IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 2, 2021, accepted May 22, 2021, date of publication May 27, 2021, date of current version June 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3084131

Immunocomputing-Based Approach for
Optimizing the Topologies of LSTM Networks

ALI AL BATAINEH ", (Member, IEEE), AND DEVINDER KAUR™, (Life Senior Member, IEEE)

Electrical Engineering and Computer Science Department, The University of Toledo, Toledo, OH 43606, USA

Corresponding author: Ali Al Bataineh (ali.albataineh @utoledo.edu)

ABSTRACT This paper aims to automatically design optimal LSTM topologies using the clonal selection
algorithm (CSA) to solve text classification tasks such as sentiment analysis and SMS spam classification.
Designing optimal topologies involves determining the best configuration of hyperparameters that will give
the best performance. The current state-of-the-art LSTM topologies are often designed using trial and error
approaches which are incredibly time-consuming and require domain experts. Our proposed method, referred
to as CSA-LSTM, is evaluated using the Large Movie Review Dataset (IMDB). Furthermore, to verify the
robustness of the hyperparameters discovered by CSA for the IMDB dataset, we have used them for the other
datasets, viz. the Twitter US Airline Sentiment and the SMS Spam Collection. Additionally, the discovered
hyperparameters for the LSTM are combined with pre-determined convolutional neural network (CNN)
layers to achieve the same or better results to fast the training time and fewer trainable parameters. For
further verification and evaluation of the generalization ability and effectiveness of the proposed approach,
it is compared with four machine learning algorithms widely used for text classification tasks: (1) random
forest (RF), (2) logistic regression (LR), (3) support vector machine (SVM), and (4) multinomial naive Bayes
(NB). The results of our experiments show that the LSTM topologies automatically designed by our CSA
method are less expensive, reusable and outperform the machine learning algorithms and other models in the
literature evaluated on the same three datasets. Through our proposed method, LSTM’s best topology can
be self-determined without any human intervention, making CSA-based algorithms a promising approach
to automatically design optimal LSTM topologies that provide the best performance for a given task.

INDEX TERMS Clonal selection algorithm, deep learning, hyperparameters optimization, IMDB, immuno-

computing, long short-term memory.

I. INTRODUCTION

Today, deep learning is one of the most up-and-coming tech-
nologies that are mainly driving the modern rise of artificial
intelligence (AI) and machine learning [1], [2]. With the
significant advances in technology and algorithms in the last
few years, deep learning has paved the way for a new gener-
ation of Al applications [3]. In many of these applications,
i.e., classification from text, sound, or images, the perfor-
mance of deep learning algorithms matched and sometimes
exceeding human-level performance [4], [5]. Deep learning
refers to neural networks with several hidden layers [6], [7].
Deep neural networks perform computing tasks similar to
biological neurons in the human brain [8]. One of the most
commonly used algorithms behind the scenes of the amazing
successes seen in deep learning over the past few years is

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Lai

VOLUME 9, 2021

long short-term memory networks, a.k.a LSTMs [9]. These
networks provide a lot of flexibility and have proven them-
selves to be the state-of-the-art solution to a wide range of
sequence prediction problems such as natural language pro-
cessing (NLP) [10], machine translation [11], sentiment anal-
ysis [12], image captioning [13], and speech recognition [14].
LSTM networks are powerful and robust variants of recurrent
neural networks (RNN) and belong to the most promising
algorithms because they are the only network with internal
memory, enabling them to remember long sequence patterns.
Recently, there has been a lot of demand to design optimal
LSTM topologies automatically. The right network topology
has a big impact on the performance of deep learning models.
Unlike traditional machine learning models, deep learning
models contain many hyperparameters, and the designer must
configure their values before training [15]. Some of which
are significantly essential hyperparameters whose setting can
have a substantial impact on network performance. As a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 78993

https://orcid.org/0000-0003-4576-2781
https://orcid.org/0000-0003-0567-8585
https://orcid.org/0000-0002-7703-9793

IEEE Access

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

matter of fact, there may be an LSTM topology that provides
very accurate results for a given problem; however, if the
number of LSTM units is slightly increased, then the entire
topology may perform poorly on the same problem.

The optimal topologies are usually designed manually by
experts or by means of heuristics. The grid search approach
[16] is common to use when the number of dimensions (or
hyperparameters) is small. Although it guarantees to find
the best configuration, it is still not preferable for search
space that contains many hyperparameters. A better alter-
native in terms of time complexity to use is the random
search approach in which a combination of the hyperpa-
rameters is picked randomly from the configuration space.
However, the random search approach is not guaranteed
to find the best hyperparameters as it does not explore all
the possible combinations. Although both grid search and
random search approaches perform better than the manual
tuning approach in most cases, one common drawback of
both methods is that they do not consider the previously
chosen hyperparameters’ performance while choosing the
next hyperparameters set. Bayesian optimization is another
popular approach that has been used to direct a search for
deep learning model topologies. Unlike the grid search and
random search approaches, the Bayesian approach considers
past evaluation results while choosing a new hyperparameter
set. But it is still hard to implement the Bayesian approach in
practice [17].

Because of these challenges, there have been ever-growing
demand to automate the process of designing deep learning
topologies in a more efficient way in terms of the solution
obtained and the time complexity. We propose a simple
yet effective method based on the clonal selection algo-
rithms (CSA) to describe the above problems. CSA is an
effective technique fairly easy to search for optimal LSTM
topologies automatically. CSA has shown to deliver a more
robust and effective approach to solving optimization prob-
lems [18], [19]. It is capable of finding a global solution by
employing biologically inspired operators such as selection,
cloning, and hypermutation [20], [21]. This motivates us to
employ it to automate the challenging process of designing
LSTM topologies.

In a nutshell, the following contributions have been
delivered:

1) This work is the first to use a CSA-based method

to automatically search for optimal, reusable LSTM

topology for solving text classification tasks
such as sentiment analysis and SMS spam
classification.

2) This work has not used any regularization method,
which proves the effectiveness of CSA to discover
optimal topologies that can avoid overfitting.

3) We propose a simple integer encoding scheme to
encode the all the possible hyperparameters and the
layers of LSTM topology, allowing efficient implemen-
tation of different types of mutation like the truncated
Gaussian mutation.

78994

4) Our proposed method outperforms the proposed
machine learning algorithms and other models in the
literature on the three real-world datasets.

This paper is organized as follows. Section II presents related
work, describes the current limitations and highlights our
method’s contributions to the area. Section III provides a
background of LSTMs and CSA, respectively. Section IV
discusses in great detail the implementation of the pro-
posed CSA-based method to design LSTM topologies auto-
matically. Experiment design and results are provided in
Sections V and VI, respectively. Finally, conclusive remarks
for the current work and potential future ambitions in which
this research could advance are given in Section VII.

Il. RELATED WORK

A few recent works have investigated the use of nature-
inspired algorithms to automatically search for optimal
LSTM based RNN topologies. In [22], the authors proposed
a hybrid approach that integrates the LSTM network and
genetic algorithm (GA) for stock market forecasting. GA was
used to search for the optimal value for the time window
size and number of LSTM units. They concluded that the
GA-LSTM approach is an effective stock market forecasting
method to reflect temporal patterns and outperform standard
models.

