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ABSTRACT Tumor-infiltrating lymphocytes (TILs) act as immune cells against cancer tissues. The manual
assessment of TILs is usually erroneous, tedious, costly and subject to inter- and intraobserver variability.
Machine learning approaches can solve these issues, but they require a large amount of labeled data
for model training, which is expensive and not readily available. In this study, we present an efficient
generative adversarial network, TilGAN, to generate high-quality synthetic pathology images followed
by classification of TIL and non-TIL regions. Our proposed architecture is constructed with a generator
network and a discriminator network. The novelty exists in the TilGAN architecture, loss functions, and
evaluation techniques. Our TilGAN-generated images achieved a higher Inception score than the real images
(2.90 vs. 2.32, respectively). They also achieved a lower kernel Inception distance (1.44) and a lower
Fréchet Inception distance (0.312). It also passed the Turing test performed by experienced pathologists and
clinicians. We further extended our evaluation studies and used almost one million synthetic data, generated
by TilGAN, to train a classification model. Our proposed classification model achieved a 97.83% accuracy,
a 97.37% F1-score, and a 97% area under the curve. Our extensive experiments and superior outcomes show
the efficiency and effectiveness of our proposed TilGAN architecture. This architecture can also be used for
other types of images for image synthesis.

INDEX TERMS Digital pathology, deep learning, generative adversarial network, lung cancer, artificial
intelligence.

I. INTRODUCTION
Tumor infiltrating lymphocytes (TILs) play a significant role
in cancer diagnosis and prognosis [1]. The presence of TILs in
different cancer types (such as lung, colon, and breast cancer)
signifies improved clinical outcomes and faster response to
chemotherapy [2]. Recent evidence has emerged that the
infiltration of antitumor type I lymphocytes can improve
cancer prognosis [3]. TILs are a special white blood cell
that shows a tendency to emigrate towards tumor cells from
the bloodstream [4]. TILs comprise mainly T cells, B cells,
mononuclear cells, and polymorphonuclear immune cells
(such as neutrophils, eosinophils, and basophils) [5]. TILs
normally float around tumor cells.
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As per the World Health Organization and American
Cancer Society, lung cancer is one of the most devastating
cancers globally, accounting for almost 14% of new cancers
in men and 13% of new cancers in women in the United
States [6]. It has also been reported that in 2019, lung can-
cer caused approximately 228,150 new cases (116,440 men
and 111,710 women) and 142,670 deaths (76,650 men and
66,020 women) in the United States [7]. For lung cancer
prognosis, pathological image analysis is considered the pri-
mary and gold standard screening method. For this purpose,
pathologists collect a small part of the tissue from the sus-
pected tumor region. Next, the tissues are further processed
and stained using different stains, including hematoxylin and
eosin (H&E) [8], [9]. Lung cancer pathology images typ-
ically contain TILs, tumor cells, mitotic cells, stroma, etc.
Under a microscope, TILs appear with round, deep bluish
nuclei [10]. The details of the TIL and non-TIL regions are
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shown in figure 1. Pathologists followmanual image analysis
procedures to analyze the tissue regions. This procedure fully
depends on the knowledge of the pathologists. Moreover, it is
costly and time consuming.

FIGURE 1. Original tumor-infiltrating lymphocyte (TIL) and
non-tumor-infiltrating lymphocyte (non-TIL) patches.

Deep learning has shown promising results in image analy-
sis, signal analysis, video analysis, and many more fields [9].
Currently, this method is one of the most popular machine
learning approaches and is used to solve many complicated
tasks, such as object classification, image segmentation, and
risk prediction. However, it has a few disadvantages. The
most significant one is that deep learning requires a large
amount of data to meet satisfactory performance [11]. How-
ever, biomedical data are expensive and not readily available,
as approval from the patients and institutional review board
are required to use them. Biomedical data may also contain
artifacts, noise, etc., which also reduce the total number of
data points.

