the map, obtain the restric-
tions and then execute the optimization process several steps
ahead, up to the prediction horizon. Other solutions try
to avoid or mitigate collisions using predictive occupancy
maps [28] based on predictions about surrounding vehicles
but this also adds a major load to the system. The algorithm
presented here is able to deal with the raw readings and work
in real time on a low capacity CPU.

Some researchers have already used velocity space opti-
mization approaches for autonomous car-like local naviga-
tion. In [29] the Beam Curvature Method ([5]) was adapted
to the local car-navigation problem by adding the road-
side constraints. The motion planning method proposed for
unstructured road environments combines the LaneCurvature
method and the Beam Curvature method. Qijun and Xiuyan
([30]) proposed an improved BCM algorithm ([31]) for a
security patrol robot used to inspect abnormal situations.
The vehicle considers its kinematic and dynamic constraints.
In the algorithm, the data acquired by the three layer sensors
were mapped on a horizontal plane and then overlapping
simplified beams were constructed from the two dimensional
distribution of obstacles. However, all the velocity space opti-
mization approaches mentioned so far assume a holonomic,
cylinder-shaped vehicle or use the cylinder that includes the
vehicle to define the collision area with obstacles. Although
this is acceptable for a wide range of small differential
and synchro mobile robots, it cannot be applied to car-like
vehicles.

In this paper, we present a low-level reactive control
(CVM-Car) that combines a pure pursuit strategy to calculate
a reference and an extension of the CVM method that takes
into account the shape and non-holonomic nature of a car.
This approach allows the vehicle to stay centered in the
lane and able to avoid unknown obstacles that can partially
block the lane. The advantage with respect to previouslymen-
tioned approaches is that it includes the car-shape restrictions.
Compared to the methods that use sampling-based trajectory
planning, it is faster because it avoids the search and collision
detection for each trajectory.

III. CVM-CAR OVERVIEW
Figure 1 shows the different components of the CVM-Car
module. The inputs are the path (defined as a sequence of
lanelets), provided by a high-level planner, and the sensor
readings from the driver that controls a velodyne LIDAR
sensor.

FIGURE 1. CVM-car structure and interface with the car.

There are three main steps on the CVM-Car algorithm that
correspond to the three green boxes in figure 1:

• Process path. Receives the path as a sequence of
lanelets and produces the trajectory that the car should
follow along with a set of virtual obstacles on the sides
of the lane to keep the car inside the lane.

• Obtaining the curvature. This step uses the pure pur-
suit path-tracking algorithm to obtain the curvature ref-
erence to follow the path.

79778 VOLUME 9, 2021



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

• Obstacle avoidance. Based on the curvature velocity
methods, this step produces the velocity control com-
mands to follow the curvature goal provided by the
last step, while avoiding the obstacles detected by the
sensorial system and the virtual obstacles generated by
the process path step.

A. PROCESS PATH
The route comes from the high-level planner modules as a
sequence of lanelets. Each lanelet is defined by the borders,
called ways in [32]. Figure 2a shows one example of lanelets
in a roundabout intersection (red lines) defined by the yellow
dots and the car entering the roundabout. The planned path
is the sequence of lanes with a green line in the middle. The
green line is the trajectory obtained as a sequence of points
in the center of the lane. The white circles on top of the lane
borders are virtual obstacles. These virtual obstacles force the
reactive module to keep the car in the lane.

FIGURE 2. Car entering a roundabout. Obstacles, lanes, and curvature
reference.

Virtual obstacles are obtained by simulating the reading
of a laser range on a virtual wall located along the border
lines. It consists of a list of points located on the border lines.
We are currently working on a vision system to detect features
of the road such as lane border lines to correct possible
discrepancies with the map.

B. OBTAINING THE CURVATURE
This step is a basic implementation of the pure pursuit
path tracking algorithm ([9]). This algorithm calculates a
curvature that is used later by the obstacle avoidance step.
The objective is to determine the curvature that will drive
the vehicle to a chosen point on the path G(x, y) that is
one look-ahead distance L from the current vehicle position
(figure 2b).

As shown in [9], the curvature c can be obtained from the
equations:

r =
L2

2x
; c =

1
r
=

2x
L2

(1)

Implementation is also straightforward. The only param-
eter to select is the look-ahead value L. For short values,
the vehicle will tend to oscillate and for long distances,
the vehicle will cut the curves. In this case, the look-ahead
distance is selected according to the speed of the car. Values
range from 7 to 20 meters in a directly proportional way to
the speed of the car, which is in turn inversely proportional
to the curvature of the road. That is, the greater the curvature,
the shorter the selected look-ahead. We will see later that
the obstacle avoidance method will keep the vehicle from
cutting the curves, even when relatively long look-aheads are
selected.

C. OBSTACLE AVOIDANCE
The obstacle avoidance is based on similar principles devel-
oped by other curvature methods (such as CVM, BCM,
and dynamic window) that are widely used in the field of
autonomous mobile robots. However, some of the assump-
tions considered in most of these algorithms cannot be
applied to a car-like vehicle. In a similar way to the curvature
methods, CVM-Car formulates local obstacle avoidance as a
constrained optimization problem in the velocity space of the
vehicle. The algorithm uses the curvature calculated in the
last section and the sensor readings as inputs (Figure 1).
The curvature reference is the one the car should follow if
there are no obstacles in that direction. The sensor readings
are a list of distance points provided by different types of
sensors, such as sonar or LIDAR. The outputs of this algo-
rithm are the translational (tv) and rotational (rv) velocities
that are sent to the vehicle to obtain the steering-wheel speed
and throttle according to the Ackerman model.

The algorithm, like the curvature methods, assumes that
the vehicle travels along arcs of constant curvature (c) that
correspond to a point in the velocity space (tv, rv) during
each cycle time. While this is an approximation, those effects
can be negligible due to the effects of acceleration, especially

VOLUME 9, 2021 79779



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

for short cycle times (high frequency updating rates) where
conditions do not change suddenly. The problem is then
to find the optimal point in the area of the velocity space
restricted by the dynamics of the vehicle (dynamic window)
and the obstacles.

This algorithm includes two main steps that will be
described in detail in the next sections:
• Obtaining the constrained area in the velocity space.
This area is obtained from the dynamic restrictions of the
vehicle and the restrictions imposed by the obstacles.