In [23], the authors adopted the GA method to optimize
LSTM topologies for water temperature prediction in urban
rivers. Like [22], the GA was only used to find the optimal
values of the time window size and the number of LSTM
units. Their findings reported that the hybrid model of the
GA-LSTM network outperformed traditional RNNs and thus
can be used as an advanced deep learning system for time
series analysis.

In [24], the authors proposed an approach based on evo-
lutionary optimization techniques (i.e., GA and genetic pro-
gramming) for designing LSTM topologies. Experiments
were performed with three public word-processing datasets
for part-of-speech tagging. The findings showed that the
proposed approach is robust and outperformed random search
methods.

In [25], the authors proposed the particle swarm optimiza-
tion (PSO) algorithm to design the LSTM topology, which
involves finding the optimal values for only three hyperpa-
rameters: number of hidden neurons, activation function and
learning rate. Experiments were conducted with educational
datasets. However, no experiments compare their proposed
method to other neural topology search methods. So, it not
possible to draw any conclusions regarding the actual benefits
acquired from their proposed method.

In [26], the authors proposed a framework to automatically
search for optimal LSTM hyperparameters (batch size and the
number of hidden neurons) using differential evolution (DE)
for emotion classification. They evaluated and compared their
proposed framework with other hyperparameter search meth-
ods such as PSO, simulated annealing, and random search

VOLUME 9, 2021

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

IEEE Access

using a dataset they collected from wearable sensors. Exper-
imental results showed that DE is competitive in finding the
optimal LSTM hyperparameter values but is computationally
expensive.

In [27], the authors explored using the ant colony opti-
mization (ACO) algorithm to optimize the best previously
used LSTM RNN fixed topology to predict excessive turbine
engine vibration events. The evolved LSTM topology using
ACO reduced the engine vibration mean prediction error and
the number of trainable weights of the LSTM network.

In [28], the authors proposed the artificial bee colony (ABC)

algorithm, which imitates the behavior of bee colonies in
foraging to search for the optimal values of the hyperparam-
eters of the LSTM topology for bitcoin price prediction. The
finding of this study showed that the LSTM model evolved
using the ABC outperformed handcrafted LSTM models.
As can be seen from the related work, most research has
focused on designing LSTM topologies for only one specific
dataset and one type of problem, i.e., time series forecasting.
Our work expands this and discovers LSTM topologies using
CSA to work well for multiple challenging text classification
datasets. Additionally, in most cases, the related work took
into account only two hyperparameters (e.g., window size
and the number of LSTM units) for optimization. Besides
the number of LSTM units, our work includes more hyper-
parameters to optimize, for instance, the number of epochs,
batch size, optimizer, possibility to add fully connected layers
and the number of their neurons. Finally, our work proposes
adding CNN layers to reduce the number of trainable param-
eters (weights and biases), which can reduce the training time
and, at the same time, increase the model prediction accuracy.

Ill. BACKGROUND

A. LSTM

LSTM networks were designed by Sepp Hochreiter and
Juergen Schmidhuber to overcome the vanishing gradients
problem that can be encountered when training conventional
RNN models. In their paper [29], they work to address the
problem of long-term dependencies. LSTM networks also
have the chain-like topology of regular RNNs, but LSTM
units are used as the internal building units for the layers of
RNNS to extend the memory to remember inputs over a long
period of time. Each LSTM cell has the same inputs and out-
puts as a regular RNN but has more parameters and a gating
system to regulate the information flow. The most important
component in LSTM is the cell state which carries relevant
information via functional units called gates. There are three
gates: a forget gate, an input gate, and an output gate. These
gates decide which information to keep or throw away during
the training process based on their importance to make pre-
dictions. Figure 1 shows an illustration of an LSTM network
followed by an explanation for each of the three gates [30].

1) FORGET GATE
This gate decides what information should be forgotten
(thrown away) or kept. The decision is made by passing

VOLUME 9, 2021

ot x i

I =1

<)
FIGURE 1. LSTM network.

the previous hidden state #<'~'> and the current input x </~

through the sigmoid function (o). The output of this gate is
given in E.q (1); the closer to 1 means to keep, and the closer
to 0 means to forget.

;= (W e a ee)

where W<> and b="> are parameters specific to the forget
gate.

2) INPUT GATE
This gate is responsible for adding information to the cell
state. The addition of information is a three-step process:

1) A sigmoid function is used to regulate what values need
to be added to the cell state.

i<t> -0 <W<i> . [h<t—1>,x<t>] +b<i>) (2)

where W <> and h="> are parameters specific to the
input gate.

2) Creating a vector of new candidate values that could be
added to the cell state using the tanh function.

6<t> — tanh (W<c> . I:h<t71>7x<z>:| +b<c>) (3)

3) Multiplying the old cell state (C <"~ ~1>) with the forget
gate £ <'> and then we add i<"> % C<'> to update the
cell state (C<'>).

C<t> :f<t> * C<t71> + i<t> * é<t> (4)

This three-step process ensures that only important and not
redundant information is added to the cell state.

3) OUTPUT GATE
This gate selects and outputs necessary information. The
functioning of the output gate can be divided into two steps:

1) Employ a sigmoid function to decide what parts of the
cell state to output.

0<t> =g (W<0> [h<t—l> x<t>] +b<0>> (5)

78995

IEEE Access

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

2) Pass the cell state through a tan function and multiply
it with 0='> to decide what parts the hidden state h<'>
should carry.

h<t> — 0<l‘> * tanh(C<t>) (6)

The new C<'> and the new A='> is then transferred to
the next time step.

B. CSA

CSA [31] are a class of algorithms that belongs to the field
of artificial immune systems (AIS). AIS are one of the
youngest and most growing fields in nature-inspired com-
puting [32]. AIS are computational intelligence techniques
derived from the natural immune system functions and prin-
ciples for providing protection and maintenance of our bod-
ies [33]. The distinct features of the immune system, such as
self-organization, learning through experience and memory,
adaptation, recognition, robustness, and scalability, were the
motives for developing new algorithms and systems to solve
complex science and engineering problems [34], [35]. AIS
emerged in the early 1990s [36], [37] on the basis of a
proposal in the late 1980s to implement theoretical immuno-
logical models to machine learning and automated problem-
solving [38], [39]. Early work in the field was inspired by
immune network theory and applied to machine learning,
optimization, and control problems.

Forrest et al. [40], [41] and Kephart er al. [42] intro-
duced the immune system as an analogy for the develop-
ment of applications in computer security. These efforts were
developmental for the field of AIS because they created
an intuitive field of application that fascinated the public
and helped differentiate the work as an independent sub-
domain. Modern AIS are inspired by one of three main
immunological theories: clonal selection, negative selection
and immune network. The methods are commonly used for
optimization, clustering, classification, anomaly detection,
computer security and other similar machine learning prob-
lem domains [43].

CSA was inspired by Burnet’s proposed clonal selection
theory of acquired immunity [44], [45]. The theory explains
how B and T lymphocytes improve their response to anti-
gens over time, which is called affinity maturation. When a
lymphocyte is selected and binds to an antigen determinant,
the cell replicates, making many copies of itself and differen-
tiating into different types of cells (plasma and memory cells).
Then the selected cell undergoes somatic hypermutation that
alters the shape of the expressed receptors and the capabilities
to recognize subsequent determinants of both lymphocyte
surface-bound antibodies and the antibodies produced by
plasma cells [46].