To solve the data availability problem, the authors of [12]
proposed a generative adversarial network (GAN) for natural
image synthesis. The GAN comprises mainly a generator
network/model and a discriminator network/model. The gen-
erator network generates synthetic/fake data, which looks like
real data, while the discriminator checks the quality of the
synthetic data. Categorically, the generator network learns
from latent space, and the discriminator differentiates the real
and synthetic data distributions [13]. The generator attempts
to fool the discriminator by increasing the generator loss [14].
In this study, we present an efficient generative adversarial
network, TilGAN, to generate high-quality synthetic pathol-
ogy data of TIL and non-TIL regions to mitigate data imbal-
ances, to improve the classification accuracy, and finally to
assist pathologists and clinicians in their decision-making
processes. The main novelty exists in TilGAN architecture,
loss functions, and evaluation techniques.

This manuscript has five sections. Section I introduces the
work, and Section II discusses related work. In Section III,
the materials and methods are discussed. Sections IV and V
discuss the results and present the discussion and conclusion,
respectively.

II. RELATED WORK
A GAN, an unsupervised method, is used to generate mil-
lions of synthetic data, which resembles the real dataset [15].
Traditional generative models follow the rules of explicit

approximation inference and Markov fields, but GANs do
not follow this rule. The generative network of GAN pro-
duces high-quality fake data to mislead the discriminator. The
training process of the GAN ends when a Nash equilibrium
from game theory is reached [16]. Hence, the GAN learning
process is considered a minimum-maximum optimization
problem.

Initially, a GAN was developed for natural image synthe-
sis [12], but gradually, the default architecture was changed
to improve the synthetic image quality and to solve other
data processing issues, including color enhancement [34],
image translation [35], [36], nuclei segmentation [37], [38],
cell-level visual representation [39], and image classifica-
tion [40]. Various researchers have proposed different cost
functions for the generator and discriminator networks to
improve the quality of synthetic images, such as relativistic
GAN, hinge GAN [41], relativistic average GAN [42], and
Wasserstein GAN [43]. The main difference between the
standard GAN and the modified GANs is that the standard
GAN tries to prove that the input data are real, whereas
modified GANs measure the probability that generated data
are less realistic than the real data (or vice versa). With a
standard GAN, the discriminator squeezes the output into
two ends, i.e., 0 or 1. Modified GANs measure the distances
or differences between fake and real images [44]. When
the discriminator reaches an optimum level, gradients van-
ish. Many new GAN architectures have been proposed for
natural and biomedical image synthesis. Cycle-consistency
GANs are one of the most common GAN architectures and
was designed for biomedical image synthesis [45], image-to-
image translation [46], etc.

The authors of [47] proposed a GAN architecture for stain
transfer or stain normalization. Their architecture was trained
with a multiobjective cost function to learn image-specific
color transformations and dataset-specific staining proper-
ties. StainGAN [34] and InfoGAN [48] were also used for
color normalization on WSIs in different studies. Pathol-
ogy GAN was proposed for pathology image synthesis [49]
with a Fréchet Inception distance of 16.65. This architec-
ture was developed using BigGAN as the baseline archi-
tecture [50]. A GAN was also applied to radiology image
synthesis and translation. The authors of [51] suggested an
edge-aware GAN [51] for MRI image synthesis. Task-driven
GAN was proposed in [52] for X-ray image synthesis. The
authors of [53] proposed a GAN for computed tomogra-
phy (CT) to magnetic resonance image (MRI) data synthe-
sis and translation. A conditional GAN was used for PET
image synthesis [54]. A deep convolutional GAN (DCGAN)
was recommended for image synthesis and the detection of
liver cancer on X-ray and CT images [55]. Table 1 refers
to the characterization of existing GAN architectures. Here,
we have summarized a few GAN architectures that are
used for image synthesis, image translation, color normaliza-
tion, etc.

In this manuscript, we perform image synthesis with
TilGAN, which is constructed using different baseline
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TABLE 1. Characterization of existing GAN architectures.

architectures, such as Pathology GAN [49], BigGAN [50],
a cycle-consistency GAN [56], and a relativistic average
GAN [42].

Pathology images show important information, and small
changes in the tissue characteristics may result in a wrong
diagnosis and patient death. Therefore, it is a very challeng-
ing task to maintain the real image characteristics of syn-
thetic images. Existing GAN architectures generate TIL and
non-TIL patches, but our proposed network shows improved
results. We targeted preserving real image features such as
image appearance, chromatin information, stain colors, and
tissue contents.