• Obtaining the optimal point in the constrained area.
From the safe area obtained in the first step a point is
selected that maximizes some objective function.

IV. OBTAINING THE CONSTRAINED AREA IN THE
VELOCITY SPACE
As in CVM, we assume that the vehicle travels along arcs
of constant curvature (c) that correspond to a point in the
velocity space (rv, tv) during each cycle time. Therefore,
the problem is to find the optimal point in the area of the
velocity space restricted by the vehicle dynamics and the
obstacles.

A. VEHICLE DYNAMIC RESTRICTIONS
The dynamics of the vehicle impose maximum and mini-
mum rotational (rv) and translational (tv) velocities given the
current velocities (rvcurr , tvcurr ) and maximum accelerations
(ramax , tamax):

rvk − (ramax · Taccel) 6 rvk+1 6 rvk + (ramax · Taccel);

0 6 tvk+1 6 tvk 6 tvk + (tamax · Taccel) (2)

where Taccel is chosen according to the cycle time of the
algorithm execution. These velocities are also limited by the
kinematic restrictions as the maximum and minimal physical
vehicle velocities:

−rvmax 6 rvk+1 6 rvmax;

tvk+1 6 tvmax (3)

In addition to these limitations, the Ackerman configura-
tion will impose limits on the vehicle’ s steering. There is
a maximum steering that will be associated to a maximum
curvature cmaximum, which is usually the same steering to the
right (cmaximum) and left (−cmaximum). This constraint is added
to the kinematic and dynamic restrictions:

−cmaximum ≤
rvk+1
tvk+1

≤ cmaximum (4)

Regarding the maximum linear velocity, CVM-Car adds
some restrictions to those already imposed by CVM. The
maximum linear velocity is the minimum of all the maximum
velocities. There are two new restrictions on that value: the
first one comes from the behavior decision layer [33] and
the second one from the road curvature. The behavior deci-
sion layer sets a limit based on the traffic rules (traffic signs
and limits depending on the type of road) and the specific

situation (for example, if there is a pedestrian close to the
car). Another limit of the linear velocity is determined by the
curvature of the road. We use a look-ahead distance (35 m)
to obtain the road curvature and then calculate the maximum
safe speed. This is similar to what human drivers actually do:
they slow down when entering a curve, and then speed up
when leaving the curve.

The trajectory is a sequence of points pi(xi, yi). The first
step to calculate the curvature of the road is to obtain the angle
between the two vectors defined by three consecutive points
pi−1, pi and pi+1 (vector

−−−→pi−1pi and vector −−−→pipi+1):

αi = cos−1
(
−−−→pi−1pi ·

−−−→pipi+1∣∣−−−→pi−1pi
∣∣ ∣∣−−−→pipi+1

∣∣
)

(5)

In order to remove the noise produced by small errors in
the trajectory when the trajectory points are located too close
to each other, we use a moving average filter with a window
of 4 meters. Finally, the parameter that imposes a restriction
on the maximum speed due to the trajectory curvature is
obtained:

τi =
∑
|
−→pipj|<L

αj (6)

where L is the look-ahead distance to take into account the
curvature. In order to scale the parameter τi, a maximum
angle value is set (τMAX = 100 degrees) that corresponds to
the minimum value for the maximum speed (MIN_V ). The
maximum velocity is inversely proportional to this parameter:

range = MAX_V −MIN_V

max tvi = MAX_V −
range
MAX_A

min {τi,MAX_A} (7)

In our experiments, MAX_V was set to 50 km/h, which is
the maximum speed on the campus area were tests took place,
and MIN_V was set to 10 km/h. This is the maximum speed
reference, meaning that the obstacle avoidance algorithm
cannot drive faster but it might drive more slowly if needed
(road with obstacles).

Figure 3 shows the trajectory followed by the car in a
test carried out with our vehicle on the University of Alcalá
campus (Madrid, Spain). Figure 3a shows the whole trajec-
tory and figures 3b and 3c correspond to enlargements of
the roundabouts sections. Figure 4 illustrates the curvature
correction parameter τ and the maximum speed according to
the road curvature.

The curvature correction parameter has very high values
when entering a curve and almost zero when the vehicle faces
a straight lane. When the car starts, it faces a 90-degree curve
to the right so the correction parameter is quite high. As the
vehicle leaves the curve, there is a short straight lane and
the correction parameter drops but soon reaches a high value
again before the 90-degree intersection. Once on the main
road, there is a new straight lane and the vehicle can reach
maximum speed until it nears the roundabout. It can be seen
that about 30 meters before the roundabout, the maximum

79780 VOLUME 9, 2021



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

FIGURE 3. Car starts on the road at the bottom of figure, goes to the roundabout on the right, then to the roundabout on the left and
returns to the starting point.

FIGURE 4. Maximum speed correction parameter and maximum speed
for the trajectory in figure 3. The maximum speed decreases about 30 m.
before a curve and increases inmediatelly after the car finishes the curve.

speed is reduced (high τ ) and on leaving the roundabout the
maximum speed is increased again (low τ ).

B. OBSTACLE RESTRICTIONS
The obstacle avoidance method has to deal with obstacles of
different shapes. If the obstacles are included on themap, they
are modeled by a sequence of circles on the perimeter of the
obstacle. Obstacles detected by the sensors such as a laser

scanner aremodeled as circles centered on the points obtained
by the scanner.

Most of the curvature methods assume the vehicle is circle-
shaped. That assumption avoids the high CPU-consuming
convolution process to check if the vehicle describing a
curvature will collide with an obstacle. In our case, the car
shape cannot be considered as a circle because the use of a
circumference that includes the car would be too restrictive
and this could cause the car not to pass through narrow
openings. On the other hand, the use of the car width as the
diameter of the circle will cause a collision between the front
of the car and some obstacles when turning. In this section,
the Ackerman configuration and the rectangular shape of the
vehicle are taken into account to adapt the obstacle avoidance
method.

