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ABSTRACT Though various applications such as flash memory, cache, storage systems, and even indexing
for enterprise big data search, adopt hot data identification schemes, relatively little research has been
expended into holistically examining alternative strategies. Rather, researchers tend to classify hot data
simplistically by considering one or more frequency metrics, thereby disregarding recency, which is also
an important consideration. In practice, different workloads mandate different treatment to achieve effective
hot data decisions. This paper proposes a dynamic hot data identification scheme that adopts a workload stack
distance approximation. Stack distance is a good recency measure, but it traditionally requires high computa-
tional complexity as well as additional space. Since stack distance calculation efficiency is a core component
for our dynamic feature design, this paper additionally proposes a stack distance approximation algorithm
that significantly reduces both computation and space requirements. To our knowledge, the proposed scheme
is the first dynamic hot data identification scheme which judiciously assigns more weight to either recency or
frequency based on workload characteristics. Our experiments with diverse realistic workloads demonstrate
that our stack distance approximation achieves excellent accuracy (up to a 0.1% error rate) and our dynamic

scheme improves performance by as much as 49.8%.

INDEX TERMS Bloom filter, flash memory, hot data, hot data identification, SSD, stack distance.

I. INTRODUCTION

Hot data identification is a paramount issue in numerous
fields [1]. For example, NAND (Not-AND) flash-based stor-
age devices, such as SSDs (Solid State Drives) and USB
(Universal Serial Bus) flash drives, must adopt an interme-
diate software layer named FTL (Flash Translation Layer) to
hide NAND flash memory idiosyncrasies. The FTL performs
logical-to-physical address mapping, executes a GC (Garbage
Collection) algorithm to reclaim invalid (i.e., garbage) pages,
performs WL (Wear Leveling) logic to improve flash mem-
ory’s life span [11]. Since both GC and WL algorithms utilize
a hot data identification mechanism, hot data identification
algorithm effectiveness and efficiency have a critical impact
on flash memory performance, as well as reliability (i.e., life
span) [3], [4].

Effective data placement is an additional, excellent appli-
cation for hot data identification. This applies to data
placement mechanisms between DRAM (Dynamic Ran-
dom Access Memory) and HDD (Hard Disk Drive) [5], [6],
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between SLC-MLC (Single Level Cell-Multi Level Cell),
and flash-PCM (Phase Change Memory) hybrid SSD
design [7], [8]. Intuitively, hot data should be placed on faster
media. Analogously, cold data should be placed on slower
media. Recently, big data applications have adopted hot
data identification for fast (i.e., real-time or near real-time)
enterprise searching through efficient indexing mechanisms.
Elasticsearch, the most popular enterprise search engine
worldwide, employs a hot-warm architecture that efficiently
accommodates huge indices [9], [10]. With Elasticsearch,
currently indexed indices with high search volumes are
placed on hot nodes. Similarly, indices with relatively lower
search volumes and no indexing are placed on warm nodes.
NoSQL (Not only Structured Query Language) database such
as Alibaba’s ApsaraDB is another big data application adopt-
ing the hot and cold data separation mechanism to reduce
storage costs [11], [12]. In addition to these applications, hot
data identification has significant potential to be utilized in
many other fields [13].

However, because most researchers only tend to consider
reference frequency, hot data identification is suboptimal.
Specifically, if any data have been accessed more than a
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predefined number of times (i.e., threshold), the logic sim-
plistically classifies the data as hot data, otherwise, it defaults
to cold data. This hot definition is simple but ambigu-
ous. Assume two LBAs (Logical Block Address) have an
equal access count within a given period. Further suppose:
(1) a previously heavily-accessed LBA is never subsequently
accessed and (2) another LBA is heavily accessed very
recently. If a hot data identifier makes a simplistic hot data
decision based on only frequency, the LBA accesses are indis-
tinguishable. Hence, hot data identification scheme should
consider both recency and frequency [1].

To resolve this problem, an MBF (Multiple Bloom
Filter-based hot data identification scheme) was proposed to
capture both recency and frequency [1]. BF (Bloom Filter)
is a bit array to space-efficiently check if an element has
previously appeared in a set at the cost of accuracy [13]. The
MBEF scheme adopted multiple BFs. MBF suggests consider-
ing recency equally with frequency for effective hot data iden-
tification. To capture both considerations, it proposed a new
data structure (i.e., multiple bloom filters) and recorded infor-
mation (i.e., LBA hash values) in the bloom filters, selecting
one bloom filter in a round robin manner for each request.
However, MBF does not effectively capture both recency and
frequency. In particular, it loses considerable recency infor-
mation due to its bloom filter selection mechanism. Specif-
ically, MBF works as follows: For each request, it chooses
one bloom filter from multiple ones sequentially (i.e., round
robin fashion) and stores an LBA’s hash value in it. After a
predefined time interval(for instance, every 4,096 requests),
it selects one bloom filter (i.e., named a reset bloom filter) and
erases (i.e., resets) all information in it. It then resumes the
recording process by sequentially selecting one bloom filter.
This mechanism effectively captures frequency information,
but not recency information, because the sequential bloom
filter section inevitably destroys recency information [21].
The reset BF retains the most recent access LBA information
since it was reset recently. Similarly, the right next BF (i.e.,
a next reset BF candidate) has stored all access LBA infor-
mation for the longest period. However, except the reset BF,
all other BFs retain diverse LBA information accessed from
the most recent period (i.e., predefined time interval) to the
oldest period according to the reset time of each BF because
of the aforementioned sequential BF selection mechanism.
This results in recency information destruction.

For the best recency capturing, MBF stays with one bloom
filter during one predefined period (i.e., does not go to the
next bloom filter for each request) and keeps recording all
accessed LBA information in it. After one period, similarly it
chooses the next bloom filter, and stores all referenced LBA
information in it during the next period. This revised mech-
anism resolves MBF’s recency capturing problem. However,
it has a pitfall: it almost totally loses frequency information
during that period (i.e., MBF with this mechanism captures
no frequency information). Trading effective recency capture
for frequency capture is an inborn MBF limitation. Thus,
frequency information capture unfortunately compromises
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recency information capture, together with correct frequency
capturing. This compromise is avoidable.

To resolve MBF’s inevitable compromise, this paper pro-
poses a dynamic hot data identification scheme that exploits
a stack distance approximation. To our knowledge, the pro-
posed scheme is the first dynamic hot data identification
scheme that adapts to workloads. This scheme consists of
three main components: a workload analyzer, a weight allo-
cator, and a hot/cold identifier.

Like MBF, our proposed hot/cold data identifier also
adopts multiple bloom filters and multiple hash functions.
Multiple bloom filters enable capturing both recency and fre-
quency. However, a principle difference between our dynamic
scheme and MBEF lies with a bloom filter selection mech-
anism. Our proposed scheme judiciously selects one of the
bloom filters, assisted by our workload analyzer and weight
allocator.