CSA has shown to be robust in avoiding local min-
ima, self-tuning (in terms of resources used), insensitive
to user parameters and very competitive to solve search
and optimization problems [21]. The algorithm uses analogs
of a genetic representation (e.g., decimals or binary),

78996

affinity (function evaluations), bio-operators such as selec-
tion, cloning and affinity maturation (mutation) [47].

Algorithm 1 A General Pseudocode of the CSA
Data: Initial Antigen (Ag), Population Size (N) 8, o
Result: Best
while —StopCondition () do

Population < Create Initial Population (N);

foreach Ab € Population do
| Affinity (Ab);

Selected Population < Select (Population, m) ;
Clones < 0;
foreach Ab € Selected Population do

L Clones < Clone (Ab, B);

Mutated Clones < @;

foreach Ab € Mutated Clones do
Mutate (Ab, o) ;

L Affinity (Ab);

Best < select (Mutated Clones, Best Clone) ;
Replace (Ag, Best);

Algorithm 1 provides a pseudocode listing of the CSA.
The CSA model involves first initialize a random poten-
tial solution called an antigen. In response to the antigen,
a population of antibodies (candidate solutions) is randomly
generated. The affinity score of each antibody is scored based
on the predefined objective function. The antibodies that have
a higher affinity (or fitness) score than the antigen will be
selected. The selected antibodies m are subjected to cloning
proportional to affinity (rank-based). The number of clones
generated from each antibody is calculated as follows:

N, = round (—'B 1N> @)

In (7), N, is the total number of clones created for a given
antibody, g is a clonal factor, N is the size of the population,
i is the antibody current rank where i € [1, m], and round (.)
is the operator that rounds its argument towards the closest
integer.

The clones then undergo affinity maturation (mutation)
inversely-proportional to clone affinity. The mutation rate
can be implemented based on rules like the one defined
in (8) [48]:

1
o = — exp(—f) (8
0

where « is the mutation rate, p controls its decay, and f is the
antibody affinity normalized in [0,1].

The new affinity value of each clone is calculated, and
the best clone is selected, and the rest of the clones are
removed. Finally, the selected clone will evolve and becomes
the primary antigen of the next generation, and the process
is repeated for several iterations until the desired solution is
found.

VOLUME 9, 2021

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

IEEE Access

TABLE 1. Hyperparameters of the LSTM topology and their range.

Hyperparameter Range

Number of Epochs [1-16]

Batch Size [16, 32, 64, 96, 128, 196, 256, 500]
Embedding vector size [16, 32, 48, 64, 96, 128]

Number of LSTM layers [1-3]

Number of LSTM units

in each LSTM layer (8, 16,24, 32, 48, 64, 96]
Number of dense layers [0-3]

Number of neurons for each [1-49]

dense layer (if any)

[SGD (1), Adadelta (2), RMSprop (3),
Adam (4), Nadam (5)]
Activation function at the output layer [Sigmoid (1), Softmax (2)]

Optimizer

IV. PROPOSED METHOD

In this section, we implement a framework using CSA to
automatically design LSTM topologies to improve their per-
formance to solve text classification problems. This involves
the ability to evolve many hyperparameters of the topology.
CSA can provide a powerful heuristic search for complex and
large spaces if an efficient encoding of that search space is
adopted. The encoding must enable the direct use of the muta-
tion operators. The affinity evaluation method of CSA must
also be determined and implemented. Given these constraints,
we propose an integer encoding scheme for the CSA method.
The integer encoding scheme can efficiently encode all the
hyperparameters and possible LSTM topologies and enable
different mutation applications. The hyperparameters associ-
ated with the LSTM topology and their ranges considered in
our proposed approach are presented in Table 1.

Figure 4 shows the overall process to find the best hyper-
parameters for the LSTM model using CSA. The following
steps IV-A through IV-H describe the complete procedure in
detail.

A. ANTIGEN ENCODING
To use clonal selection algorithms, we must first represent
the problem domain as an antigen. Here, we want to find an
optimal set of hyperparameters for the LSTM model. Initial
hyperparameters in the LSTM network are chosen randomly
within their range specified in Table 1. The hyperparameters
set can be represented by a 1D vector in which an integer
number corresponds to a particular hyperparameter. In total,
there are 10 hyperparameters. Since an antigen is a collection
of genes, a set of hyperparameters can be represented by a
10-gene antigen, where each gene corresponds to a single
hyperparameter. Figure 2 represents a random LSTM topol-
ogy encoded into an antigen in integer format.

Below is a brief description of the topology hyperparame-
ters to be optimized by CSA.

The first hyperparameter is the number of epochs.
It defines the number of times the learning algorithm will
run through the entire training data. Little training (very few
epochs) will indicate that the model will underfit the train-
ing and the testing data. Much training (too many epochs)
will indicate that the model will overfit the training dataset
and perform poorly on the testing dataset. The batch size
is an important hyperparameter that determines the number

VOLUME 9, 2021

#LSTM
layers

I I

‘ 0 3 00001 1

LI 18
S

Embedding| |, # Neurons for .
vectorsize | LEIM b each dense layer Oetimuze

Learning
rate

Batch size # Dense layers Sigmoid

Epochs

FIGURE 2. Integer encoding of the LSTM hyperparameters into an antigen.

of examples propagated across the network before updating
the model parameters (e,g. weights and biases). Generally,
a larger batch size leads to faster training, but it requires more
memory space and does not always converge as fast. Smaller
batch size is slower to train, but it can converge faster. The
embedding vector size is the dimensionality for each word
vector. This hyperparameter belongs to the embedding layer,
a technique for representing words using a dense vector rep-
resentation. The embedding layer is always the first hidden
layer of the LSTM network. LSTM layers and their number of
units (LSTM units) are also critical hyperparameters to find
their optimal values as they greatly impact the overall perfor-
mance of the LSTM model. The possibility of adding dense
layers and their optimal number of neurons are also included.
Additionally, Relu is used as the activation function in dense
layers (if there are any). Optimizer is likewise an important
hyperparameter to be tuned/optimized. Optimizers are algo-
rithms or techniques used to tweak and change the neural net-
work’s parameters, such as weights and biases, to minimize
the losses. Finally, because we evaluate our approach with
binary classification datasets (e.g., positive/negative and/or
spam/not spam), the activation function used at the last (or
output) layer is also optimized. If sigmoid is selected, then
one neuron is used at the last layer with binary cross-entropy
being the loss function, whereas if softmax is chosen, then
two neurons are used, which is corresponds to the number of
classes or labels of the dataset with categorical cross-entropy
being the loss function.

B. ANTIBODIES CREATION

As the immune system creates several antibodies in response
to fight the antigen, similarly, in the CSA algorithm, antibod-
ies are created in response to the initial antigen initialized
above. In simple terms, a random population of N antibodies
(the number of LSTM networks with different hyperparame-
ters) is generated as shown in Figure 3. Each antibody in the
population is encoded in the same way as the antigen. For this
work, the size of the population is selected to be 20.