The constraints due to obstacles are also restricted areas
in the velocity space, but now the car shape has to be taken
into account to obtain the collision intervals. The main steps
of the algorithm to add obstacle restrictions are summa-
rized in figure 5. Each circle defines a curvature interval
(cmin, cmax) that is characterized by the distance to impact d
(figure 5a). Transforming this area from the x-y space to the
velocity space (translational tv vs rotational rv) results in an
area delimited by three straight lines (figure 5b). Following
these steps for all the obstacles, the non-collision area in the
velocity space is delimited to the intersection of the curva-
ture intervals and dynamic limitations rectangle (figure 5c).

VOLUME 9, 2021 79781



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

FIGURE 5. Restrictions imposed by the obstacles.

The following subsections describe the way to obtain the
curvature interval and the collision distance.

1) CURVATURE INTERVAL
The curvature interval in CVM is defined by the maxi-
mum curvature, minimum curvature and impact distance. The
CVM algorithm considers the vehicle to be circular. There-
fore, converting Cartesian to configuration space obstacles
merely involves increasing the radii of the obstacles by the
radii of the vehicle. The curvature interval associated to an
obstacle (obs) are the curvatures between cmin and cmax .
The changes needed on the curvature interval to take into

account the vehicle’ s shape are analyzed in this section.
Figure 6a shows that the minimum curvature for the collision
interval with the obstacle located in (xobs, yobs) is the same
as if the vehicle were a circle with diameter the width of
the car (B). The vehicle is going around the obstacle and the
front part is always further away from the obstacle. Therefore,
the minimum curvature can be calculated according to [4]:

cmin =
2 (robs + xobs)

x2obs + y
2
obs + r

2
o

(8)

The worst-case scenario for the maximum curvature is
depicted in figure 6b. The front of the vehicle sticks out
from the round shape calculated by CVM, and therefore the
curvature interval is wider because the maximum curvature
increases. Figure 6b shows that the part sticking out from
the circle shape is 1r . This situation is therefore the same
as increasing the obstacle radius by 1r .

From the triangle with vertices T11, T12 and T13, using
Pythagoras’ theorem:

(L − d1)2 + (r + robs)2 = (r + robs +1r)2 (9)

Likewise, applying Pythagoras’ theorem in the triangle
with vertices Po, T22 and T13:

y2obs + (r − xobs)
2
= (r + robs +1r)2 (10)

Finally, from both equations, the maximum curvature can
be obtained as:

cmax =
2 (ro + xobs)

x2obs + y
2
obs − r

2
o − (L − d1)

2 (11)

As figure 6b shows, the maximum curvature has been
increased with respect to the original CVM maximum cur-
vature to take the shape of the vehicle into account.

2) COLLISION DISTANCE
The collision distance is the distance dc(c, obs) that the point
vehicle would travel before hitting the first obstacle obs. As
in [4], the collision distance can be obtained from (figure 6d):

dc(c, obs) =

 yi c = 0∣∣∣∣1c
∣∣∣∣ (θ ) c 6= 0

(12)

where (xi, yi) is the point at which the vehicle traveling along
the curvature c intersects the obstacle and θ is calculated
using the following equation:

θ =


atan

 yi(
xi − 1

c

)
 c < 0

π − atan

 yi(
xi − 1

c

)
 c > 0

(13)

A similar situation is depicted in figure 6d, but in this
case with the vehicle shape represented as a rectangle. The
collision distance changes because the front of the vehicle
sticks out from the circle shape calculated by CVM. The
collision distance in CVM is discretized and used in the eval-
uation function to indicate a preference for traveling longer
distances along the given curvature without hitting obstacles.
Hence, the use of a conservative assumptionwill not entail the
possibility of missing a free opening as could happen with
the computation of curvature intervals. Therefore, to obtain
the collision distance we enlarge the obstacle radii by the
diagonal f (worst-case scenario) instead of by B/2, as shown
in figure 6d. By using this approach, we also make sure that
the selected speed will avoid a potential collision.

The collision distance is calculated using the following
equation:

dc(c, obs) =


yi −

(
L
2
−
B
2

)
c = 0∣∣∣∣1c

∣∣∣∣ (θno) c 6= 0
(14)

79782 VOLUME 9, 2021



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

FIGURE 6. Parameters that characterize a curvature interval.

where θno is obtained using (xnoi , ynoi ) instead of (xi, yi):

θno =


atan

 ynoi(
xnoi −

1
c

)
 c < 0

π − atan

 ynoi(
xnoi −

1
c

)
 c > 0

(15)

The point (xnoi , ynoi ) is the intersection of the curvature with
the obstacle with radii increased by 1r :

1r =

√√√√((L − di)2 + (B2
)2
)
−
B
2

(16)

V. OBTAINING THE OPTIMAL POINT IN THE
CONSTRAINED AREA
Once the area with permitted velocities is defined, the next
step is to choose a point in linear-angular velocity space
(tv, rv), which satisfies the constraints already defined and
maximizes an objective function f (tv, rv). This objective

function attempts to move the vehicle close to the reference
curvature (path) at the highest feasible speed, while traveling
with a longer collision-free space in its trajectory:

f (tv, rv) = α1speed(tv)+ α2dist(tv, rv)

+α3head(rv) (17)

The αi values indicate the relative weight to be given to
each i-term in the objective function. The speed term indicates
a preference for traveling faster:

speed(tv) =
tv

tvmax
(18)

The dist term indicates a preference for traveling longer
distances along the given curvature without hitting obstacles:

dist(tv, rv) =
Dlimit (tv, rv,OBS)

L
(19)

The head term is the goal heading error. The goal reference
in the curvature velocity methods is a direction. However,
in the CVM-Car algorithm the reference is already a curva-
ture. This is therefore a more direct method: the goal is a

VOLUME 9, 2021 79783



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

FIGURE 7. Interval curvatures created from the virtual obstacles on the lane border and a real obstacle on the right side of the lane.

curvature obtained by the pure pursuit step; the curvature to
be evaluated can be compared with the goal curvature; and
therefore the head term can be computed as:

head(tv, rv) =
0.001

max
(∣∣cg− rv

tv

∣∣ , 0.001) (20)

where cg is the reference curvature provided by the pure
pursuit method.

Figure 7 shows a straight-lane scenario with an obstacle
partially blocking the lane ahead on the right. Figure 7a
shows the virtual obstacles on the lane borders and the real
obstacles added from the sensor readings. Figure 7b shows
the curvature intervals in Cartesian space. On the other hand,
figure 7c shows the corresponding intervals in the velocity
space. The linear velocity (axis y) on each interval is limited
by the impact distance, with the exception of the front left
interval, which is limited by the maximum speed of the car
at that point. The selected velocity point that maximizes the
objective function is the red dot inside the red circle.