A workload analyzer provides a workload characteristics
analysis by adopting a stack distance. Here, the stack dis-
tance is the number of unique objects accessed between two
successive access to the same object. Recency is a more
valuable factor for temporally localized access patterns and
a stack distance is a good measure of this temporal locality.
Thus, a small average stack distance across all references
indicates a good temporal locality, which implies workloads
with a small stack distance should consider recency a more
important factor. We adopt a stack distance to instantiate
adaptiveness. The stack distance can be used as a measure
of recency, but requires both high computational complexity
and high space consumption. Therefore, an efficient stack
distance calculation is a key requirement for our dynamic
feature design. Thus, this paper also proposes a stack distance
approximation algorithm. It employs only one hash table that
maintains simple information for each bucket and produces
an approximated stack distance through very simple calcula-
tions. Consequently, the proposed approximation mechanism
significantly reduces both overheads and exhibits significant
performance with very high accuracy.

Based on the workload analysis, the weight allocator
dynamically assigns more weight to either recency or fre-
quency by intelligently (not merely sequentially) choosing
each bloom filter. Moreover, unlike MBF, our preliminary
work [1] which adopted a linearly-decreasing recency weight
function, we choose an exponentially decreasing weight func-
tion to assign more realistic recency weight to each bloom
filter. Consequently, this dynamic scheme more effectively
captures recency as well as frequency.

The main contributions of this paper are as follows:

e A dynamic hot data identification scheme: Our pro-
posed dynamic scheme effectively captures both recency and
frequency together by judiciously selecting a bloom filter.
When workloads have a small stack distance, it assigns more
weight to recency by choosing a reset bloom filter storing
the most recent data. Alternatively, when workloads exhibit
larger stack distance, it assigns more weight to frequency by
sequentially choosing the next bloom filter. Consequently,
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the proposed scheme resolves MBF’s inborn limitation
(subsection III-A).

e A stack distance approximation algorithm: An efficient
stack distance computation is a core concept in our dynamic
design. For compactness, it employs one hash table that
maintains simple information and performs very simple cal-
culations (i.e., simple two value averages) to reduce compu-
tational complexity dramatically (O(1)). Weight assignment
is fundamentally based on this approximation algorithm. Our
extensive evaluation demonstrates it exhibits excellent perfor-
mance with very high accuracy (subsection III-C).

e A novel baseline scheme: All existing baseline algo-
rithms [1], [14] are static schemes. Thus, we propose a
dynamic baseline scheme that employs a stack distance
as a dynamic feature and an exponentially decreasing
weight function to consider recency weight. Unlike existing
approaches that require high computational complexity due
to a batch decay mechanism, this baseline algorithm does not
incorporate a batch decay (subsection III-E).

The remainder of this paper is organized as follows.
Section II gives a bloom filter overview and two locality mea-
sures (i.e., stack distance and inter-reference distance). It also
describes existing hot data identification schemes. Section III
explains the design and operations of our proposed dynamic
hot identification scheme and a novel baseline scheme.
In addition, it describes our stack distance approximation
algorithm, one of our core features. Section IV provides
a variety of experimental results and analyses. Section V
concludes the discussion.

Il. BACKGROUND AND RELATED WORK
This section explains localities and discusses existing hot data
identification schemes.

A. TWO LOCALITY MEASURES

A stack distance is the depth from which a certain reference
must be extracted from a stack. It can be calculated from the
number of unique accesses between two accesses to the same
address in the trace. This has also been referred to as reuse
distance. Given ty, the stack distance definition, sd(t) = |z|,
where z is the set of distinct references between fy and ¢:

z={ref(Dlto <7 <1} ey

This stack distance concept was originally designed for
virtual page modeling [15], but has been primarily used to
model cache behavior because it presents temporal locality
information.

Similarly, inter-reference distance (IRD) is the number of
other references between two references to the same address
in the trace. That is, when at time #, ref (t) = x, find 7y which
is the last previous x reference time,

to =max {t|0 <t <t Aref(r) = ref(t)} 2)

The inter-reference distance definition: ird(t) = t — to
Both stack distance and inter-reference distance look similar.
However, while stack distance only counts distinct accesses,
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FIGURE 1. Two-level LRU list scheme. Performance heavily depends on
the LRU size.

inter-reference distance counts all references between two
identical address accesses.

We use a stack distance to implement our proposed
scheme’s dynamic feature. However, since the stack distance
involves very high complexity, we adopt the inter-reference
distance to design our approximation algorithm.

B. BLOOM FILTERS

A bloom filter (BF) is a bit vector designed to quickly check
if an element already exists in a set [13]. It is widely used to
test so-called membership. Space efficiency is an important
BF factor and it is achieved at the cost of accuracy. Therefore,
a BF produces the following probabilistic results; the element
either “‘(1) definitely does not exist” or *“(2) maybe exists”
in the set. When a given element is not in the set, a BF may
provide a wrong positive answer, called a false positive (i.e.,
BF says the element exists in the set, when it does not).
However, a basic BF never provides a false negative (i.e.,
when a BF indicates an element does not exist in the set,
it does not).

A BF has three design parameters: a BF size (M), the num-
ber of hash function (K) and the number of distinct ele-
ment (N). The BF is an array of M bits. All bits are initialized
to zero. In addition, it needs K independent hash functions
which produce K bit positions (i.e., K hash values) in the M
bits array set to 1.

A BF operates as follows: first, it gets the K bit positions
by feeding a given element to all K hash functions. Second,
it goes to each bit position and checks the corresponding bits
in the array of M bits. If any bit out of the K bit positions in
the array is O, this guarantees the element does not exist
in the set because a BF never produces false negative (i.e.,
all the K bits would have been set to 1 if the element existed).
On the contrary, if all K bits are 1, we must consider two
possibilities: either (1) positive (i.e., the element exists in the
set) or (2) false positive (which results from other element
insertions). Fortunately, probability of a BF false positive is,
in general, very low [16], [17]. Thus, the answer to the query
is highly likely to be positive. We can achieve a very low false
positive probability by adjusting the aforementioned three
design parameters [1].

C. RELATED WORK
Flash Memory Server (FMS) is an out-of-place-update
scheme to reduce the number of flash memory erase
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FIGURE 2. Multiple Hash Function scheme. This does not consider a
recency factor. Here, D = 4,B=2,and K = 4.

operations [18]. For efficient garbage collection, it classifies
data into three categories: read-only, hot, and cold data. While
FMS exhibits good data classification performance, it con-
sumes significant memory space because it necessarily keeps
the last access time information for all LBAs.

A two-level LRU (Least Recently Used) scheme resolves
FMS’ limitation [19]. It employs two lists, a hot list and a
candidate list which are fixed size and operate under LRU
policies. Though this two-level LRU scheme requires less
memory than FMS, performance totally depends on both
LRU list sizes. In addition, its LRU policy emulation involves
high computational complexity. It is generally recognized
that even a simple LRU (doubly-linked list) queue requires
approximately 25% overhead to update the LRU queue on
every record access [20].