In summary, the novel technical contributions of this study
can be summarized as follows:

• The most important contribution of this study lies in the
architecture of TilGAN. Due to its novel architecture,
TilGAN generates millions of high-quality, clinically
significant TIL patches.

• Second, we propose a modified version of the relativistic
average cost function to preserve important pathological
signatures.

• Third, to our knowledge, this is the first report to pro-
pose a GAN that specifically aims to generate TIL and
non-TIL patches.

• Fourth, the generated synthetic images are used for clas-
sification model training.

The detailed method, along with the results, will be discussed
in the subsequent sections.

III. MATERIALS AND METHODS
A. DATASET
In total, 712H&E stainedWSIs of lung cancer (356 adenocar-
cinomas and 356 squamous cell carcinomas) were collected
from The Cancer Genome Atlas data repository (https://
tcga-data.nci.nih.gov/tcga/). This is a public repository,
and the data are freely available for research. For our
study, the collected data were equally split into two sets,
with zero overlaps. One half of the data, i.e., 356 WSIs
(178 adenocarcinomas and 178 squamous cell carcinomas),
was used for TilGAN, and the other half was used for
classification purposes. Out of the 356 WSIs, we used
75% (267 WSIs) for training and 25% (89 WSIs) for
testing of the TilGAN architecture. The ground truths
were generated by experts using HistomicsTK (https://
digitalslidearchive.github.io/HistomicsTK/). To train our
classification model, we used one million high-quality syn-
thetic images generated by TilGAN of size 224 × 224 pixels

and 10% (i.e., 36 WSIs out of the remaining 356 WSIs) real
labeled data. The rest of the 320 WSIs were split into testing
(50%) and validation sets (50%) to evaluate the classification
model. In the figure 2, the WSIs distribution chart has been
shown.

FIGURE 2. Whole slide images (WSIs) distribution chart.

B. TilGAN METHODOLOGY
We developed the TilGAN architecture for the synthesis of
TIL and non-TIL pathology images of size 224× 224 pixels.
This network was trained from scratch. We adopted a super-
vised learning strategy that uses hand-labeled images. There
are many GAN architectures available for natural image
synthesis, but few of them have been used for pathology
image generation. Pathology images carry essential clinical
features about cell nuclei, stroma, mitosis, lymphocytes, etc.
Hence, image synthesis using pathology data requires special
skills. Small changes in the visual appearance of nuclei,
lymphocytes, etc., may change the clinical meaning. The
workflow diagram of our proposed TilGAN architecture is
shown in figure 3.

1) TilGAN ARCHITECTURE DETAILS
The TilGAN architecture comprised a generator network
GNET and a discriminator network DNET . The input of the
generator was randomly chosen from the annotated real TIL
and non-TIL patches of size 224 × 224 pixels. The output
of the generator was synthetic TIL and non-TIL patches. The
generator was defined as a mapping function z to learn the
generator’s distribution over the data y. The discriminator,
DNET , showed the probability that y was more realistic than
the generator’s distribution. The generator network of TilGAN
comprised six convolutional layers, five up-convolution lay-
ers, and two dense layers. The up-convolution, is obtained
by a transposed convolution, operation increased the height
and width of the feature maps by two. The discriminator
of TilGAN was formed using six convolutional layers, six
down-convolution layers, and two dense layers. The down-
convolution, general convolution, operation decreased the
height and width of the feature maps by two. This design
helped the model learn the features from real images effi-
ciently and effectively. Different learning rates were used

VOLUME 9, 2021 79831



M. Saha et al.: TilGAN: GAN for Facilitating TIL Pathology Image Synthesis

FIGURE 3. The workflow diagram of our proposed TilGAN architecture.
At step 1, H&E-stained WSIs were processed to extract TIL and non-TIL
patches of size 224 × 224 pixels. At step 2, the input of the generator
network randomly selected real TIL and non-TIL patches, and the output
of the generator was synthetic TIL and non-TIL patches of the same size.
The inputs of the discriminator were real and synthetic TIL and non-TIL
patches. The discriminator network was used to discriminate real and
fake TIL and non-TIL cases. The training of the TilGAN model was
performed twice, as there were two types of data: TIL and non-TIL data.

for the generator and discriminator networks. The overfitting
issue was tracked by incorporating more data and varying the
dropout layers. During training, we set the dropout value to
0.5. The rectified linear unit (ReLu) activation function was
used after each convolution layer.