A. DRIVING CLOSE TO OBSTACLES
Some curvature methods, such as CVM, include a constraint
that makes themaximum allowable translational velocity pro-
portional to the distance between the selected curvature and
closest obstacle ([4]). That is, if the curvature selected for the
car to travel passes close to an obstacle, then the translational
velocity is limited. In other words, the speed must be reduced
when navigating close to an obstacle.

This restriction cannot be directly imposed in the
CVM-Car method. There are situations where the car has to
travel quite fast close to obstacles such as the road guardrails.

However, it is still better to drive as far from the obstacles
as possible. Therefore, instead of using the distance between
obstacles and curvature to define amaximum allowable trans-
lational velocity, we use the distance to the obstacles as
another weight term in the evaluation function to express the
preference to drive far from the obstacles if possible.

This term is only computed for the points belonging to
curvatures that are outside of the obstacle intervals because
the curvatures inside the obstacle intervals hit the obstacle
and the distance is zero.

Consequently, the fitness function has a new term:

f (tv, rv) = α1speed(tv)+ α2dist(tv, rv)

+α3head(rv)+ α4curvDist(tv, rv) (21)

where the new term curvDist is the minimum distance to the
obstacles of the curvature arc described by the car if traveling
with velocity (tv, rv).
For a velocity point (tv, rv), the distance to an obstacle

located at (xobs, yobs) with radius robs is (Figure 8a):

dobs = max{|

√√√√((xobs − 1
c

)2

+ y2obs

)
−

∣∣∣∣1c
∣∣∣∣ | − robs, 0}

(22)

where c is the curvature (c = rv/tv) and the inverse (1/c) is
the curvature radius. Finally, the curvDist term is obtained as:

curvDist(tv, rv) =
minobs∈ODc {dobs,MAX−D}

MAX−D
(23)

where ODc for curvature c with impact distance dobsc is
defined as the set of obstacles that have an impact distance

79784 VOLUME 9, 2021



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

dobsi at least MIN_D shorter than dobsc :

ODc = {obsi/dobsi < (dobsc −MIN_D)} (24)

Adding this new weight keeps the vehicle in the center of
the lane.

To find the point with maximum value for the objective
function in the restricted area, we proceed as in CVM. First,
it should be noted that each curvature interval provides a
pair of linear inequalities on the velocity space. The dynamic
constraints are also linear inequalities and the objective func-
tion is also linear and monotonically increasing in tv.1 Fur-
thermore, since the distance value is constant between pairs
of curvature lines, the optimal value of the function, for
each curvature interval, lies along the top boundary of the
constraint lines. Thus, we can proceed to obtain themaximum
in a very efficient way by choosing the overall best value of
the objective function for these points:

• For each curvature interval, each vertex along the upper
constraint boundary.

• For the goal curvature, the point that intersects the upper
constraint boundary.

For wide curvature intervals we also included some samples
along the upper constraint boundary in order to obtain a better
approximation to the maximum of the last term of the fitness
function.

B. ACCOUNTING FOR THE OBSERVATION-ACTION DELAY
The laser is providing distances to obstacles every 100 msec.
There is a delay between the time those distances are mea-
sured by the laser and the time reactions to those distances
are effective in the car. Experimental measurements in our
system show that this delay is about 220 msec. This situation
is similar to that experienced by humans. Some studies [34]
show that human reaction times, measured as the sum of per-
ception time and the time of leg transfer from the accelerator
pedal to the brake pedal, range between 0.5 and 1.2 seconds.
For the autonomous car, this means that the reactive control is
making decisions about distances that have been taken in the
past (sensing time delay ‘‘st’’) and the actions will start taking
effect in the future (action time delay ‘‘at’’). The distances
were taken when the car was in position Pt (xt , yt , θt ) and the
action is taken later when the car is in position Pt+1t (xt+1t ,
yt+1t , θt+1t ). However, the ideal situation would be to
make the decision about the state when the action is carried
out. The way we approach this is by first predicting the
car position Pt+1t (xt+1t , yt+1t , θt+1t ) after the total delay
(1t = at+ st), then obtaining the readings transformation to
the new coordinate system and finally applying the algorithm
described here.

1We are aware that the last term of the fitness function does not hold this.
However, the benefit obtained by the efficiency of the algorithm justifies this
approach.

FIGURE 8. a) Distance between arc curvature C and obstacle. b) Virtual
and real obstacles (blue) entering a curve and selected curvature (red).

To predict the increment of the car position we use a simple
vehicle model considering that 1t is a small period of time:

1θ =
vt
Lf
1ttan(δt ) ≈

vt
Lf
1tδt ;

1x =
vt
1θ

1t2
(
sin(

1θ

2
)
)2

≈ vt1t
1θ

2
;

1y =
vt
1θ

1t2sin(
1θ

2
)cos(

1θ

2
) ≈ vt1t (25)

where δt is the steering angle and Lf is the distance between
the car axes. The reading coordinates (xi, yi) are referred to
the car local coordinate system. That is, the car position Pt
when the readings were taken. To convert the original reading
coordinates (xi, yi) to the new ones (x ′i , y

′
i) referring to the car’s

new position Pt+1t , we use the following transformation:(
x ′i
y′i

)
=

(
cos(1θ ) −sin(1θ )
sin(1θ ) cos(1θ )

)
∗

(
xi −1x
yi −1y

)
(26)

VI. RESULTS AND CONCLUSION
The local navigation method described here has been imple-
mented in a ROS node according to the architecture presented
in [10]. The inputs and outputs of this node (figure 1) corre-
spond to ROS messages with other modules of the software
architecture. The system has been tested first in a V-REP sim-
ulator ([11]), then in the open-source car simulator CARLA
([12]) and also in an autonomous vehicle prototype.

VOLUME 9, 2021 79785



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

FIGURE 9. Car trajectory on town 1 CARLA map.

FIGURE 10. Figure(c) shows the translation and rotation speeds while the car follows the trajectory in figure 9. Figure (a) shows
the obstacles (blue circles) and best curvature (red) when the car is in a curved section of the path and figure (b) shows the
results of the evaluation function at the same instant.