A multiple hash function scheme (Figure 2) adopts
K-hash functions and single BF with a D-bit counter. Each
BF bit position corresponds to D-bit counter for capturing
data access frequency. If any one bit of B-most significant
bits is set to 1, this bit position is considered 1. If all K-hash
bit positions are 1, the scheme classifies the data as hot data.
Figure 2 presents an example adopting 4-bit counters and
2-most significant bits. Here, 4 will be its hot threshold value.
If all four access count values of corresponding positions are
greater than or equal to 4, the given LBA data are identified
as hot. This scheme achieves a smaller memory footprint and
entails lower computational complexity. However, it does not
capture recency information.

A backward classification algorithm is an exponential
smoothing-based hot and cold data identification algorithm
for an in-memory database [20]. The main goal is to identify
the K-hottest records efficiently among a large set of records
and store them in main memory, keeping the remaining
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ones on secondary cold storage. It performs offline anal-
ysis to estimate record access frequency by scanning the
log from present to past (i.e., backward). It also adopts a
sampling approach to further reduce a processing overhead.
The backward algorithm is an offline algorithm which may
achieve higher accuracy. However, the offline algorithm can
have limited applications and requires a significant storage
space to store large log data temporarily for post-analysis.
Consequently, this scheme specifically supports in-memory
database systems [21].

Unlike existing work, our proposed hot data identification
scheme is a dynamic algorithm that adapts to workloads.
In addition, most existing schemes primarily consider a fre-
quency factor, not recency. However, our proposed scheme
considers both factors in order to classify hot data more
effectively.

IIl. DYNAMIC HOT DATA IDENTIFICATION
This section describes our proposed dynamic hot data identi-
fication scheme

A. OVERALL FRAMEWORK

Figure 3 presents the overall architecture of our pro-
posed dynamic hot data identification scheme. The proposed
scheme consists of three major components: (1) a hot data
identifier, (2) a workload analyzer, and (3) a weight allocator.

| Hot/Cold Hot
Workloads e Identifier <:
Cold
Workload Weight
Analyzer [ " Allocator

FIGURE 3. Overall architecture of our proposed dynamic scheme.

The hot data identifier is a main component and con-
trols classifying given data as either hot data or cold data.
To capture recency information as well as frequency infor-
mation, it is composed of multiple independent bloom filters
and multiple hash functions. Each bloom filter has different
recency weights. Unlike MBF scheme [1] adopting a linearly
decreasing weight assignment, each bloom filter is assigned
an exponential smoothing-based recency weight to reflect a
more practical situation.

The workload analyzer is a key component to implement
our dynamic feature. For each incoming request, it analyzes
workload characteristics by calculating a stack distance. The
stack distance shows workload locality and can be used as a
recency measure. Thus, for small stack distances, the work-
load analyzer assigns more weight to recency, otherwise more
weight to frequency. Since calculating an exact stack dis-
tance involves very high complexity, we design a novel stack
distance approximation algorithm that calculates the stack
distance more efficiently. Consequently, it achieves lower
computational complexity as well as space saving.
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FIGURE 4. Our framework and its operations. It dynamically chooses one
bloom filter for each request based on workload analysis. Here, K = 2.

Once this workload analyzer produces a recency weight
value, the weight allocator assigns the corresponding weight
to recency by probabilistically selecting each bloom filter in
the hot data identifier. This is a key process to make a critical
distinction between the proposed dynamic scheme and the
existing MBF. Since MBF chooses each bloom filter sequen-
tially, it inevitably loses recency information. However, our
proposed scheme can carefully select one bloom filter with
the help of the combined workload analyzer and the weight
allocator.

Overall working processes are as follows: once any request
arrives, the workload analyzer first performs a workload
characteristic analysis by calculating a stack distance and
generating a recency weight. Second, the weight allocator
adopts the recency weight and probabilistically chooses one
of the bloom filters. Third, the hot data identifier records the
hash values to the bloom filter the weight allocator selects.
Finally, if the combined (i.e., frequency and recency) hot data
value is greater than or equal to the predefined hot threshold,
the hot data identifier classifies the given data as hot data,
otherwise cold data. The following subsections describe each
component in more detail.

B. HOT DATA IDENTIFIER

Figure 4 illustrates our hot data identifier. It employs a set
of V-independent bloom filters (BFs) and K-independent
hash functions to capture both frequency and finer-grained
recency. Each BF consists of M-bits to record K-hash values.
The basic operations are as follows: whenever a request is
issued, the K-hash functions hash the request’s LBA. Each
hash value ranges from 1 to M, respectively corresponding
to an M-bit BF bit position. Thus, K-hash values set the cor-
responding K-bits to 1 in the BF the weight allocator selects
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FIGURE 5. Our aging mechanism. Here, a gray bloom filter corresponds to
a reset bloom filter.

(subsection III-D describes this weight allocator). In addition,
it periodically selects one BF (i.e., the reset BF) in a round
robin manner and erases all information in the selected BF to
incorporate a decay effect.

1) FREQUENCY CAPTURING
The proposed hot data identifier does not maintain any coun-
ters for each LBA to record access counts. Instead, it simply
performs a membership query in each of the V-independent
BFs for each LBA. The number of BFs with a ’positive’
result (i.e., the LBA has already appeared) out of V-BFs can
express its frequency. Assuming the LBA hash values appear
inr (0 < r < V) of the BFs out of V-BFs, we say
the corresponding LBA has appeared r times before. This
implies a maximum count value is directly associated with the
number of BFs (i.e., V) and it is configurable (this BF number
impact will be explored in our experiment (subsection IV)).
For increased frequency capture effectiveness, when
choosing one of the V-BFs to store the K-LBA hash values,
if the selected BF shows a ‘positive’ result, our method
sequentially examines the next BFs until it finds one that
has not recorded the LBA. This sequential examination mini-
mizes recency analysis disruption. If it finds such an appropri-
ate BF, it records the hash values to the BF. If it turns out that
all (or a predefined number of) BFs have already contained
the LBA information, our scheme simply classifies the data as
hot (named a shortcut decision) and skips further processing
including BF checking or recency weight assignment, since
this definitely exceeds the threshold. This shortcut decision
reduces computational overhead. For hot data identification,
the information required in our scheme is simply whether the
value r is larger than the threshold, not an accurate count in
the case of r > V. Thus, when r is larger than a threshold,
it simply passes the frequency check.