C. AFFINITY EVALUATION

To evaluate each antibody’s affinity, we need first to define
the fitness function. Since this is a binary classification task,
the test classification accuracy is used as the fitness func-
tion to be optimized or maximized. This means training the
LSTM model weights and biases using a particular set of

78997

IEEE Access

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

Aby 16 48 1 ‘ 64 ‘ 0 ‘ 0 1 (00001 1

Aby 128 , ‘ 96 ‘ , ‘ 15 3 0.01

EEE
EEE

Aby 16 48 3 ‘24 ‘ 1 ‘ 9 4 |0001| 2

Abyy 64 50 & ‘ 16 & ‘32 5 |0.0001 1

Abyy 500 96

E E
ElE

2‘16‘1‘46 5 (0001 2

FIGURE 3. Initial population of candidate solutions.

hyperparameters determined by the antibody genes on the
training dataset and then see how well it performs at clas-
sifying the test set. The higher the accuracy, the fitter the
antibody. In other words, the CSA attempts to discover the
best set of hyperparameters that maximize accuracy.

D. SELECTION

In the selection process, the antibodies with higher affinity
than the antigen are selected to move forward for cloning
and mutation stages. Antibodies with lower affinity than the
antigen will not go forward for cloning and mutation, and they
will be removed from the population. This is a good approach
to reduce the execution time of the algorithm.

E. CLONING

In the cloning process, a number of clones will be generated
from each of the selected antibodies. In this implementation,
all selected antibodies, regardless of their affinity values, have
the same clone size, which is fixed to 10 clones.

F. MUTATION

Mutation is the process of randomly altering genes in a given
antibody to introduce diversity in the population. Mutation
is a major part of the CSA, which enables to achieve global
optimization and thus helping to escape from local opti-
mization. In CSA, the mutation is inversely proportional to
the affinity of an antibody. Meaning the higher the affin-
ity, the lower the mutation and vice-versa. This is known
as affinity maturation. For this work, mutation function is
performed by selecting random genes in each clone (inversely
proportional to the affinity with p = 1.0) and replacing their
values with random values drawn from a truncated Gaussian
distribution. The truncated Gaussian Distribution is defined
in the same manner as the normal distribution: by the mean
and standard deviation, and we also determine a range to
limit the distribution to an upper, lower or double truncated
distribution. Figure 5 represents a mutation process using the
truncated Gaussian applied to a clone.

G. AFFINITY EVALUATION OF THE MUTATED CLONES
For each mutated clone, train the LSTM using the training
dataset and calculate the accuracy (affinity) of LSTM model

78998

Original clone 1 500 96 2 ‘ 16 ‘ 1 ‘ 46 1 0.001 1
=
c
g
=
=1
Mutated clone 7 128 32 3 ‘ 16 ‘ 2 ‘ 32 3 0.001 1

FIGURE 5. Mutation operation for LSTM hyperparameters optimization.

using the test dataset. Once the affinity is calculated for all,
we sort them in ascending order based on their affinity, then
we select the one with the highest affinity and kills off the
rest.

H. STOPPING CRITERION

The best clone replaces the original antigen and becomes the
primary antigen for the next generation. The whole process
is repeated multiple times until stopping criterion such as
optimal solution (LSTM topology) or the maximum number
of iterations (generations), which is 50 has reached.

V. EXPERIMENT DESIGN

A. DATASETS

Three widely used benchmark datasets for text classifica-
tion are utilized to evaluate the performance of the pro-
posed method and other algorithms. Each dataset is briefly
described below.

1) IMDB DATASET

The large movie review dataset (IMDB) is a binary sentiment
analysis classification dataset. The data was collected by
Stanford researchers in 2011 [49]. The task is to classify
the sentiment of a particular movie review as either posi-
tive or negative. The dataset includes 25,000 positive reviews
and 25,000 negative reviews. The average movie review is
below 300 words, with a standard deviation above 200 words.

2) TWITTER US AIRLINE DATASET

The dataset initially released by Crowdflower’s Data for
Everyone library comprises several tweets taken from the
standard Kaggle Dataset: Twitter US Airline Sentiment [50].
A total of 14,640 tweets were extracted, which created the
experimental dataset. The tweets collected were for the six
major U.S. airlines of February 2015. Contributors were
requested first to classify positive, negative, and neutral
tweets, followed by describing negative reasons (such as *’late
flight”” or ’rude service’’). For this work, tweets are classified
as either negative or positive; therefore, rows/samples with
neutral sentiment were filtered out. After this, the dataset
includes 2,363 positive tweets and 9,178 negative tweets. The
task is to predict the sentiment of a tweet about US airlines
as either positive or negative. The average tweet is below
110 words, with a standard deviation of just over 40 words.

VOLUME 9, 2021

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

IEEE Access

Initialize antigen
(random LSTM)

Hyperparameters

CSA

}

Initialize antibodies
(random LSTMs)

Calculate affinity

v

Select m antibodies

v

} SE—

e,

™
7]
—
=
=
Q

(=N
E.

v

Mutate

v

Clone i
Calculate affinity i

v

Replace antigen

Y

!
!

—
ﬁ —
—

Select best one

¥

Stopping No
condition?

,L. Yes

Optimal solution

FIGURE 4. CSA-LSTM overall procedure.

3) SMS SPAM COLLECTION DATASET

The dataset is a public set of SMS-tagged messages that have
been collected for SMS spam research and have been labeled
as either spam or ham [51], [52]. It contains 5,574 SMS
phone messages and labels. It is an imbalanced dataset with
4,825 ham compared to 747 spam messages, making it
more challenging. The task is to classify a text message as
spam or not (aka ham). The average SMS message is below
100 words, with a standard deviation of just over 100 words.

B. TEXT CLEANING AND PREPROCESSING

Machine learning and deep learning models require numeric
data as they work best when inputs are numerical. Online tex-
tual data such as reviews and tweets are usually inconsistent
and lack specific features or missing values that must be han-
dled before any analysis is conducted. Encoding techniques
like TF-IDF, BagOfWord, and Word2Vec are often used to
transform the text data into a numeric vector. However, before

VOLUME 9, 2021

Affinity score

encoding, the textual data must be cleaned up first. The
following cleaning steps have been done for all three datasets:

« Datafiltration: So that it contains the only data required
for sentiment-based classification. For instance, the data
columns needed for the Twitter US Airline Sentiment
dataset are the airline sentiment and text columns. It’s
a classification problem; thus, that text will be the fea-
tures, and airline sentiment will be the labels.

« Data shuffle: Random shuffle of the data before split-
ting it between the train and the test sets to ensure that
the sentiment classes are distributed evenly across the
train and test sets.

o Train-test data split: The performance evaluation of
the model should be performed on a test set. By doing
s0, we can evaluate how robust the generalization of the
model is.

« Removing irrelevant words: Remove all unnecessary
words that do not add any meaning to the sentence

78999

IEEE Access

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

(URLs, HTML tags, numbers, punctuation, etc.), and all
characters are converted into lowercase to avoid dupli-
cation.

o Tokenization: Each given text was split into chunks of
words.

+ Removing stopwords: Stopwords like ““a,” “the,” “is,”
“all,” etc., that do not carry significant meaning were
removed from texts.

« Normalization: All words were normalized using the
lemmatization approach.

« Mapping words to integers: Every single word or token
was mapped into a unique integer

o Padding/truncating: All (inputs) must have the same
length before feeding them to the model. For example,
if the maximum input length is limited to 500, inputs
longer than 500 will be truncating, and inputs that are
shorter than 500 are padded with zeros.

« Word embedding: Discrete words are encoded as real-
valued vectors in a high-dimensional space for con-
sumption by the deep learning model. There are many
word embedding techniques; for this research, we have
used the Keras embedding layer, which provides an easy
means to transform positive integer representations of
words into word embeddings.