A. CARLA SIMULATION TESTS
CARLA is an open-source simulator for autonomous driving
research with different urban environments and environmen-
tal conditions. First, a simple simulation scenario will illus-
trate the role of the different steps described in the previous
sections. The scenario is one of the urban environments pro-
videdwith CARLA (Town 1)with a total of 2.9 kmof drivable
roads.

Figure 9 shows the lanes (black), the waypoints (points
in blue) and two trajectories (dark blue and red) from two
different executions. The difference between the two tra-
jectories that overlap most of the way will be discussed
later.

Trajectories followed by the car are very smooth and very
similar to the ones driven by a human. Waypoints are always
in the center of the lane but, unlike previous approaches,
the vehicle is not strictly following the waypoints. Instead,
a perception system defines the borders of the lane and
CVM-Car keeps the car inside the lane; similar to what a
human driver would do. For example, when taking a curve,
human drivers tend to approach the inner side of a curve and,
when leaving the curve, tend to get closer to the outer side.
That is the behavior observed in figure 9.

A close analysis of the different fitness function weights
when the vehicle is entering a curve will illustrate the deci-
sions taken by CVM-Car. Figures 10 and 11 represent a

79786 VOLUME 9, 2021



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

FIGURE 11. Four components (weights) of the evaluation function for the same time instant represented
in figure 10a.

snapshot of different parameters when the vehicle is driving
in a curved section of the road. Figure 10c represents the
linear and angular velocities of the car for the trajectory
in figure 9. The four valleys correspond to the four curves
in the trajectory. The vertical dashed line represents the point
selected for the snapshot (iteration 287). Figure 10a shows the
obstacles (blue circles) and the curvature selected (red line).
Finally, figure 10b shows the value of the fitness function
for the range of curvatures evaluated. Curvatures close to the
curvature of the curve correspond to higher fitness value.

As discussed in section V, the fitness function includes
four different components. The weight of each component
on the final value for each curvature is shown in figure 11.
The distance component for this situation has the maximum
values for curvatures closer to the inner part of the curve
since they correspond to curvatures where the car can travel
a longer distance before hitting an obstacle (highest impact
distance). On the other hand, the obstacle distance weight
tries to keep the car from driving close to obstacles. The
highest fitness value (red dot) is a curvature that passes close
to the inner part of the curve but not too close. The heading
direction is defined by the next waypoint that, in this case,
is the one with curvature zero or close to zero. Therefore,
the heading weight decreases linearly as the curvature moves
away from this value according to section V. The progress
value is the ‘‘projection’’ of the distance for the next interval
in the goal direction.

The distance to obstacles is the component of the fit-
ness function that favors trajectories away from obstacles.

FIGURE 12. Car trajectories for two sections on town 1 CARLA map
(figure 9).

To illustrate the effect of the distance to obstacles weight,
figures 12a and 12b show in detail two sections of the tra-
jectory for two different executions (red and blue lines).

VOLUME 9, 2021 79787



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

In the first execution (trajectory 1 in red) the fitness function
does not include the distance to obstacles weight while in
the second one (trajectory 2 in dark blue) it is included. For
the straight parts of the trajectory when the car is in themiddle
of the lane there is not much difference because the direction
and progression weight keep the car in the middle. However,
while the car is heading towards the curve, the first trajec-
tory (red) heads to the inner part of the curve sooner. This
could be a problem because at the end it means a sharper turn
in the curve. When the vehicle is finishing the curve, a similar
effect is observed. The trajectories described with the weight
that discourages trajectories too close to obstacles (blue) are
smoother.

The speed limit in the area was close to 14m/sec, which is
the typical speed limit for an urban area. Figure 13 shows the
speed limits imposed by different factors in the first part of
the trajectory. Because of the relatively low speeds, the less
restrictive limit is the one imposed by the lateral acceleration
in order to avoid the vehicle sliding laterally or tipping over
on sharp turns. The impact distance is the more restrictive
component in the curves because it is the one that makes
sure that the vehicle, moving at the commanded curvature and
speed, is able to stop within the impact distance. The impact
distance labeled as ‘‘limit by CVM’’ includes the dynamic
restrictions mentioned in section IV-A.

FIGURE 13. Speed limits for the first part of trajectory in figure 9 on
town 1 CARLA map.

A more complex test scenario with other cars, pedestrians
and bicycles is shown in the attached video. It shows that
the car is forced to stop when an obstacle blocks the lane.
However, the car is able to avoid the obstacle if the lane is
only partially blocked.

B. ROAD TESTS
The car shown in figure 1 is based on an electric TABBY
EVO from the Open Motors Company (Tabby Evo, 2018).
The automation of the car was carried out by the University
of Alcalá ROBOSAFE team. The local navigation module
commands the translational velocity and the rotation angle
of the front wheels. It uses the odometry and the readings

from a LIDAR Velodyne (VLP-16) located on top of the
vehicle.

Several tests have been carried out with the TABBY
EVO car in two environments: the campus of the University
of Alcalá de Henares and the closed circuit used in the
IROS 2018 autonomous vehicle demonstration event, both in
Madrid.

Figure 3 shows the route followed by the car when traveling
between two roundabouts on the University of Alcala de
Henares campus. There are two lanes on each way and the
car has to switch lanes in one of the roundabouts. Figure 3a
shows the entire path and the two images at the bottom show
a zoomed view of the trajectory in the roundabouts. Since the
approach here is to drive within the lane instead of following
a specific trajectory, we can see that the behavior is quite
different from other approaches. The car uses the full width
of the lane. According to the fitness function, the car tends to
drive in the longest non-collision arcs, which is why it drives
in the inner part of the curves. On the straight part of the route,
the car tends to stay in the middle of the lane because of the
preference to drive away from the ‘‘virtual’’ obstacles on the
sides of the lane. Another advantage of this method is that by
changing the weights of the fitness function we can change
the driving behavior preferences.

We have also compared the CVM-Car control with a
human driving along the path in figure 3. The goal here is
not to carry out extensive research on human driving since
different people will take different decisions but to get an idea
of the different decisions that a human driver takes compared
to CVM-Car. For that purpose, we have chosen one of our
students. One person is in charge of making most of the tests
as he has more experience driving the car.