The detailed architecture of our proposed TilGANmodel is
shown in table 2.

TABLE 2. Proposed TilGAN architecture.

2) MODIFIED LOSS FUNCTION FOR THE TilGAN
ARCHITECTURE
Pathology images possess distinct types of textural, color, and
morphological features, which are linked with the patient’s
diagnosis and prognosis. Hence, it is essential to handle these

types of data separately, unlike other nonclinical data. The
existing loss functions of GAN architectures generated TIL
and non-TIL patches, but the clinical features of those images
were not consistent. Hence, we developed a modified version
of the relativistic average loss function to solve these issues.
We used the modified relativistic average cost function for
both networks (generator and discriminator). The fundamen-
tal theory of the modified relativistic average loss function
originates from the binary cross-entropy loss function [12] as
follows:

Loss(Ôd ,Od ) = Od · log Ôd + (1− Od ) · log(1− Ôd ) (1)

Here, Od and Ôd denote the original and recon-
structed data, respectively. When training the discriminator,
the labeled data from the original data distribution Pimage(y)
are Od = 1 (when the data are real) and Ôd = DNET (y).
Substituting these values into equation 1, we obtain

Loss(DNET (y), 1) = 1 · log(DNET (y))+ (1− 1)

· log(1− DNET (y))

⇒ Loss(DNET (y), 1) = log(DNET (y)) (2)

When the data are fake, the values of Od and Ôd will be
0 and DNET (GNET (z)), respectively. Substituting these values
into equation 1, we obtain

Loss(DNET (GNET (z)), 0) = 0 · logDNET (GNET (z))

+ (1− 0) · log

× (1− DNET (GNET (z)))

⇒ Loss(DNET (GNET (z)), 0) = log(1− DNET
(GNET (z))) (3)

The main purpose of the discriminator DNET is to distin-
guish real and fake images. Hence, equations 2 and 3 should
be maximized. Next, the discriminator loss will be as follows:

Loss(DNET )= max[logDNET (y)+ log(1− DNET (GNET (z)))]

(4)

The final generator GNET loss will be

Loss(GNET ) = min[logDNET (y)+ log(1− DNET
(GNET (z)))] (5)

If we combine equations 4 and 5, we obtain equation 6.
However, equation 6 is valid only for a single data point.

Loss = min
GNET

max
DNET

[logDNET (y)

+ log(1− DNET (GNET (z)))] (6)

To consider the entire large amount of data, equation 6 can
be modified as below: [57]–[59],

min
GNET

max
DNET

V (GNET ,DNET )

= Ey∼Pimage(y)[logDNET (y)]+ Ez∼Pz(z)
× [log(1− DNET (GNET (z)))]) (7)
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The loss functions of a standard GAN can be classified into
saturating and non-saturating loss functions [42]. Equation 7
is an example of a non-saturating loss function. In the case of
saturating loss, the equation for the discriminator will be

Loss(DNET ) = −Ey∼Pimage(y)[logDNET (y)]− Ez∼Pz(z)
[log(1− DNET (GNET (z)))] (8)

In the standard GAN, DNET (y) has been represented as a
DNET (y) = sigmoid(C(y)) [60], [61]. Here, C(y) determines
the possibility of having real or fake data. Hence, it is also
known as a critic or non-transformed discriminator output.
If the value of C(y) is negative, then the input data are fake,
and vice versa. After substituting the value of DNET (y) into
equation 8, we obtain

Loss(DNET ) = −Ey∼Pimage(y)[log(sigmoid(C(y))]

−Ez∼Pz(z)[log(1− DNET (GNET (z)))] (9)

With a relativistic standard GAN, we compute the distance,
which depends on the real and fake data distribution. Hence,
DNET (y) will change to DNET (yr , yf ) = sigmoid(DNET (yr )−
DNET (yf )). Here, r and f indicate real and fake data, respec-
tively. Now, the discriminator loss will be:

Loss(DNET ) = −E(yr ,yf )∼(R,N)[log(sigmoid(DNET (yr )