C. PERFORMANCE METRICS

Selecting the proper metric is crucial while evaluating deep
and machine learning models’ performance. Several metrics
have been proposed for evaluating machine learning models
in different applications. In some applications, especially
when dealing with imbalanced data looking at a particular
metric may not provide the full picture of the problem being
solved, and we may need to apply a subset of the metrics to get
a concrete evaluation of the models. For this reason, we used
well-known metrics such as accuracy, precision, recall, and
F1-score for performance evaluation [53]. Before describing
the metrics, there are four major terms to define:

o True Positives (TP): The instances in which the model
correctly predicts positive and the true output is also
positive.

o True Negatives (TN): The instances in which the model
correctly predicts negative and the true output is also
negative.

o False Positives (FP): The instances in which the model
predicts positive and the true output is negative.

« False Negatives (FN): The instances in which the model
predicts negative and the true output is positive.

1) Accuracy: It is a good indicator of the model perfor-
mance when the class distribution is balanced. It is
calculated as the ratio between the total number of
correct predictions to the total number of predictions.

R TP + TN)
ccuracy =
Y= TPLIN + FP+FN

2) Precision: It is a good indicator of the model per-
formance when the class distribution is imbalanced.

79000

Precision is calculated as the ratio between the total
number of positive examples correctly classified to the
total number of examples classified correctly or incor-
rectly as positive. In other words, The precision metric
measures the accuracy of the model in classifying an
example as positive.

. TP
Precision = ——— (10)
TP + FP

3) Recall: It can be defined as the ratio between the num-
ber of correctly classified positive examples to the total
number of positive samples. In other words, the recall
metric measures the model’s ability to recognize posi-
tive examples. The higher the recall, the more positive
examples recognized.

TP
Recall = —— (11D
TP + FN

4) Fl-score: It helps to have a measurement that repre-
sents both recall and precision. It is calculated as the
harmonic mean of precision and recall.

Precision % Recall
F1-score = 2 % — (12)
Precision + Recall

1) EXPERIMENTAL SETUP

The CSA-LSTM was implemented in Python 3.7 using a
high-level neural networks API called Keras running on top of
TensorFlow. The research was conducted with a Lenovo lap-
top powered by a processor-Intel(R) Core(TM) i7-9750HX
CPU @ 2.60GHz and 32 GB DDR4 RAM with Nvidia
GEFORCE GTX GPU with 6 GB of GDDRS5 memory. The
estimated work time of the CSA to find an optimal set of
hyperparameters for the LSTM model was approximately
1.5 hours.

The classification process using LSTM is illustrated
in Figure 6. First, the text data was clean and prepro-
cessed; afterward, word embedding, particularly the embed-
ding layer, was used to transform the textual data into numeric
vectors (feature extraction). After that, the training is done
using the LSTM model with the optimal hyperparameters
discovered by the CSA. Lastly, a prediction is made on test
data, and the performance is evaluated based on the metrics
described above.

The proposed CSA-LSTM was benchmarked using the
IMDB dataset. The obtained optimal hyperparameters was
also used for two other datasets: Twitter US Airline Sentiment
and the SMS spam collection. However, The Epochs hyperpa-
rameter, which CSA found to be 4, was changed to 10 for the
Twitter US Airline dataset and 14 for the SMS Spam dataset.
Another possible choice to avoid increasing the number of
epochs is to reduce the batch size from 500 (found by CSA)
to another size like 128 or 64.

Table 2 shows each dataset’s specification, and Table 3
provides the final optimized hyperparameters of the LSTM
topology optimized by the CSA.

The LSTM hyperparameters found by CSA were also com-
bined with pre-determined CNN layers as shown in Figure 7.

VOLUME 9, 2021

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

IEEE Access

Text data

}

Cleaning & pre-
processing

|

Feature extraction
(Embedding layer)

LSTM

——| Classification '—» Output —»

annefau 1o aanisod

FIGURE 6. A diagram of the text classification process using LSTM model.

TABLE 2. Specification of the IMDB, SMS Spam, and Twitter US Airline
datasets.

IMDB SMS Spam Twitter US Airline
Input length 500 100 200
Vocabulary size 181,556 8,024 13,234
#Training examples 45,000 4,457 9,232
#Test examples 5,000 1,115 2,309
#Classes 2 2 2

TABLE 3. The final optimal hyperparameters of the LSTM topology
discovered by our proposed CSA method.

Hyperparameter Value

#Epochs 4

Batch size 500

Embedding vector size 16

#LSTM layers 1

#LSTM units 32

#Dense layers 0

#Neurons for each dense layer 0

Optimizer Adam (n = 0.01)

Activation function at the output layer Sigmoid

This technique is referred to as CSA-CNN-LSTM in this
research. It attempts to deliver similar or better results to
the first (CSA-LSTM) to fast the training time and less
parameters.

For further evaluation, the research also implemented four
other machine learning algorithms widely used for text classi-
fication tasks, namely random forest, logistic regression, sup-
port vector machine, and multinomial naive Bayes. For these
four algorithms, extracting features from the text data was
done by applying the bag-of-words (BOW) and the TF-IDF
vectorization techniques. These features or vectors are then
fed directly as inputs into the machine-learning algorithms.
Both vectorization methods will produce different numbers of
features for each text or review, depending on the availability
of the number of tokens in the text. As described earlier, this
problem can be solved by using padding. We have observed
that these machine learning algorithms achieved higher accu-
racy using the TF-IDF than the BOW approach. There-
fore, we included only the algorithms’ results using the
TF-IDF approach and compare their performance with the

VOLUME 9, 2021

TABLE 4. Number of parameters, GPU training time, and test accuracy of
our proposed CSA-LSTM model.

Dataset #Parameters Training time (sec) Test accuracy
IMDB 166,305 83.2 89.52%
SMS Spam 134,689 4.4 98.48%
Twitter US Airline 218,049 5.6 92.25%

TABLE 5. Number of parameters, GPU training time, and test accuracy of
our proposed CSA-CNN-LSTM model.

Dataset #Parameters Training time (sec) Test accuracy
IMDB 165,673 11.3 89.88%
SMS Spam 134,057 34 98.74%
Twitter US Airline 217,417 4.8 92.77%

research’s proposed models. We implemented the four algo-
rithms with the help of the scikit-learn library. Additionally,
We have not customized the algorithm’s hyperparameters;
rather, we chose the sensible default values for the hyperpa-
rameters of each model provided in the scikit-learn library.

VI. RESULTS

The performance of our proposed approaches CSA-LSTM
and CSA-CNN-LSTM in terms of the number of trainable
parameters, GPU training time (sec), and test accuracy for
the three datasets is provided in Tables 4 and 5, respectively.
We can see that the CSA-CNN-LSTM achieves better accu-
racy than CSA-LSTM, although with fewer parameters and
faster training time. This validated our proposed hypothesis
that combining CNN with LSTM reduces the training time
and often leads to better accuracy.

A. PERFORMANCE COMPARISON

1) COMPARISON WITH OUR MACHINE LEARNING
ALGORITHMS

Table 6 compares the performance of the proposed models
against the four machine learning algorithms that are eval-
uated on the IMDB dataset. It shows that the performance
of CSA-CNN-LSTM outperforms all other models in all
evaluation metrics followed by the CSA-LSTM.