For the straight sections of the path both trajectories are
very similar but CVM-Car always keeps the car in the center
of the lane while the human driver allows for small devia-
tions. Figure 14a focuses on one of the two roundabouts to
appreciate the difference in both trajectories. As in simula-
tion, the final trajectory with CVM-Car is very smooth, even
smoother than the one described with the human driver. How-
ever, as the car enters the roundabout, CVM-Car approaches
the inner part of the curve too soon (right side of the lane).
However, the human driver does the opposite, first moving to
the outer side (left side of the lane) and then, when already
in the curve, moving to the inner part. Another interesting
issue that can be observed in figure 14a is that after the first
section of the roundabout, the CVM-Car trajectory is located
in the center of the lane instead of the inner part because of
the preference to drive in curvatures with the longest impact
distance. Finally, when leaving the roundabout, CVM-Car
approaches closer to the left side of the lane than the human
driver. The main reason for this behavior is again the pref-
erence for curvatures with the longest impact distance. As a
matter of fact, in this case this is the best technique for driving
on a curve.

In order to assess the ride comfort evaluation, we com-
pare the linear and angular velocity variation of our method

79788 VOLUME 9, 2021



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

FIGURE 14. Comparing two different driving systems: CVM-Car and manual driving.

with the ride of a human driver (ISO 2631-4). This comfort
evaluation method was also used by other researchers ([29]).
The velocities registered by the car for the trajectories in
figure 14a are shown in figure 14b. The maximum linear
speed is reached at the straight sections of the road and
it is slowed down when turning in the roundabouts. The
human driver finished the path about ten seconds before the
CVM-car basically because the person reduces the speed
closer to the curves than the autonomous case. Regarding
the linear velocity, even though there is not much differ-
ence between the two cases, the changes in linear speed
for the CVM-Car case are a little bit sharper. Comfort was
not an issue taken into account in the design of CVM-Car.
The method obtains the best curvature and then sets the
linear velocity as the maximum possible according to several

restrictions. We did not consider passenger comfort among
those restrictions because it did not seem to be an issue in the
tests carried out. However, this parameter can easily be added
in the future because the method to obtain the curvature and
the linear velocity limits will remain the same.

The angular velocity is close to zero in the straight sec-
tions of the road. However, a peak in angular speed in the
first seconds shows that CVM-Car corrects faster a small
deviation from the center of the road faster and then remains
with angular speed closer to zero than the human driver.

1) EFFICIENCY ANALYSIS
In order to evaluate the efficiency of the approach presented
in this paper, real-time data were recorded for both steps of

VOLUME 9, 2021 79789



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

FIGURE 15. Execution times and overhead while the vehicle navigates the
route described in figure 3.

the algorithm (pure pursuit and obstacle avoidance) while
the vehicle navigates the road between the two roundabouts
shown in figure 3. The average times for these executions
are displayed in figure 15a. It was executed on an Intel(R)
Core(TM) i7-6700 CPU at 3.40GHz.

The times obtained are grouped according to the number
of obstacles detected. The time presented is the average time
of all the cycles that manage the same number of obstacles.
Figure 15a shows that the time for the obtain curvature step is
independent of the obstacles, as expected, and is always less
than 0.03 msec. Execution times for the obstacle avoidance
step increase with the number of obstacles but it is always
below 1.4 msec.

The overhead execution time produced by all the changes
to adapt the method for a car-like vehicle is shown in
figure 15b. CVM_PP is a method that uses pure pursuit to get
the curvature reference and the original CVM. The overhead
is less than 0.4 milliseconds.

C. CONCLUSION
The navigation algorithm proposed in this paper is safe
because it avoids obstacles that do not block the lane. Further-
more, the algorithm keeps the vehicle within the lane. In addi-
tion, from the experiments presented here, local navigation is

very rapid because it is based on simple, fast algorithms (pure
pursuit and CVM). The obstacle avoidance step, unlike other
CVM based methods, takes the kinematic restrictions and
shape of a car-like vehicle into account. The final trajectory
is very smooth with no sharp turns and with very low angular
speeds.

It is important to notice that obstacles can have any shape.
They will be represented as a sequence of points in their
perimeter that usually correspond to sensor measurement
points. Those points are converted into overlapped circles
in the obstacle avoidance step of our method. That is the
reason why this method can deal directly with raw data
from 2D sensors or 3D sensors mapped in a 2D occupancy
space.

The approaches in the literature that solve the navigation
problem as a search problem ([3]), not only consider the
next action but also the sequence of actions in the near
future to follow the motion goal provided by the behavior
decision module. This forward planning can include com-
plex maneuvers and can obtain better solutions to decisions
than the one presented here. However, due to the continuous
nature of the decisions in each step (velocities in most cases),
it is impossible to take the unlimited number of solutions
into account and that is why some kind of discretization is
needed. Therefore, for these search-based solutions, a possi-
ble sequence of short-term actions will produce a candidate
trajectory. There are different ways to generate the candidate
trajectories such as using a model-predictive trajectory gener-
ator ([14]). All the candidate trajectories need to be evaluated
according to some parameters to select one of them. There
is a tradeoff between execution time and resolution on the
candidate trajectories. Using a coarse resolution will speed
up the process, but increases the chances of missing narrow
openings for example. Instead, CVM-Car is oriented to obtain
a fast reactive control solution.

On the other hand, it should be pointed out that the
CVM-Car method is not aimed at performing complex
multi-stage maneuvers. Such maneuvers, required for park-
ing and similar situations, are managed in our vehicle as
a separate case, as we mention earlier. For scenarios like
those, when the car runs at a low speed, a different and more
time-consuming approach is used ([8]). The fast CVM-Car
is only executed in the follow-lane behavior when the car has
to drive at higher velocities. In our approach, the executive
layer decides what kind of scenario the car is navigating and
selects the appropriate method to use. In this way, the time-
consuming convolution between the car footprint and the
complex maneuver is avoided at higher speeds.

The final trajectory followed by CVM-Car is similar to
the one traveled by a human because of its preference to
drive in the longest non-collision arcs (figure 14a). The main
difference is that CVM-Car only decides on the basis of the
instantaneous situation (current step) and humans can base
their decision on future steps. For example, before taking a
curve to the right, a race driver will get close to the left side
of the lane first to make it smoother. This behavior might be

79790 VOLUME 9, 2021



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

obtained by taking into account several predicted steps in the
future for the optimization step. However, that will entail a
huge increase in processing time [35].