2) RECENCY CAPTURING

Since our hot data identifier does not maintain LBA counters,
a different aging mechanism must be devised to capture
recency information. Figure 5 illustrates our aging mecha-
nism for decaying old information. First, consider that we
adopt V-independent BFs and that LBA hash values are
recorded to each BF in a round-robin manner during a pre-
defined interval 7. An interval T represents a fixed number of
consecutive requests, not a time interval. As in figure 5 (a),
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after an interval 7, a BF that has not been selected for the
longest interval is chosen and all bits in the BF (i.e., BFy)
are reset to 0. After the reset, the LBA hash values are again
recorded to all BFs including the reset BF. After another
interval T, the next BF (BF) is selected and all the bits are
reset (figure 5 (b)). Similarly, after the next T interval, the next
BF (BF) is chosen in a right cyclic shift manner and all
information is erased (figure 5 (c)).

Figure 6 presents a recency coverage for each independent
BF while BFYy is areset BF. The reset BF (BFy ) records LBA
information accessed during only the latest 17 interval. The
previously reset BF (BFy_1) can record the LBA information
accessed during the last 27 intervals. Similarly, the BF; which
will be chosen as a next reset BF immediately after this period
can cover the longest interval V x T'. This means BF| records
all LBA information for the last V x T intervals.

VT (V-D)xT 2T 1T Present BF, BF, BF; .. BFy, BFy
BFy Ly e

O |o] o] jofpo]

Brv [0 o] [o] - o] el

[opjopity 1ol

[o] [o] [o] T[o] fel

BF: Lo] [o] [o] [o] [el

BF, ] [ o] 1] [e]

Lo Lof[L] [1]e]

(a) Recency Coverage (b) Bloom Filter Status

FIGURE 6. Recency coverage for each bloom filter. Here, a gray bloom
filter (i.e., reset bloom filter) contains the most recent information.

Each BF has a different recency weight. A recency value is
associated with a frequency value for hot data identification.
The reset BF (BF'y) records most recent access information.
Hence, a highest recency weight must be assigned to it,
whereas a lowest recency weight is assigned to the BF that
is selected as a next reset BF (BF) because it recorded LBA
access information for the longest time period. We intend to
use a recency value as a frequency value weight to produce
a final value combining both. Consequently, even though
two different LBAs have appeared once in BFy and BF)
respectively, both frequency values are regarded differently.
Unlike MBEF, this dynamic scheme adopts an exponential
smoothing-based weight assignment mechanism. Subsec-
tion III-D describes this weight assignment mechanism in
more detail.

3) A BLOOM FILTER SIZE
According to [17], given both hash function count (K) and the
number of unique elements (), we can theoretically estimate
an optimal BF size (M) using the following formula,
M KN 3
=12 3)

Obviously, a BF size (M) must be sufficiently larger than
an element set size (). For example, assume we adopt two
hash functions (K = 2) and there are 4,096 unique elements
(N =4, 096). Here, we should adopt an 11,819-bit vector as
a correct BF size to minimize a false positive probability.
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This basic BF only allows element addition, not removal.
Thus, as the number of input elements grows, the data
recorded in the BF continuously accumulates, increasing a
higher false positive probability. To reduce this error rate,
the traditional BF requires a large BF size as the for-
mula suggests. However, we cannot simply incorporate this
approach in our proposed scheme. Our scheme’s BFs retain
a distinguishing feature: BF information can be removed.
Specifically, our proposed scheme periodically removes all
information in one BF. This prevents continuous BF data
accumulation. Therefore, we can adopt an even smaller BF
than the aforementioned traditional BF.

In our proposed scheme, the BF size is closely related to
a false identification rate. To meet user application require-
ments, our BF size is configurable and not fixed. Specifically,
for higher accuracy, we can increase BF size, consuming
more memory. On the other hand, if very high accuracy is
not a critical application requirement, we can reduce BF size
and save memory space. To address this issue, we conducted
memory size impact experiments in our experiment section.

4) A DECAY PERIOD

The multihash function scheme [14] consists of 4,096 BF
entries each of which is composed of a 4-bit counter. It adopts
5,117 write requests (N) as its decay period. This is based on
an expectation that the number of hash table entry (M) can
accommodate all the LBAs corresponding to cold data within
every N (where, N < M /(1 — R)) write requests (here, R is a
workload hot ratio and the authors assumed R is 20%) [14].
To verify this assumption, as in figure 7, we measured the
number of unique LBA for every 5,117 write request under
several real traces such as Financiall, Distilled, MSR and
RealSSD (these traces will be explained in our experiment
section). Figure 7 clearly shows that the number of unique
LBAs frequently exceeds their BF size (4,096) for each unit
period (every 5,117 write requests) under all four traces. This
necessarily causes hash collisions and results in higher false
positive probabilities.

= gggg Financiall —e— MSR —%— Distilled —8— | RealSSD —+—
il it ]
5 4000 el ]l 1 1

= 3500 H .
< 3000

o B e [P AT

2 | TR G ke

22000

= 1500
0 50 1 15

00 0 200
The Number of Write Request (Unit: 5,117 Writes)

FIGURE 7. The number of unique LBAs within unit periods (5,117 writes)
under various workloads. We observe a significant number of unique
LBAs exceed the bloom filter size of 4,096.

We also measured the average number of unique LBAs
within both 2,048 and 4,096 write request periods under
the same workloads. They vary from 1,548 to 1,991 for
2,048 write request periods and from 3,014 to 3,900 for
4,096 write request periods. This is closely related with the
average hot ratio of each workload: intuitively the higher
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average hot ratio, the fewer unique LBAs. Based on these
observations, we adopt M /V numbers of write requests for
our decay interval T, where M is a BF size and V'is the number
of BF. To reduce false positive probabilities (i.e., error rates),
the BF size must accommodate at least all unique LBAs that
arrive in the last V x T interval. Thus, whenever M /V num-
bers of write requests are issued, one of the BFs are selected
in a round robin fashion and all the bits in the BF are reset to 0.
For example, assuming a BF size is 2,048, the decay period
corresponds to 512 requests. Since memory consumption is
also an important factor, we adopt a smaller (i.e., a half) BF
size than the BF size for the multihash scheme.

C. WORKLOAD ANALYZER

A temporally localized workload pattern is a reference pattern
where a more recently referenced block referenced in the
near future. For this temporally localized pattern, recency
is a more valuable factor and a stack distance is a good
measure of this temporal locality [22]. Thus, a small average
stack distance across all references indicates a good tempo-
ral locality, implying workloads with a small stack distance
should consider recency a more important factor. Our pro-
posed scheme utilizes this stack distance to implement our
dynamic design. If the workload analyzer recognizes a small
stack distance, it assigns more weight to a recency factor.
Otherwise it assigns more weight to a frequency factor.

1) STACK DISTANCE APPROXIMATION
Our proposed stack distance approximation mechanism
adopts a hash table where each hash bucket maintains the
following three simple considerations: (1) a last index, (2) a
last unique count, and (3) a reference.