−DNET (yf )))] (10)

and the generator loss will be:

Loss(GNET ) = −E(yr ,yf )∼(R,N)[log(sigmoid(DNET (yf )

−DNET (yr )))] (11)

Here, DNET (yr ) = DNET (yf ) = 0.5 has been set as an
optimal point [61]. Equation 7 can also be generalized as

Loss(DNET ) = Eyr∼R[f1(DNET (yr ))]+ Ez∼Rz
[f2DNET (GNET (z)))] (12)

Loss(GNET ) = Eyr∼R[g1(DNET (yr ))]+ Ez∼Rz
[g2DNET (GNET (z)))] (13)

Here, functions f and g map a scalar input to another
scalar. The corresponding relativistic cost function will be as
follows:

Loss(DNET ) = E(yr ,yf )∼(R,N)[f1(DNET (yr )− DNET (yf ))]

+E(yr ,yf )∼(R,N)[f2(DNET (yf )− DNET (yr ))]

(14)

Loss(GNET ) = E(yr ,yf )∼(R,N)[g1(DNET (yr )− DNET (yf ))]+

+E(yr ,yf )∼(R,N)[g2(DNET (yf )− DNET (yr ))]

(15)

From equations 14 and 15 above, we can say that
f1(DNET (yr ) − DNET (yf )) = f2 − (DNET (yf ) −
DNET (yr )). Moreover, in the case of non-saturating loss,
f2(DNET (yf ) − DNET (yr )) = g1(DNET (yr ) − DNET (yf )), and
g2(DNET (yf ) − DNET (yr )) = f1(DNET (yr ) − DNET (yf )).

Based on the above properties, we can further simplify
equations 14 and 15 as:

Loss(DNET ) = E(yr ,yf )∼(R,N)[f1(DNET (yr )− DNET (yf ))]

(16)

Loss(GNET ) = E(yr ,yf )∼(R,N)[f1(DNET (yf )− DNET (yr ))]

(17)

The generic cost functions of the relativistic average GAN
for a generator and discriminator can be computed as:

Loss(DNET ) = Eyr∼R[f1(DNET (yr )− Eyf∼N(DNET (yf )))]

+Eyf∼N[f2(DNET (yf )− Eyr∼R(DNET (yr )))]

(18)

Loss(GNET ) = Eyr∼R[g1(DNET (yr )− Eyf∼N(DNET (yf )))]

+Eyf∼N[g2(DNET (yf )− Eyr∼R(DNET (yr )))]

(19)

In our data, TILs appear round and dark purple with deep
bluish nuclei. We aimed to maintain the stain color, tissue
contents, morphology, and textural details in our generated
images. The relativistic average GAN cost functions did not
generate output as expected. Hence, we tweaked the relativis-
tic average GAN as follows:

Loss(DNET )modified = Eyr∼R

[sum
{
f1(DNET (yr ))− Eyf∼N(DNET (yf ))

}
]

+Eyf∼N
[sum

{
f2(DNET (yf ))− Eyr∼R(DNET (yr ))

}
]

+V (r, f ) (20)

Loss(GNET )modified = Eyr∼R

[sum
{
g1(DNET (yr ))− Eyf∼N(DNET (yf ))

}
]

+Eyf∼N
[sum

{
g2(DNET (yf ))− Eyr∼R(DNET (yr ))

}
]

(21)

Here, V (r, f ) is computed using
√
{r ∗ (1− ε)+ f ∗ ε}

where ε = e−4. Figure 4 shows the results of the relativistic
average GAN loss and our proposed loss functions. The
results of figure 4(b) are much smoother than the figure 4(a).
Moreover, in 4(b) nuclei are easily identifiable. From the
results, it is clear that our loss function generates much better
result. The training and validation loss graph of TilGAN is
shown in figure 11.