Finally, any other method derived from CVM, such as
LCM or BCM, could have been used instead of CVM.
Dynamic obstacles can also be included using BCM-DO [36].
However, a thorough analysis should be carried out to evalu-
ate whether it is worth increasing the complexity of the solu-
tion due to the restricted nature of the traffic lane navigation
problem.

ACKNOWLEDGMENT
The authors thank all the people that have influenced this
work. In particular the researchers of the University of Alcalá
ROBOSAFE team that carry out the tests on the electric
TABBY EVO car.

REFERENCES
[1] G. Ros, A. Sappa, D. Ponsa, and A. M. Lopez, ‘‘Visual Slam for driverless

cars: A brief survey,’’ inProc. Intell. Vehicles Symp. (IV)Workshops, vol. 2,
2012, pp. 1–6.

[2] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, ‘‘A sur-
vey of motion planning and control techniques for self-driving urban
vehicles,’’ IEEE Trans. Intell. Vehicles, vol. 1, no. 1, pp. 33–55,
Mar. 2016.

[3] D. Ferguson, T. M. Howard, andM. Likhachev, ‘‘Motion planning in urban
environments: Part I,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Sep. 2008, pp. 1063–1069.

[4] R. Simmons, ‘‘The curvature-velocity method for local obstacle avoid-
ance,’’ in Proc. IEEE Int. Conf. Robot. Automat., vol. 4, Apr. 1996,
pp. 3375–3382.

[5] J. L. Fernández, R. Sanz, J. A. Benayas, and A. R. Diéguez, ‘‘Improv-
ing collision avoidance for mobile robots in partially known environ-
ments: The beam curvature method,’’ Robot. Auton. Syst., vol. 46, no. 4,
pp. 205–219, Apr. 2004.

[6] J. López, D. Pérez, and E. Zalama, ‘‘A framework for building mobile
single and multi-robot applications,’’ Robot. Auton. Syst., vol. 59, nos. 3–4,
pp. 151–162, Mar. 2011.

[7] D. Ferguson, T. M. Howard, andM. Likhachev, ‘‘Motion planning in urban
environments: Part II,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Sep. 2008, pp. 1070–1076.

[8] R. Samaniego, J. Lopez, and F. Vazquez, ‘‘Path planning for non-circular,
non-holonomic robots in highly cluttered environments,’’ Sensors, vol. 17,
no. 8, p. 1876, Aug. 2017.

[9] R. C. Coulter, ‘‘Implementation of the pure pursuit path tracking algo-
rithm,’’ Robot. Inst., Carnegie-Mellon Univ., Pittsburgh, PA, USA, Tech.
Rep. cMU-RI-TR-92-01, Jan. 1992.

[10] J. Lopez, C. Otero, R. Sanz, E. Paz, E. Molinos, and R. Barea, ‘‘A new
approach to local navigation for autonomous driving vehicles based on the
curvature velocity method,’’ in Proc. Int. Conf. Robot. Automat. (ICRA),
May 2019, pp. 1752–1757.

[11] C. Otero, R. Sanz, E. Paz, and E. A. J. López, ‘‘Simulación de vehículos
autónomos usando v-rep bajo ros,’’ in Proc. 38th Jornadas Automática,
2017, pp. 806–813.

[12] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, ‘‘CARLA:
An open urban driving simulator,’’ in Proc. Conf. Robot Learn. PMLR,
2017, pp. 1–16.

[13] P. Beeson, J. O’Quin, B. Gillan, T. Nimmagadda, M. Ristroph, D. Li,
and P. Stone, ‘‘Multiagent interactions in urban driving,’’ J. Phys. Agents,
vol. 2, no. 1, pp. 15–29, 2008.

[14] T. M. Howard and A. Kelly, ‘‘Optimal rough terrain trajectory generation
for wheeled mobile robots,’’ Int. J. Robot. Res., vol. 26, no. 2, pp. 141–166,
Feb. 2007.

[15] X. Ji, X. He, C. Lv, Y. Liu, and J. Wu, ‘‘Adaptive-neural-network-based
robust lateral motion control for autonomous vehicle at driving limits,’’
Control Eng. Pract., vol. 76, pp. 41–53, Jul. 2018.

[16] K. J. Hunt, T. A. Johansen, J. Kalkkuhl, H. Fritz, and T. Gottsche,
‘‘Speed control design for an experimental vehicle using a generalized gain
scheduling approach,’’ IEEE Trans. Control Syst. Technol., vol. 8, no. 3,
pp. 381–395, May 2000.

[17] D. Anderson, ‘‘Splined speed control using spam (speed-based accelera-
tion maps) for an autonomous ground vehicle,’’ Ph.D. dissertation, Dept.
Mech. Eng., Virginia Tech, Blacksburg, VA, USA, 2008.

[18] F. Cabello, A. Acuña, P. Vallejos, M. E. Orchard, and J. R. del Solar,
‘‘Design and validation of a fuzzy longitudinal controller based on a vehicle
dynamic simulator,’’ inProc. 9th IEEE Int. Conf. Control Automat. (ICCA),
Dec. 2011, pp. 997–1002.

[19] D. F. Llorca, V. Milanés, I. P. Alonso, M. Gavilán, I. G. Daza, J. Pérez,
and M. Á. Sotelo, ‘‘Autonomous pedestrian collision avoidance using a
fuzzy steering controller,’’ IEEE Trans. Intell. Transp. Syst., vol. 12, no. 2,
pp. 390–401, Jun. 2011.

[20] M. Zhu, H. Chen, and G. Xiong, ‘‘A model predictive speed tracking
control approach for autonomous ground vehicles,’’ Mech. Syst. Signal
Process., vol. 87, pp. 138–152, Mar. 2017.

[21] K. Zhang, J. Sprinkle, and R. G. Sanfelice, ‘‘Computationally aware con-
trol of autonomous vehicles: A hybrid model predictive control approach,’’
Auton. Robots, vol. 39, no. 4, pp. 503–517, Dec. 2015.