The last index stores the index value at the time the cor-
responding reference is recently accessed. This last index is
used to calculate inter-reference distance (IRD) efficiently.
IRD is the number of other references between two references
to the same address in the trace. Aside from this last index
maintained in the hash table, we simply manage a global
index. You can think of this global index as a time stamp
which increments with each reference.

Similarly, the last unique count stores a quasi-unique ref-
erence count at the time the corresponding reference was
recently accessed. It emulates the unique reference count
between two identical references. To update this last unique
count, we also keep another counter named a global unique
count. We increase this count whenever a unique reference
appears. Thus, this global unique counter also increments
by 1 for each unique reference. Please note both the global
index and the global unique counter are just simple counters
maintained outside of the hash table.

The reference in the hash bucket stores accessed LBA
information. The global unique counter utilizes this reference
information in the hash table for efficiently checking if the
reference is unique. That is, whenever a workload refer-
ence appears, we first check the corresponding hash bucket
(i.e., the reference value in the bucket). If we find the same
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reference information in the bucket, which means the refer-
ence is not unique, the global unique count does not increase,
otherwise the count increases by 1 because the reference is
unique. Instead of this hash table, a bloom filter can be an
alternative for quickly checking if the reference is unique.

Our proposed stack distance approximation operates as
follows: when a request with a reference (i.e., LBA) is issued,
we first check the corresponding hash bucket in the hash
table and acquire the aforementioned three considerations.
Second, if the hash bucket does not contain any existing
information, we simply return O as the given LBA’s stack
distance because the LBA has not been previously accessed.
Then, a global unique count increments since the given LBA
is a unique LBA.

Third, if the hash bucket contains existing information,
which means the given LBA has been accessed before,
we calculate the IRD at a given time ¢, IRD(t), by subtracting
the last index from the current global index (i.e., IRD(t) = a
current global index — a last index). Similarly, we approx-
imate a unique reference count at time ¢, aref(t), by sub-
tracting the last unique count from a current global unique
count (i.e., aref(t) = a current global unique count — a last
unique count). Please note that a global unique count does
not increase in this case since the given LBA is not a unique
LBA. We next calculate an approximated stack distance of the
given LBA at time ¢, sd(¢), by the following simple equation:

sd(t) = IRD(t) —12— aref (t) @

Finally, we update both the last index and the last unique
count in the corresponding hash bucket with the current
global index and the current global unique count respectively.
This approximation algorithm can significantly reduce the
computational complexity to O(1). More importantly, even
though it is an approximated value, it is surprisingly accurate
(Please refer to our experiment section I'V).

However, during our extensive experiments, we found one
limitation of our basic approximation algorithm: when it
suddenly accesses an LBA which was assessed a very long
time ago, it tends to produce a noticeably higher error rate
(i.e., a higher stack distance than a precise stack distance).

Extensive investigation enabled us to determine that this
problem occurs under a following specific workload access
pattern: not only does it suddenly access an LBA that was
assessed a very long time ago (causing an exceptionally large
IRD(t)) but there are also many unique LBAs between the
current access and the last access to the same LBA, where
those unique LBAs were already repeatedly accessed before
the last access (causing a relatively small unique reference
count aref (t)). This is the worst case of our basic approxima-
tion algorithm.

Consequently, this scenario produces a higher approxima-
tion value than a precise stack distance. Precisely anticipating
such an exceptional access workload pattern is very difficult.
Based on our experiments and workload analyses with diverse
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workloads, it was a rare access pattern, but this limitation
requires compensation.

To smooth out this unexpected side effect, if the IRD(r)
is T (a predefined number, e.g., 5) times larger than the
average IRD(t), our revised approximation algorithm reduces
the IRD(t) value by half. In addition, if an unexpectedly large
IRD(t) continues appearing K (a predefined number, e.g.,
50) times in a row, implying the workload access pattern
keeps changing (not temporarily), it subsequently accepts the
original /RD(t) without smoothing.

With the help of this refined algorithm, our proposed
approximation algorithm effectively deals with such an unex-
pected workload access pattern, improving accuracy.

2) COMPUTATIONAL COMPLEXITY ESTIMATION

Calculating a precise stack distance requires very high com-
putational complexity (O(NM), where N is the trace length
and M is the number of distinct references in the trace)
and consumes high space [15]. To resolve these limitations,
Almasi et al. proposed a novel stack distance algorithm (not
approximation) named hole-based algorithm [15]. It adopted
an interval tree which is a balanced binary tree to calculate
stack distance more efficiently. Although it notably reduced
stack distance calculation complexity (O(N log(M)), it is still
so complicated that it is not useful to a hot data identification
scheme which requires lower complexity [1], [13]. However,
our proposed stack distance approximation mechanism sig-
nificantly reduces computational complexity to O(1).

D. WEIGHT ALLOCATOR
Once the workload analyzer produces a stack distance,
the weight allocator first calculates recency weight at time ¢,

A, by the following equation:

sd(t)

1\ @sd@®
A:(—) , O<x<l1,p=>2. 5)

p

Here, asd(t) stands for an average stack distance at time .
We manage this average stack distance for each reference.
After the recency weight is calculated, the weight allocator
assigns this weight to recency by probabilistically picking
one bloom filter (BF) in the hot data identifier to record
hash values. This core process provides a critical distinc-
tion between the proposed dynamic scheme and MBFE. Since
MBF simply chooses each BF sequentially (i.e., round robin),
it inevitably destroys recency information with each request.
For optimal recency capture, MBF can choose one BF and
keeps recording access LBA information (i.e.,hash values) in
the selected BF during one predefined decay period. After the
one period (e.g., 4,096 requests), MBF similarly chooses the
next BF and executes all referenced LBA recording process
during another decay period, etc. However, this mechanism
results in complete LBA access frequency information loss
during the corresponding decay period. This is the primary
reason MBF has no alternative but to employ sequential BF
selection mechanism for each request and not using one
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BF during one decay period, even though it partially loses
recency information.

Our dynamic BF selection mechanism resolves this inborn
limitation of MBF. The weight allocator operates as follows:
for each request, once it produces recency weight (1) with
the equation 5, it either selects a reset BF containing most
recent access information with a probability of (A x 100)%,
or another BF, but not the reset BF, with a probability
of ((1 — A) x 100)%. For more effective frequency capturing,
when it chooses another BF except the reset BF, if the selected
BF shows a ‘positive’ result (i.e., if the BF has already
recorded the given LBA), it sequentially examines the next
BFs until it finds an appropriate one that has not recorded
the LBA. This sequential examination minimizes recency
analysis disruption.

Therefore, our proposed scheme more intelligently selects
a BF with the help of both the combined workload analyzer
and the weight allocator.