FIGURE 4. (a) Results of relativistic average GAN loss functions;
(b) results of proposed loss functions.
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3) TilGAN TRAINING AND TESTING PROCEDURE
The TilGAN architecture was trained on 267 WSIs and tested
on 89WSIs. For the training of the TilGANmodel, we did not
perform data augmentation because it would generate addi-
tional noise with poor-quality images. Hence, our suggestion
is to use as many real, high-quality, hand-labeled images as
the input of the generator.We set the TilGANmodel batch size
to 100 and the learning rates ofGNET andDNET as to 1e-4 and
1e-5, respectively. The initial weights were standardized to
a mean of zero with 0.02 as a standard deviation. We used
the Adam optimizer with adaptive momentum. The values of
β1 and β2 were set to 0.5 and 0.99, respectively. We used the
TensorFlow framework for the development of TilGAN.

C. CLASSIFICATION ARCHITECTURE DETAILS
Classification was performed to verify whether our syn-
thetic images are efficient for discriminating real TIL and
non-TIL patches. Our classification architecture, developed
using Keras with the TensorFlow backend, was designed
using six convolution layers, ReLU, two max-pooling layers,
four dense layers, one flattened layer, one dropout layer, and
one batch normalization layer. The details of our classifica-
tion architecture are depicted in table 3.

TABLE 3. Classification architecture.

1) CLASSIFICATION MODEL TRAINING, TESTING, AND
VALIDATION PROCEDURE
Figure 5 shows the classification model workflow. For the
classification, we used one million high-quality synthetic
image patches of size 224×224 pixels, which were generated

FIGURE 5. Workflow diagram of the classification model.

by TilGAN. We added only 36 WSIs out of 356 WSIs with
TilGAN-generated images for better classification perfor-
mance. The rest of the WSIs were split into testing and
validation sets to evaluate the classification model. For our
classification algorithm, we used a sigmoid classifier and an
Adam optimizer. The training parameters were as follows:
learning rate as 0.0001, epoch as 50, dropout ratio as 0.5, and
loss function as binary cross-entropy.We used rectified linear
unit after each convolution layer.

D. EVALUATION METRICS
1) EVALUATION METRICS FOR TilGAN-GENERATED IMAGES
For the quantitative evaluation of the images generated by
our proposed TilGAN model, we used the Inception score
(IS) [15], kernel Inception distance (KID) [62], and Fréchet
Inception distance (FID) [63]. All the scores were calculated
using a pretrained Inception-v3 network [59], [64]. We cal-
culated the IS as follows [59], [65]:

IS = exp(Ey∼pimageKL(p(x|y) ‖ p(x)))) (22)

The marginal class distribution can be evaluated as:

p(x) =
∫
y
p(x|y)pimage(y) (23)

Here, y ∼ pimage means that y is an image set of pimage.
p(x|y) represents the conditional class distribution. KLmeans
KL divergence.

2) EVALUATION METRICS FOR THE CLASSIFICATION MODEL
The classification performances have been measured by
classification accuracy, precision, recall, and F1-score
[8], [66], [67]. We also computed the confusion matrix and
area under the receiver operating characteristic curve.

IV. RESULTS AND DISCUSSION
A. RESULTS OF TilGAN
We evaluated the quality of our proposed TilGAN-generated
fake images through a clinical evaluation by our experts.
They independently classified each image as real or fake
from sets of almost 1000 images. A subset of all the real and
TilGAN-generated fake images are shown in figures 6 and 7,
respectively. Over 96% of the TilGAN-generated fake images
were classified as real images, and all the real images were
classified as real. Less than 4% of the TilGAN-generated fake
images were classified as fake. From this experiment, it is
obvious that even for an expert, it is difficult to distinguish
TilGAN-generated fake images from a mixture of fake and

FIGURE 6. Real images of size 224 × 224 pixels.
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FIGURE 7. TilGAN-generated images of size 224 × 224 pixels.

real data. This finding means that the TilGAN architecture
generates high-quality images and maintains the proper stain
color with a significant amount of tissue content based on the
tumor stage.