[22] X. Li, Z. Sun, D. Cao, D. Liu, andH. He, ‘‘Development of a new integrated
local trajectory planning and tracking control framework for autonomous
ground vehicles,’’ Mech. Syst. Signal Process., vol. 87, pp. 118–137,
Mar. 2017.

[23] J. Xue, C. Xia, and J. Zou, ‘‘A velocity control strategy for collision
avoidance of autonomous agricultural vehicles,’’ Auton. Robots, vol. 44,
no. 6, pp. 1047–1063, Jul. 2020.

[24] Y. Zhang, H. Chen, S. L. Waslander, J. Gong, G. Xiong, T. Yang,
and K. Liu, ‘‘Hybrid trajectory planning for autonomous driving in
highly constrained environments,’’ IEEE Access, vol. 6, pp. 32800–32819,
2018.

[25] S. Li, G. Wang, B. Zhang, Z. Yu, and G. Cui, ‘‘Vehicle stability control
based on model predictive control considering the changing trend of tire
force over the prediction horizon,’’ IEEE Access, vol. 7, pp. 6877–6888,
2019.

[26] J. Ji, A. Khajepour, W.W. Melek, and Y. Huang, ‘‘Path planning and track-
ing for vehicle collision avoidance based on model predictive control with
multiconstraints,’’ IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 952–964,
Feb. 2017.

[27] R. Quirynen, K. Berntorp, K. Kambam, and S. Di Cairano, ‘‘Integrated
obstacle detection and avoidance in motion planning and predictive control
of autonomous vehicles,’’ in Proc. Amer. Control Conf. (ACC), Jul. 2020,
pp. 1203–1208.

[28] K. Lee and D. Kum, ‘‘Collision avoidance/mitigation system: Motion
planning of autonomous vehicle via predictive occupancy map,’’ IEEE
Access, vol. 7, pp. 52846–52857, 2019.

[29] C. Shi, T. Liu, and Z. Tang, ‘‘Motion planning by adding geometric
constraint of roadside to beam curvature method,’’ in Proc. IEEE 3rd Int.
Conf. Cyber Technol. Automat., Control Intell. Syst. (CYBER), May 2013,
pp. 390–395.

[30] L. Qijun and Z. Xiuyan, ‘‘An improved BCM obstacle avoidance algorithm
for outdoor patrol robot,’’ in Proc. 6th Int. Conf. Measuring Technol.
Mechatronics Automat. (ICMTMA), Jan. 2014, pp. 87–90.

[31] J. Benayas, J. Fernández, R. Sanz, and A. Diéguez, ‘‘The beam-curvature
method: A new approach for improving local realtime obstacle avoidance,’’
IFAC Proc. Volumes, vol. 35, no. 1, pp. 409–414, 2002.

[32] P. Bender, J. Ziegler, and C. Stiller, ‘‘Lanelets: Efficient map representation
for autonomous driving,’’ in Proc. IEEE Intell. Vehicles Symp., Jun. 2014,
pp. 420–425.

[33] J. López, P. Sánchez-Vilariño, R. Sanz, and E. Paz, ‘‘Implementing
autonomous driving behaviors using a message driven Petri net frame-
work,’’ Sensors, vol. 20, no. 2, p. 449, Jan. 2020.

[34] P. Droździel, S. Tarkowski, I. Rybicka, and R. Wrona, ‘‘Drivers ’reaction
time research in the conditions in the real traffic,’’Open Eng., vol. 10, no. 1,
pp. 35–47, Jan. 2020.

[35] M. Brown, J. Funke, S. Erlien, and J. C. Gerdes, ‘‘Safe driving envelopes
for path tracking in autonomous vehicles,’’ Control Eng. Pract., vol. 61,
pp. 307–316, Apr. 2017.

[36] J. López, P. Sanchez-Vilariño, M. D. Cacho, and E. L. Guillén, ‘‘Obstacle
avoidance in dynamic environments based on velocity space optimiza-
tion,’’ Robot. Auton. Syst., vol. 131, Sep. 2020, Art. no. 103569.

VOLUME 9, 2021 79791



J. López et al.: Efficient Local Navigation Approach for Autonomous Driving Vehicles

JOAQUÍN LÓPEZ received the M.S. degree in
telecommunications engineering from the Univer-
sity of Vigo, Spain, in 1992, and the Ph.D. degree
from the Department of Systems Engineering and
Automation, University of Vigo, in 2000. He spent
two years as a Visiting Researcher (first year) and a
Special Faculty (NAS2-99020) with the Carnegie
Mellon University’s Robotics Institute. He is cur-
rently an Associate Professor with the School of
Industrial Engineering, University of Vigo. He is

the author or coauthor of over 45 articles in the fields of mobile robotics and
artificial intelligence. He has participated in several funded research projects
during the last 15 years.

PABLO SÁNCHEZ-VILARIÑO received the M.S.
degree in electrical engineering from the Univer-
sity of Vigo, in 2016. He is currently a Research
and Development Engineer with Imatia Innova-
tion, Vigo, Spain. His work focuses on mobile
robot control and mobile robots applications. He is
also working on several research and development
projects focusing on LiDAR technology and com-
puter vision.

RAFAEL SANZ received the degree in electri-
cal engineering from the University of Seville,
in 1981, and the Ph.D. degree in electrical engi-
neering from the University of Santiago de Com-
postela, in 1987. He was a Predoctoral Fellow at
L.A.A.S., Toulouse, France. Since 1981, he has
been with the Department SystemEngineering and
Automatic Control. He was a Visiting Professor
with the University of Western Sydney, Australia,
fromNovember 2013 toMay 2014. He is currently

a Full Professor in system engineering and automation with the University of
Vigo, Spain. He has involved in several research and development projects
related to the applications of AI in control and mobile robotics. He has
published more than 30 articles in robotics and automation. His primary
research interests are mobile robotics and intelligent autonomous systems.

ENRIQUE PAZ received the M.S. degree in elec-
trical engineering from the University of Vigo,
Spain, in 1991, and the Ph.D. degree from the
Department of Systems Engineering and Automa-
tion, University of Vigo, in 1997. He is currently an
Associate Professor with the School of Industrial
Engineering, University of Vigo. His work focuses
on mobile robots applications, computer vision,
and automation. He has participated in several
funded research projects during the last 20 years.

79792 VOLUME 9, 2021