E. A NEW BASELINE ALGORITHM

To our knowledge, our proposed scheme is the first dynamic
hot data identification scheme. Thus, there are no baseline
algorithms adopting a dynamic feature with workload adapta-
tion. A Direct Address Method (DAM) [14] maintains coun-
ters for each LBA. Thus, it precisely captures the frequency
information. However, with respect to recency, DAM does
not have any mechanism to capture recency and moreover,
it requires high space consumption. Window-based Direct
Address Counting (WDAC) [1] can capture recency as well as
frequency by adopting a sliding window. It assigns the highest
recency weight to the present (i.e., head of the window).
The weight linearly decreases toward the past (i.e., tail of
the window). Although WDAC is the first baseline algorithm
capturing both recency and frequency, it does not utilize a
dynamic feature. Moreover, due to its batch decay mecha-
nism, WDAC necessarily recalculates all combined values
(named hot data index). This results in high computational
complexity.

Unlike both DAM and WDAC, the proposed novel baseline
algorithm adopts a dynamic feature. So, it adapts to work-
loads. It also employs a stack distance for dynamic design and
an exponentially decreasing weight function, p, as follows:

1 ;;ld((tz)> xT
u=<;) , O<pu=l p>2. (6)

This weight function is identical to that of our weight
allocator (Equation 5) except that this adopts a control param-
eter, 7. Intuitively, the meaning of t in this equation is that a
hot data value is reduced to 1/p of the original value after
every 1/t time steps. This control parameter, 7, allows a
fundamental trade-off between recency and frequency effect.
As t approaches 0, this weight function moves toward a
frequency-based policy. Alternatively, as t approaches 1,
it moves towards a recency-based policy. Specifically, when t
is 0, it ignores recency (i.e., only considers frequency). When
7 is equal to 1, it aggressively considers recency, so recency
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TABLE 1. System parameters and values.

TABLE 2. Workload characteristics.

P: D . MBF MHF Baseli DAM Total Request Ratio Average Inter-
l arameters [ lylnamlc[ o [ Tz [ aseine [ l Workloads Requests (Read:Write) Arrival Time
BF Size 2 2 2 N/A N/A ,
Financiall 5,334,987 R:1,235,633(22%) 8.19 ms
Number of BF 49 49 112 N/A N{./?% 3534, W:4,099,354(78%) .
Decay Interval 2 2 2 N/A 2 R:47,380(5%)
Number of Hash | 2 2 2 2 NA MSRprxy 1,048,577 W:1,001,197(95%) N/A
Hot Threshold | 4 4 4 4 4 Distilled 3,142,935 %}1’653039’452096((54%2?) 32 ms
Recency Weight | (1/2) | 27T N/A (1/2)Y | N/A ket i
RealSSD 2,138,396 R:1,083.495551%) 49225 ms
138, W:1,054,901(49%) 25 ms
. o . MSRprn 1,048,576 5‘},91%501597((8&@) N/A
weight significantly drops from a present metric to a past T
MSRproj 1,048,576 R797,152(76%) N/A
metric. proj 075, W:251,424(24%)
) ) ) — R:3,096, 113(32%) ,
Our dynamic baseline algorithm adopts a hash table to Financial2 | 3,699,195 W:653,082(18%) 1742 ms

efficiently maintain a hot data value for each LBA. For each
accessed LBA, if the given LBA is a newly accessed LBA
(i.e., has not been accessed before), we assign an initial
hot data value, c, to the corresponding hash bucket. If the
given LBA hits the hash bucket (i.e., it has been previ-
ously accessed, so that the corresponding hash bucket already
retains an existing hot data value), it first applies the expo-
nentially decreasing recency weight, u, to the existing hot
data value by multiplying the existing hot data value by .
This reflects a recency decaying effect to the existing hot
data value as time progresses. It then adds an initial hot data
value, c, to the decayed hot data value. If this newly calculated
LBA hot data value is greater than or equal to a predefined hot
data threshold, it classifies the LBA as hot data, otherwise,
it classifies the LBA as cold data.

IV. EXPERIMENTS
This section provides diverse experimental results and com-
parative analyses.

A. EVALUATION SETUP

To conduct an extensive and objective evaluation, our pro-
posed dynamic hot data identification scheme is com-
pared with four other schemes: Multiple Bloom Filter-based
scheme (hereafter, referred to as MBF) [1], Multiple Hash
Function scheme (referred to as MHF) [14], our proposed
dynamic baseline scheme (referred to as Baseline), and Direct
Address Method (referred to as DAM) [14].

We partially consider MBF because it is somewhat redun-
dant. That is, MBF and MHF were already evaluated thor-
oughly in our preliminary work [1] and demonstrated that
MBF outperformed MHF in multiple respects(please refer
to [1]). Therefore, we particularly focus on MBF because not
only does the MBF base our dynamic scheme, but also it is
now considered to be most well-known scheme. Moreover,
our dynamic scheme resolves MBF’s inborn limitations.

Two different baseline schemes are employed: baseline
(our proposed) and DAM. Since our proposed scheme is the
first dynamic hot data identification scheme, we primarily
focus on our proposed dynamic baseline scheme. However,
for a more objective evaluation, DAM is also evaluated.

Table 1 shows system parameters and their values. Both our
proposed dynamic scheme (hereafter, refer to as Dynamic)
and MBF adopt a bloom filter half the size of the MHF
because they exhibit a better performance than MHF, even
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though it is smaller. However, we also evaluate these three
schemes (i.e., Dynamic, MBF, MHF) with the same bloom
filter size for a clearer understanding.

For fair evaluation, the same number of requests (4,096)
is assigned for a decay interval in DAM and MHEFE, while
512 requests are adopted for our decay period and an MBF
decay period. Two identical hash functions are employed
for our dynamic scheme, MBF, MHF, and baseline. Lastly,
we assign 0.5 weight difference for each bloom filter in MBF.
We also assign an exponentially decreasing weight for each
bloom filter in our dynamic scheme and for each request in
our proposed dynamic baseline.

For more objective evaluation, diverse (i.e., seven) real
workloads (Table 2) are employed. Financiall and Finan-
cial2 are from the University of Massachusetts at Amherst
Storage Repository [23]. Financiall is a write-intensive trace
file. Financial2 is a read-intensive trace file. These trace files
were collected from a financial institution’s running online
transaction processing (OLTP) application.

The Distilled trace file [19] shows general and personal
usage patterns in a laptop such as web surfing, watching
movies, playing games, and documentation work. This is
from the flash memory research group repository at National
Taiwan University. Since the MHF scheme only uses this
trace file, we also adopt this trace for fair evaluation.

We also utilize MSR trace files made up of 1-week
block I/O traces of enterprise servers at Microsoft Research
Cambridge Lab [24]. We select prxy volume 0O trace for a
write-intensive workload and both prn volume 0 and proj
volume 0 for read-intensive workloads [25].

Lastly, we employ a real solid state drive (SSD) trace file
that consists of 1-month block I/O traces (hereafter, refer to
as RealSSD trace file) of a desktop computer in the Center
for Research in Intelligent Storage (CRIS) lab at the Uni-
versity of Minnesota—Twin Cities [1]. We installed DiskMon
for Windows [26] to the computer and collected personal
traces such as computer programming, running simulations,
documentation work, web surfing, and watching movies.