Moreover, we also evaluated the quality and diversity of the
TilGAN-generated fake images by the most popular quantita-
tive evaluation metrics for GANs, i.e., the Inception score,
Fréchet Inception distance, and kernel Inception distance.
The Inception score was used to evaluate the quality and
diversity of the fake images. A high Inception score indicates
that the generated fake image contains high-density and clear
objects for all classes. However, this scoring technique has
a few disadvantages. One of the main disadvantages is that it
does not use the statistics of real data. To overcome this issue,
we used the Fréchet Inception distance and kernel Inception
distance. The Fréchet Inception distance has been used to
calculate the distance between Inception feature vectors for
fake and real images. The value of the Fréchet Inception
distance changes with the image diversity, as it is robust to
noise. If a dataset contains many diverse images, the Fréchet
Inception distance will be low or closer to zero. On the other
hand, if the image diversity between the real and synthetic
images decreases, the Fréchet Inception distance will be high.
The kernel Inception distance has been used to evaluate the
similarity between real and fake images [62]. If the kernel
Inception distance is low, the real and fake images are very
similar to each other, or it is very hard to distinguish them
from a mixture of real and fake images.

The results of the Inception score, Fréchet Inception dis-
tance, and kernel Inception distance are shown in table 4.
We calculated the Inception score on both real and TilGAN-
generated fake images because it only uses one kind of image

TABLE 4. Performance comparison between pathology GAN and the
proposed method (TilGAN) using evaluation metrics (IS, KID, and FID).

at a time. We achieved an Inception score of 2.32±0.02
(mean± standard deviation) for the real images and an Incep-
tion score of 2.90±0.04 (mean ± standard deviation) for the
fake images. This finding indicates that the TilGAN-generated
fake images contain high-density tissues and clear objects
and or more diverse. For the Fréchet Inception distance and
kernel Inception distance measurements, we used the outputs
of the last hidden layer, i.e., the pooling layer, of the same
pretrained Inception-v3 network [64]. The Fréchet Inception
distance is 0.312, which is very close to zero, and the kernel
Inception distance is 1.44±0.025. These two values are lower
than the Inception scores of the real and fake data. Undoubt-
edly, the TilGAN generates a more diverse and high-quality
dataset, which is almost similar to the real images. The real
and fake data distribution is shown using the t-stochastic
neighbor embedding (t-SNE) plot in figure 8. This plot gives a
good understanding of the visual and color similarities of the
generated synthetic images with the real images. The TilGAN
generates wide varieties of fake non-TIL patches, which also
include somewhite patches. Hence, some green dots are away
from the dense population.

FIGURE 8. t-SNE graph.

B. TIL AND NON-TIL IMAGE CLASSIFICATION RESULTS
In the previous sections, we have shown the results of
the qualitative and quantitative analysis of TilGAN. In this
section, we will show the performance of our classifica-
tion model, where 90% (i.e., one million) TilGAN-generated
images and 10% (i.e., 36 WSIs) real hand-labeled images
were used for model training for distinguishing real TIL and
non-TIL patches. Testing and validation of our trained model
was performed using only real images with zero overlap.
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The classification model was run for up to 50 epochs, and
the model started converging after 41 epochs. The training
and validation losses of our classification model are shown
in figure 12. A subset of the TilGAN-generated synthetic TIL
images and non-TIL images are shown in figures 9 and 10,

FIGURE 9. TilGAN-generated tumor-infiltrating lymphocyte images of size
224 × 224.

FIGURE 10. TilGAN-generated non-tumor-infiltrating lymphocyte images
of size 224 × 224.

FIGURE 11. Training and validation loss for the TilGAN model.

FIGURE 12. Training and validation loss for the TIL and non-TIL
classification model.

respectively. Figure 15 shows an accuracy plot of the real,
fake, and combined outcomes. In this plot, when only fake
images were used, we observed the unstable behavior of the
model’s performance from epochs 16 to 21. However, this
behavior is normal for any classification model. This finding
indicates that our proposed model is learning, and based on
the quality of the batch images, the learning performance
varies. We also noticed that after 36 epochs, the accuracy
plots of the real, fake, and combined outcomes converged.
However, their accuracy levels are different.

The accuracy for the real images is comparatively lower
than that of the proposed model (where 90% fake and 10%
real images were used). The main reason for this behavior
is that we only used a minimal number of real hand-labeled
data (i.e., 10%) for model training. Significant changes in
the accuracies were not observed when only fake and com-
bined (90% fake and 10% real) images were used for model
training.