79001

IEEE Access

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

Text data

v
Cleaning & pre-
processing

¥

Feature Extraction
(Embedding layer)

!

Filters= 8 i
Filter size=3x3! mmm > R
Relu : ol

Stride=txt | |

Maxpooling layer 1D

Pooling size=2x2
| Pooling stride=2x2

—=| Classification }—» Output —>

LSTM

aanebau Jo sAnISod

FIGURE 7. A diagram of the text classification process using CSA-CNN-LSTM model.

TABLE 6. Performance evaluation comparison for all models on the IMDB
dataset.

Model Accuracy Precision Recall F1-score
CSA-LSTM 89.52% 88.58% 90.77% 89.66%
CSA-CNN-LSTM 89.88% 89.37% 90.05% 89.71%
Random forest 54.66% 54.38% 52.34% 53.34%
Logistic regression 51.60% 51.22% 47.41% 49.24%
Support vector machine 53.04% 52.37% 57.10% 54.63%
Multinomial naive bayes 50.12% 49.78% 85.50% 62.93%

TABLE 7. Performance evaluation comparison for all models on the SMS
Spam dataset.

Model Accuracy Precision Recall F1-score
CSA-LSTM 98.48% 97.05% 91.03% 93.95%
CSA-CNN-LSTM 98.74% 93.33% 96.55% 94.91%
Random forest 92.64% 78.89% 59.31% 67.71%
Logistic regression 85.02% 3333% 15.17% 20.85%
Support vector machine 89.05% 67.69% 30.34% 41.90%
Multinomial naive bayes 80.35% 36.39% 68.27% 47.48%

The results of all models for the SMS Spam dataset are
provided in Table 7. CSA-CNN-LSTM again delivers the
best results, followed by CSA-LSTM. The SMS dataset is
too small and has an imbalanced number of instances for
each class. The performance could be further improved using
data augmentation techniques such as the Synthetic Minority
Oversampling technique or SMOTE for short [54]. This
simple method includes duplicating instances in the minority
class.

In Table 8, the results of the models for the Twit-
ter US Airline dataset are given. This dataset also has
an imbalanced number of instances for each class, and
the performance considerably could be enhanced using
the SMOTE approach. CSA-CNN-LSTM again outperforms
other methods, followed by CSA-LSTM. Once more, these
results evidence the proposed CSA algorithm’s competence

79002

TABLE 8. Performance evaluation comparison for all models on the
Twitter US Airline dataset.

Model Accuracy Precision Recall F1-score
CSA-LSTM 9225% 94.06% 95.94% 94.99%
CSA-CNN-LSTM 92.77% 94.50% 95.88% 95.19%
Random forest 83.32% 83.85% 89.05% 90.40%
Logistic regression 80.03% 80.06% 99.94% 88.91%
Support vector machine 80.07% 80.10% 99.94% 88.93%
Multinomial naive bayes 53.44% 90.31% 46.89% 61.73%

TABLE 9. Comparative accuracy against other methods.

Model Dataset Accuracy
CNN-LSTM [55] IMDB 88.90%
Bag of Words [49] IMDB 88.89%
Doc2VecC [56] IMDB 88.30%
coRNN [57] IMDB 87.4%
S-LSTM [58] IMDB 87.15%
Reverse DR-AGG [59] IMDB 45.5%
Standard DR-AGG [59] IMDB 45.1%
RNN [60] SMS Spam 98.11%
SVM-based spam filter [61] SMS Spam 97.81%
NB-based spam filter [61] ~ SMS Spam 80.54%
SVM + tok1 [62] SMS Spam 97.64%

AdaBoost [63] Twitter US Airline 84.5%

in designing optimal LSTM topologies that provide the best
performance for NLP problems.

2) COMPARISON AGAINST OTHER MODELS IN THE
LITERATURE

Table 9 compares our proposed models’ accuracy against
other models that have been evaluated on the same three
datasets.

For the IMDB dataset, the best accuracy among the existing
research works [55] using manually designed CNN-LSTM
is 88.90%. Our proposed CSA-LSTM model shows an accu-
racy of 89.52%. Our CSA-LSTM model on the SMS Spam
dataset outperform other models implemented using RNN,

VOLUME 9, 2021

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

IEEE Access

SVM, NB and SVM + tokl with an accuracy of 98.48%.
The CSA-LSTM model shows an accuracy of 92.25% with
a margin of 7% increase compared to the existing work on
the Twitter US Airline dataset. The results prove that our pro-
posed model is consistently better compared to other models.

VII. CONCLUSION AND FUTURE WORK

Designing LSTM-based RNN topologies is a very challeng-
ing task due to the many hyperparameters that need to be
configured. With the large number of hyperparameters for
most LSTM models nowadays, it is not easy to manually
find a desirable configuration for a specific task. Due to the
shortcomings of current methods and the limited comput-
ing resources available to experimenters, optimizing LSTM
topologies are often performed by domain experts who adopt
innovative theoretical insights and intuitions gained from
experience. This research has successfully implemented a
novel framework for the automatic design of LSTM topolo-
gies using CSA to address text classification tasks. The
proposed framework aims to help the deep learning commu-
nity design optimal LSTM topologies in a fully automatic
manner without the need for expert knowledge or much trial
and error. Our CSA approach features the use of a simple
encoding scheme for encoding LSTM topologies in integer
vector representation. We have also implemented an effi-
cient mutation scheme using Truncated Gaussian. Truncated
Gaussian mutation was found to be efficient and fast in
finding a solution near optimum. We have also introduced an
affinity evaluation process to measure each evolved topology
fitness quickly and accurately. Our experiments were carried
out on three challenging benchmark datasets. Experimental
results show that our proposal outperforms nearly all the
state-of-the-art machine learning methods used for text clas-
sification problems and many other models reported in the lit-
erature. Additionally, the optimal hyperparameters of LSTM
topology found by CSA were combined with pre-determined
CNN layers to improve the CSA-LSTM performance with
less weights and faster training time. With the help of CSA,
we found cost-efficient, less complex, and reusable topology
that can work with multiple datasets and still achieve high
accuracy. We also saw how the problem of overfitting could
be avoided without using any regularization method if the
right number of hyperparameters and their values are used,
which was fulfilled through our CSA method. Therefore,
this research signifies that CSA is a powerful technique that
should be considered as an alternative to other techniques to
automatically optimize LSTM model hyperparameters and
search for the ideal topology.

The future direction of the current research would focus on
extensive evaluations of the CSA method on a large number of
benchmark datasets. Another potential future direction in this
domain would be to propose efficient CSA methods to design
different LSTM topologies automatically to solve important
NLP tasks such as automatic summarization, machine trans-
lation, speech recognition, and image captioning.

VOLUME 9, 2021

REFERENCES

[1]

[2]

[3]
[4]

[5]

[6]

[71

[8]

[9]

[10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

A. S. A. Bataineh, “A gradient boosting regression based approach for
energy consumption prediction in buildings,” Adv. Energy Res., vol. 6,
no. 2, pp. 91-101, 2019.

A. A. Bataineh, A. Mairaj, and D. Kaur, “Autoencoder based semi-
supervised anomaly detection in turbofan engines,” Int. J. Adv. Comput.
Sci. Appl., vol. 11, no. 11, 2020, doi: 10.14569/IJACSA.2020.0111105.