The total requests in Table 2 correspond to the total number
of read and write requests in each trace. These I/O requests
also can be subdivided into several or more sub-requests (i.e.,
block requests). We adopt this block-level request for our
experiments.
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FIGURE 8. Average stack distance of both our proposed approximation mechanism and an existing precise mechanism. Here, APPROX stands for our

proposed stack distance approximation.

B. PERFORMANCE METRICS

We measure an average stack distance to evaluate our pro-
posed stack distance approximation performance by com-
paring it with a precise average stack distance. A hot ratio
is the ratio of hot data to all data. This hot ratio metric
is chosen to compare the performance of those schemes.
However, an identical hot ratio of two schemes does not
necessarily mean identical performance since hot data classi-
fication results from both schemes may differ. In other words,
an identical hot ratio simply signifies the same amount of
hot data compared to all data. It does not necessarily mean
all classification results are also identical [1]. Thus, compen-
sating for this limitation requires another evaluation metric,
a false identification rate. For each request, we compare
the identification result of each scheme. This enables us to
perform a more precise analysis. Finally, runtime overhead
also must be considered. To evaluate it, we measure average
CPU usage.

C. RESULTS AND ANALYSIS
We discuss our evaluation results from multiple perspectives.

1) STACK DISTANCE APPROXIMATION

The stack distance approximation is one of our dynamic
scheme’s core algorithms. So, its performance is first eval-
uated with various real workloads. Figure 8 presents an
average stack distance of both our approximation and a
precise stack distance value. We measure this average stack
distance with 1 million requests for each trace and plot it
for each 30,000 request unit, which provides more thorough
comparison.

As in figure 8, our approximation algorithm shows highly
accurate, phenomenal performance. Our approximation val-
ues are very close to the precise stack distance for all four
traces. We additionally evaluate the performance with three
other traces and they all also exhibit a notable performance.
So we omit them.

For a more extensive evaluation, we measure an average
error with an average stack distance in parentheses for each
trace as follows: 19 (35,831) for Financiall, 20 (19,744)
for MSRprn, 27 (10,333) for MSRproj, and 15 (56,361) for
Distilled trace. When we consider the average error together
with the average stack distance, we can evaluate the per-
formance of our approximation scheme more objectively.
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FIGURE 9. The effectiveness of our stack distance approximation
smoothing algorithm under MSRprxy trace.

Moreover, considering the complexity of our approxima-
tion (O(1)) and that of the exiting state-of-the-art algorithm
(O(nlog(m)) producing a precise value [15], even though
ours is an approximation, this evaluation clearly demonstrates
that our proposed approximation is applicable to many other
fields, provided they do not require 100% accurate stack
distance values.

Although our basic approximation algorithm shows
remarkable performance under all traces, one trace exhibits
a significantly higher error rate within a specific access range
under MSRprxy trace. Specifically, figure 9 (a) depicts a
range (i.e., between 29K and 33K) with a high error rate.
Interestingly, except this specific range, our basic approxi-
mation algorithm normally exhibits outstanding performance
under that trace. Extensive workload analysis investigation
enabled us to identify the main reason for this problem; A spe-
cific workload access pattern that not only suddenly accessed
an LBA it accessed a very long time ago (causing a very large
IRD) but also experienced many unique LBAs between two
accesses to the same LBA that were repeatedly accessed in
the past (causing a relatively small unique reference count).
This is the worst case of our basic approximation algorithm.

Figure 9 displays the approximation smoothing algorithm
effectiveness. Referring to figure 9, the average error rate
between the 29K and 33K range notably (43.7%) decreases.
There may be a better solution further lowering the error
rate, particularly under MSRprxy trace. However, such a
specific solution can cause overfitting of our approximation
algorithm, which decreases overall performance under the
other general workloads. This suggests a general solution that
uses configurable parameters in the approximation algorithm.
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FIGURE 11. Number of different identification of two baseline algorithms.
2) BASELINE ALGORITHM present notably higher hot ratios than Dynamic, as well as the

This subsection describes evaluation of two baseline two baselines under all traces. This results from a relatively
schemes: the proposed baseline (refer to as baseline) higher false identification ratio of MHF. Due to a limited BF
and DAM. Figure 10 shows that the hot ratios of both size, even though cold data requests increase, hash collisions
schemes exhibit notably different results under Financill and ~ can cause a higher chance of incorrect counter increments.
MSRprxy (figure 10 (a) and (b)). On the other hand, they Consequently, this results in higher hot ratios. As the MHF
display very similar hot ratio patterns under Distilled and authors mentioned in their paper, the MHF scheme does not
RealSSD traces (figure 10 (c) and (d)). However, identical achieve good performance, especially when the hot data ratio
hot ratios do not necessarily mean identical classification of i traces is low [14]. To bypass this limitation, they provided
both schemes. Thus, we need another experiment for a more two suggestions: an increment of a hash table size or a shorter
comparative analysis: we count the number of different hot decay period. However, both solutions cannot become funda-
classification results during a specific unit time (150K or mental solutions because, not only does a larger hash table

300K requests). Zero means all identification results are iden- consume a more memory space, but also decreasing the decay
tical. Please note that since MSRprxy traces in Figure 10, 11, interval introduces significant computational overhead [1].
and 12 do not have enough write requests, 150K unit time Our scheme, on the other hand, resolves these limitations by
was employed instead of 300K unit time. adopting smaller, multiple, independent BFs.

Figure 11 shows the number of different identifi- Figure 13 presents false identification rates of both

cation results between our baseline and DAM. Both Dynamic and MHF by comparing both schemes with our
figure 11 (¢) and (d) demonstrate that performance can differ proposed baseline. They exhibits the proposed scheme (i.e.,
even though two hot ratios are very similar as in figure 10 (c) Dynamic) shows even lower false identification rates than
and (d). MHF by an average of 36.3%, 50%, 28.8%, and 38.6% under
the four respective traces.