The training scheme was repeated ten times with different
data as per the Monte Carlo cross-validation criteria. Each
time, the training and testing dataset was split randomly, but
the same principle applies.We achieved an average classifica-
tion accuracy of 97.83%, an F1-score of 97.37%, a precision
of 98.34%, and a recall of 96.49%. Table 5 shows the 10-fold
cross-validation results. We also computed the confusion
matrix on 18,400 image patches (8750 TIL and 9650 non-TIL
patches) of size 224 × 224 pixels. The confusion matrix is
shown in figure 16. Figure 17 shows a receiver operating char-
acteristic curve, which has an area under the curve of 97%.

TABLE 5. Ten-fold cross-validation results.
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FIGURE 13. TIL classification results on a single whole-slide image.

FIGURE 14. TIL classification results.

FIGURE 15. Accuracy curves.

From the above results, we can say that our classification
model accurately classifies the real TIL and non-TIL patches.

The classification results on the whole-slide pathology
images are shown in figures 13 and 14 using a heat map. For
heat map generation, the first whole-slide images were tiled
into 224× 224 pixels. Next, the probability score was calcu-
lated for each tile using our trained classification model. The
probability score determines the probability of having TILs
or non-TILs in a specific tile. In our experiment, 0 indicates a

FIGURE 16. Confusion matrix between the predicted label and true label.

FIGURE 17. Receiver operating characteristic curve.

TIL tile, and 1 indicates a non-TIL tile. When the probability
score was close to zero, then the tile was considered a TIL
tile, and when the probability score was close to 1, then the
tile was considered a non-TIL tile. In figure 13, red and blue
regions from the heat map were separately highlighted and
matched with the original WSI. The red and blue regions
represent the non-TIL and TIL regions, respectively, of the
original WSI. In figure 14, we show the heat map represen-
tation of the classification scores for two other whole-slide
images.

V. CONCLUSION
In this study, we proposed the TilGAN model for improving
the quality of synthetic pathology images. Our proposed
architecture differs from existing GANs mainly because of
architecture and loss functions. TilGAN does not contain
an attention layer, similar to the Pathology GAN architec-
ture [49]. In the TilGAN model, the numbers of layers in
the generator and discriminator are different. Because of
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these properties, we can maintain the quality and quantity
of specific types of target objects; in our case, it is TIL in
each tile. The generated TIL patches are mostly covered by
lymphocytes rather than stroma or other artifacts. Similarly,
non-TIL patches are mostly covered by stroma and other
artifacts rather than lymphocytes. This phenomenon is obvi-
ously a good sign of our architecture. This finding shows that
we are not using up our resources on generating low-quality
images. Another interesting point is our loss functions, which
maintain the features of TIL morphology, texture, and color
of real images in the synthetic images. Hence, image nor-
malization, enrichment, and translation are not essential as
in the approach proposed by [46]. We properly verified the
quality of our synthetic images by the Inception score, kernel
Inception distance, and Fréchet Inception distance metrics,
which showed promising results. We plotted the t-SNE graph
using real and synthetic images, which showed a strong cor-
relation between the real and synthetic images. Next, the gen-
erated synthetic images were physically verified by experts.
They faced difficulties in distinguishing the real and synthetic
images from the mixture of real and synthetic images. The
use of one million synthetic images for training the classi-
fication model was an additional evaluation measure for the
TilGAN model. Here, we showed that the TilGAN-generated
images can efficiently classify real TIL and non-TIL patches
with improved accuracy. From the various image verification
methods, we proved the usefulness and effectiveness of our
proposed TilGAN architecture. Therefore, we can say that
our approach performs better in generating TIL and non-TIL
images than other methods. In the future, this architecture
can be used to generate radiology and other non-clinical
data.

SOFTWARE AND HARDWARE
Our model was trained using TensorFlow (v 1.14.0) on
NVIDIA DGX-1 servers equipped with eight NVIDIA
V100 GPUs. As additional software, we used OpenSlide and
Python.

DATA AVAILABILITY
In total, 712H&E stainedWSIs of lung cancer (356 adenocar-
cinomas and 356 squamous cell carcinomas) were collected
from The Cancer Genome Atlas data repository (https://
tcga-data.nci.nih.gov/tcga/). This is a public repository, and
the data are freely available for research.

CODES
The relevant codes will be available for public upon
acceptance of this manuscript.
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