I. Goodfelow, Y. Bengio, and A. Courville, Deep Learning (Adaptive
Computation and Machine Learning Series). 2016.

S. M.]. Jalali, S. Ahmadian, A. Khosravi, S. Mirjalili, M. R. Mahmoudi,
and S. Nahavandi, ‘“Neuroevolution-based autonomous robot navigation:
A comparative study,” Cognit. Syst. Res., vol. 62, pp. 35-43, Aug. 2020.
S. M. J. Jalali, P. M. Kebria, A. Khosravi, K. Saleh, D. Nahavandi,
and S. Nahavandi, “Optimal autonomous driving through deep imitation
learning and neuroevolution,” in Proc. IEEE Int. Conf. Syst., Man Cybern.
(SMC), Oct. 2019, pp. 1215-1220.

S. M. J. Jalali, S. Ahmadian, M. Khodayar, A. Khosravi, V. Ghasemi,
M. Shafie-Khah, S. Nahavandi, and J. P. S. Cataldo, “Towards novel deep
neuroevolution models: Chaotic levy grasshopper optimization for short-
term wind speed forecasting,” Eng. Comput., pp. 1-25, Mar. 2021.

A. A.Bataineh and D. Kaur, “A comparative study of different curve fitting
algorithms in artificial neural network using housing dataset,” in Proc.
IEEE Nat. Aerosp. Electron. Conf. (NAECON), Jul. 2018, pp. 174-178.
Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798-1828, Mar. 2013.

M. Schuster and K. K. Paliwal, “‘Bidirectional recurrent neural networks,”
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, Nov. 1997.
R. Socher, C. C.-Y. Lin, A. Y. Ng, and C. D. Manning, “‘Parsing natural
scenes and natural language with recursive neural networks,” in Proc.
ICML, 2011.

R. Sennrich, B. Haddow, and A. Birch, ‘“Neural machine translation of rare
words with subword units,” 2015, arXiv:1508.07909. [Online]. Available:
http://arxiv.org/abs/1508.07909

B. Liu, “Sentiment analysis and opinion mining,” Synthesis Lectures Hum.
Lang. Technol., vol. 5, no. 1, pp. 1-167, 2012.

J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep
captioning with multimodal recurrent neural networks (m-RNN),” 2014,
arXiv:1412.6632. [Online]. Available: http://arxiv.org/abs/1412.6632

A. Graves, A.-R. Mohamed, and G. Hinton, ‘“Speech recognition with deep
recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645-6649.

A. A. Bataineh and D. Kaur, “Optimal convolutional neural network
architecture design using clonal selection algorithm,” Int. J. Mach. Learn.
Comput., vol. 9, no. 6, pp. 788-794, Dec. 2019.

J. Brownlee, “Machine learning mastery with Python,” Mach. Learn.
Mastery Pty Ltd, vol. 527, pp. 100-120, 2016.

S. M. J. Jalali, S. Ahmadian, A. Khosravi, M. Shafie-Khah, S. Nahavandi,
and J. P. S. Catalao, ““A novel evolutionary-based deep convolutional neu-
ral network model for intelligent load forecasting,” IEEE Trans. Ind.
Informat., early access, Mar. 12, 2021, doi: 10.1109/TI1.2021.3065718.
A. A. Bataineh and D. Kaur, “Immuno-computing-based neural learning
for data classification,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 6, 2019,
doi: 10.14569/1JACSA.2019.0100632.

1. Muthreja and D. Kaur, “A comparative analysis of immune system
inspired algorithms for traveling salesman problem,” in Proc. Int. Conf.
Artif. Intell. (ICAl), Steering Committee World Congr. Comput. Sci., Com-
put., 2018, pp. 164-170.

J. Brownlee, ““Clonal selection theory & clonalg-the clonal selection classi-
fication algorithm (CSCA),” Swinburne Univ. Technol., Melbourne, VIC,
Australia, Tech. Rep., 2005, p. 38.

J. Brownlee, “Clonal selection algorithms,” Complex Intell. Syst. Lab.,
Swinburne Univ. Technol., Melbourne, VIC, Australia, Tech. Rep., 2007.
H. Chung and K.-S. Shin, “Genetic algorithm-optimized long short-term
memory network for stock market prediction,” Sustainability, vol. 10,
no. 10, p. 3765, Oct. 2018.

S. Stajkowski, D. Kumar, P. Samui, H. Bonakdari, and B. Gharabaghi,
“Genetic-algorithm-optimized sequential model for water temperature
prediction,” Sustainability, vol. 12, no. 13, p. 5374, Jul. 2020.

V. C. L. Neto, L. A. Passos, and J. P. Papa, “Evolving long short-term
memory networks,” in Proc. Int. Conf. Comput. Sci. Springer, 2020,
pp. 337-350.

79003

http://dx.doi.org/10.14569/IJACSA.2020.0111105
http://dx.doi.org/10.1109/TII.2021.3065718
http://dx.doi.org/10.14569/IJACSA.2019.0100632

IEEE Access

A. A. Bataineh, D. Kaur: Immunocomputing-Based Approach for Optimizing Topologies of LSTM Networks

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

D. Chhachhiya, A. Sharma, and M. Gupta, “‘Designing optimal architec-
ture of recurrent neural network (LSTM) with particle swarm optimization
technique specifically for educational dataset,” Int. J. Inf. Technol., vol. 11,
no. 1, pp. 159-163, Mar. 2019.

B. Nakisa, M. N. Rastgoo, A. Rakotonirainy, F. Maire, and V. Chandran,
“Long short term memory hyperparameter optimization for a neural
network based emotion recognition framework,” IEEE Access, vol. 6,
pp. 49325-49338, 2018.

A. ElSaid, F. El Jamiy, J. Higgins, B. Wild, and T. Desell, ““Optimizing
long short-term memory recurrent neural networks using ant colony opti-
mization to predict turbine engine vibration,” Appl. Soft Comput., vol. 73,
pp. 969-991, Dec. 2018.

A.D. Yuliyono and A. S. Girsang, ““Artificial bee colony-optimized LSTM
for bitcoin price prediction,” Adv. Sci., Technol. Eng. Syst. J., vol. 4, no. 5,
pp. 375-383, 2019.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

C. Olah, “Understanding LSTM networks,” Tech. Rep., 2015.

L. N. De Castro and F. J. Von Zuben, “The clonal selection algorithm with
engineering applications,” in Proc. GECCO, 2000, pp. 36-39.

L.N.D. Castro and J. I. Timmis, ““Artificial immune systems as a novel soft
computing paradigm,” Soft Comput. A, Fusion Found., Methodol. Appl.,
vol. 7, no. 8, pp. 526-544, Aug. 2003.

J. Brownlee, ‘“‘Artificial immune recognition system (AIRS)—A review
and analysis,” Center Intell. Syst. Complex Processes (CISCP), Dept. Inf.
Commun. Technol. (ICT), Swinburne Univ. Technol., Melbourne, VIC,
Australia, Tech. Rep. 1-02, 2005.

L. N. De Castro, “An introduction to the artificial immune systems,” in
Proc. ICANNGA, 2001.

J. Timmis, A. Hone, T. Stibor, and E. Clark, “Theoretical advances in
artificial immune systems,” Theor. Comput. Sci., vol. 403, no. 1, pp. 11-32,
Aug. 2008.