3) PROPOSED SCHEME (Dynamic) VS. MHF

We evaluate four schemes in this subsection: Dynamic, MHF, 4) PROPOSED SCHEME (Dynamic) VS. MBF

Baseline, and DAM, particularly focusing on the proposed Our dynamic hot data identification scheme is primarily

scheme (Dynamic) and MHF. We compare both schemes with based on MBF to resolve MBF’s inborn limitation. Since
Baseline as well as DAM to demonstrate our proposed base- extensive performance comparison of MBF with other exist-
line scheme is not an unfairly customized baseline scheme ing schemes including MHF, WDAC, and DAM were already
that is a best-fit for our scheme. discussed in detail in [1], this subsection particularly focuses

As in figure 12, our proposed scheme shows similar results on MBF scheme (vs. our proposed scheme). Moreover, both

to our baseline and even to DAM, while MHF tends to MBF and MHF employed write-intensive workloads because
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FIGURE 14. Hot ratios of three schemes under various traces.

their design mainly considered NAND flash memory stor-
age devices. On the other hand, our proposed scheme is
not specifically designed for them and we adopt different
(read-intensive) traces this time for more extensive compar-
ison. As in table 2, Financial2, MSRprn, and MSRproj are
newly adopted read-intensive workloads. For a more objec-
tive and fair comparison, we still employ one of the previ-
ous traces (Distilled) because only Distilled trace contains
enough read requests (52%). Please note RealSSD trace also
contains enough read requests (51%), but both Distilled and
RealSSD traces show very similar workload characteristics
because they were collected from personal computers for
personal traces. Moreover, Distilled trace were collected from
a different research group (i.e., National Taiwan Univer-
sity), whereas RealSSD trace were collected from one of
our research group members (University of Minnesota—Twin
Cities). Therefore, we choose Distilled instead of RealSSD
for a more objective evaluation.

Figure 14 exhibits hot ratios of the proposed scheme
(Dynamic) and MBF. For reference, our proposed baseline is
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included. Figure 14 (b), (c), and (d) clearly show Dynamic’s
hot ratios are similar to the baseline and corresponding false
identification rates are undoubtedly lower than those of MBF
(figure 15 (b), (¢), and (d)). Financial2 trace shows an inter-
esting result. Contrary to our expectation, MBF’s hot ratio
is closer to the baseline and a total average hot ratio of MBF
(14.5%) is also closer to that of the baseline (13.6%) than that
of our proposed scheme (15.2%). However, as in figure 15 (a),
the false identification rate of Dynamic is lower than that of
MBF by an average of 2%. This clearly demonstrates that
an identical hot ratio does not necessarily mean an identical
performance.

MBEF can capture recency as well as frequency by record-
ing LBA information to multiple bloom filters in a round
robin fashion. This sequential bloom filter selection partially
destroys recency information. As a result, MBF tends to
perform better when the frequency is the more important
workload factor. This is because MBF’s sequential bloom fil-
ter selection policy captures frequency more effectively than
recency. On the other hand, the proposed scheme dynamically
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FIGURE 16. LBA access pattern for each trace.

chooses one of the bloom filters to effectively capture recency
while still capturing frequency well, like MBF. Figure 16
displays workload access patterns (i.e., LBA access count) of
four traces. Financial2 shows a very different access pattern
from the other three: it heavily accesses a very limited LBA
range (i.e., red histogram), while others access a very wide
LBA range. The frequency factor is more important under
Financial2 trace and consequently, MBF exhibits a compa-
rable performance with the proposed scheme (figure 15 (a)).
However, Dynamic clearly shows a better performance than
MBEF ((figure 15 (b), (c), and (d)).

5) BLOOM FILTER SIZE IMPACT

A bloom filter size is closely related to memory space con-
sumption. This subsection investigates impact of the bloom
filter size. The proposed scheme comprises 4 bloom filters
each of which requires 0.25 KB (i.e., 2Kx 1-bit). That is,
4 bloom filters consume 1KB memory space. We increased
each bloom filter size of the proposed scheme from 2K (i.e.,
2,048 bit) to 8K (8,192 bits), and 4 bloom filters remain.

Figure 17 illustrates false identification rates of our scheme
with different bloom filter sizes. As a bloom filter size
increases, performance also improves. That is, our scheme
with a larger bloom filter size exhibits a lower false identifi-
cation rate. For instance, under Financial2 trace, the average
error rates of 8K, 4K, and 2K bloom filter size correspond to
11.1%, 12.2%, and 16.1% respectively. This is very intuitive
because a large bloom filter lowers hash collision probabili-
ties, resulting in a lower false positive rate.

The BF size is not a fixed parameter in our scheme and is
configurable to meet applications’ requirements. For exam-
ple, assuming an application requires the higher accuracy of
hot data identification (i.e., lower false identification rate) as
acritical factor, we can increase the bloom filter size although
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filter selection mechanism (i.e., algorithm) lie at the core
of our proposed dynamic hot data identification scheme.
Multiple bloom filters are responsible for capturing recency
information and the number of bloom filters is associated
with recency granularity. To explore its impact, we varied the
numbers of bloom filters. For a more objective comparison,
we fixed a memory space (1KB) and configured both bloom
filter sizes and decay periods accordingly.

As in figure 18, as the number of bloom filters increases,
false identification rates also increase. Since we fix a memory
space, smaller size bloom filters are assigned to each scheme
with more bloom filters. As a result, this causes higher error
rates. Even though the scheme with more bloom filters can
capture fine-grained recency, it offsets this advantage with
higher error rates. However, if we do not fix the memory
space in this evaluation, doubling the number of bloom fil-
ters from 4 to 8 for instance, while keeping the identical
bloom filter size, our proposed scheme can benefit from the
finer-grained recency [1].

7) COMPUTATIONAL OVERHEAD
Computational overhead is another important factor to evalu-
ate for a hot data identification scheme. We measure average
CPU usage to evaluate the computational overhead. We run
three schemes (i.e., MBF, our proposed scheme, and baseline)
on MacBook Pro (Intel Core i5 quad core@1.4GHz, 16GB
RAM, Mac OS V.11.0.1) for each trace. For fair evaluation,
whenever we conduct each experiment, we reboot our com-
puter and stay for 30 minutes without running any applica-
tions. Then, we run each hot data identification scheme and
measure average CPU usage with ‘top’ Linux command.
Figure 19 exhibits average CPU usage for three schemes.
Since all other traces show very similar performance pat-
terns, we omit other traces except financial 1 and financial 2.
As in figure 19, our proposed scheme (i.e., Dynamic) con-
sumes more CPU than MBF by an average of 6.3% because
it requires additional operations such as workload analy-
sis and weight allocation to implement its dynamic feature.
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exhibits excellent performance with high accuracy; espe-
Our baseline algorithm consumes 17.5% more CPU than the cially 3 traces out of 7 traces exhibit error rates of less
proposed scheme. This mainly results from its precise stack than 1% (0.7%, 0.1%, and 0.7% respectively). The proposed
distance calculation. On the other hand, the proposed scheme dynamic hot data identification scheme outperformed exist-

adopts our stack distance approximation mechanism which ing schemes by as much as 49.8%.

requires notably lower computational complexity. For our future work, we plan to apply our dynamic scheme
to real-world applications including a new cache design and

V. CONCLUSION SMR (Shingled Magnetic Recording) drives that is next gen-

This paper proposed a dynamic hot data identification that eration hard disk drives to get over HDD’s capacity limitation.

adapts to workloads. The proposed scheme adopts multiple In addition, a machine learning-based hot data identification

bloom filters to effectively capture both recency and fre- scheme design is another future work.

quency. Each independent bloom filter is assigned a differ-
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