H. Bersini and F. J. Varela, “Hints for adaptive problem solving gleaned
from immune networks,” in Proc. Int. Conf. Parallel Problem Solving
Nature. Springer, 1990, pp. 343-354.

Y. Ishida, “Fully distributed diagnosis by PDP learning algorithm: Towards
immune network PDP model,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), 1990, pp. 777-782.

J. D. Farmer, N. H. Packard, and A. S. Perelson, “The immune sys-
tem, adaptation, and machine learning,” Phys. D, Nonlinear Phenomena,
vol. 22, nos. 1-3, pp. 187-204, Oct. 1986.

G. W. Hoffmann, “A neural network model based on the analogy with the
immune system,” J. Theor. Biol., vol. 122, no. 1, pp. 33-67, Sep. 1986.

S. Forrest, S. A. Hofmeyr, and A. Somayaji, “Computer immunology,”
Commun. ACM, vol. 40, no. 10, pp. 88-96, 1997.

S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, *“Self-nonself
discrimination in a computer,” in Proc. IEEE Comput. Soc. Symp. Res.
Secur. Privacy, May 1994, pp. 202-212.

J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess, G. J. Tesauro,
S. R. White, and T. Watson, “Biologically inspired defenses against com-
puter viruses,” in Proc. IJCAI (1), 1995, pp. 985-996.

E. Hart and J. Timmis, “Application areas of AIS: The past, the present
and the future,” Appl. Soft Comput., vol. 8, no. 1, pp. 191-201, Jan. 2008.
F. M. Burnet, “A modification of Jerne’s theory of antibody production
using the concept of clonal selection,” Austral. J. Sci., vol. 20, no. 3,
pp. 9-67, 1957.

S. F. M. Burnet, The Clonal Selection Theory of Acquired Immunity, vol. 3.
Nashville, TN, USA: Vanderbilt Univ. Press, 1959.

J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes.
Jason Brownlee, 2011.

L. N. de Castro and F. J. Von Zuben, “Learning and optimization using
the clonal selection principle,” IEEE Trans. Evol. Comput., vol. 6, no. 3,
pp. 239-251, Jun. 2002.

V. Cutello, G. Narzisi, G. Nicosia, and M. Pavone, “Clonal selection
algorithms: A comparative case study using effective mutation potentials,”
in Proc. Int. Conf. Artif. Immune Syst. Springer, 2005, pp. 13-28.
A.Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learn-
ing word vectors for sentiment analysis,” in Proc. 49th Annu. Meeting
Assoc. Comput. Linguistics, Hum. Lang. Technol., 2011, pp. 142-150.

U. Twitter. Airline Sentiment. Accessed: Aug. 11, 2019. [Online]. Avail-
able: https://www.kaggle.com/crowdflower/twitter-airline-sentiment

T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami, ‘“Contributions to the
study of SMS spam filtering: New collection and results,” in Proc. 11th
ACM Symp. Document Eng. (DocEng), 2011, pp. 259-262.

79004

(52]
(53]

[54]

[55]

[56]

[57]

(58]

(591

[60]

[61]

[62]

[63]

C. Tagg, “A corpus linguistics study of sms text messaging,’
Ph.D. dissertation, Univ. Birmingham, Birmingham, U.K., 2009.

A.F. Gad, A.F. Gad, and S. John, Practical Computer Vision Applications
Using Deep Learning With CNNs. Springer, 2018.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
pp. 321-357, Jun. 2002.

J. Camacho-Collados and M. T. Pilehvar, ““On the role of text preprocessing
in neural network architectures: An evaluation study on text categorization
and sentiment analysis,” 2017, arXiv:1707.01780. [Online]. Available:
http://arxiv.org/abs/1707.01780

M. Chen, “Efficient vector representation for documents through
corruption,” 2017, arXiv:1707.02377. [Online]. Available: http://arxiv.
org/abs/1707.02377

T. K. Rusch and S. Mishra, “Coupled oscillatory recurrent neural net-
work (coRNN): An accurate and (gradient) stable architecture for learning
long time dependencies,” 2020, arXiv:2010.00951. [Online]. Available:
http://arxiv.org/abs/2010.00951

Y. Zhang, Q. Liu, and L. Song, “Sentence-state LSTM for text
representation,” 2018, arXiv:1805.02474. [Online]. Available: http://
arxiv.org/abs/1805.02474

J. Gong, X. Qiu, S. Wang, and X. Huang, “Information aggregation
via dynamic routing for sequence encoding,” 2018, arXiv:1806.01501.
[Online]. Available: http://arxiv.org/abs/1806.01501

R. Taheri and R. Javidan, “Spam filtering in SMS using recurrent neural
networks,” in Proc. Artif. Intell. Signal Process. Conf. (AISP), Oct. 2017,
pp. 331-336.

M. V. C. Aragdo, E. P. Frigieri, C. A. Ynoguti, and A. P. Paiva, “Factorial
design analysis applied to the performance of SMS anti-spam filtering
systems,” Expert Syst. Appl., vol. 64, pp. 589-604, Dec. 2016.

N. Al Moubayed, T. Breckon, P. Matthews, and A. S. McGough, “SMS
spam filtering using probabilistic topic modelling and stacked denoising
autoencoder,” in Proc. Int. Conf. Artif. Neural Netw. Springer, 2016,
pp. 423-430.

A. Rane and A. Kumar, “Sentiment classification system of Twitter data
for US airline service analysis,” in Proc. IEEE 42nd Annu. Comput. Softw.
Appl. Conf. (COMPSAC), vol. 1, Jul. 2018, pp. 769-773.

ALl Al BATAINEH (Member, IEEE) received
the B.Sc. degree in computer engineering from
Yarmouk University, Jordan, in 2010, and the
M.Sc. degree in computer engineering from the
University of Bridgeport, CT, USA, in 2016. He
is currently pursuing the Ph.D. degree in electrical
engineering with The University of Toledo, OH,
USA. His research interests include deep learning,
natural language processing, sentiment analysis,
computer vision, metaheuristic optimization, and
fuzzy logic.

DEVINDER KAUR (Life Senior Member, IEEE)
received the B.Sc. and M.Sc. degrees (Hons.) in
physics, majoring in electronics from Panjab Uni-
versity, in 1969 and 1970, respectively, the M.Sc.
degree in medical physics from the University of
Aberdeen, U.K., in 1976, and the M.Sc. and Ph.D.
degrees in computer engineering from Wayne
State University, USA, in 1985 and 1989, respec-
tively. She was a Scientist with the Central Scien-
tific Instruments Organization, a National Labora-

T d

tory, Ministry of Science and Technology, Chandigarh, India, from 1971 to
1981. In 1989, she joined The University of Toledo as a Faculty Member,
where she is currently a Full Professor with the Department of EECS. She
has published upward of 100 articles in refereed journals and proceedings of
the international conferences. She has worked on projects funded by NSF, Air
Force Research Laboratory (AFRL), Daimler Chrysler, and ROMAN Engi-
neering. Her research interests include developing intelligent applications
based on hybrid computational models using biologically inspired comput-
ing and fuzzy systems. She was a recipient of the IIT Delhi Fellowship, from
1970 to 1971. She was the Fulbright Senior Specialist Award, in 2004, and
visited the Nippon Institute of Technology Japan in that capacity. She was
received the Commonwealth Scholarship Award for her M.Sc. degree.

VOLUME 9, 2021

