
Received April 9, 2021, accepted May 22, 2021, date of publication May 27, 2021, date of current version June 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3084180

Fast Grid-Based Refining Segmentation Method
in Video-Based Point Cloud Compression
JIEON KIM AND YONG-HWAN KIM
Korea Electronics Technology Institute, Seongnam-si 13488, South Korea

Corresponding author: Jieon Kim (jieon.kim@keti.re.kr)

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded
by the Korea Government (MSIT) (No. 2020-0-00920, Development of Ultra High Resolution Unstructured Plenoptic Video
Storage/Compression/Streaming Technology for Medium to Large Space).

ABSTRACT The video-based point cloud compression (V-PCC, ISO/IEC 23090-5) is the state-of-the-art
international standard for compressing dynamic point clouds developed by the moving picture experts group
(MPEG). It has been achieved good rate-distortion (RD) performance by employing the 2D-based dynamic
point cloud compression. As a brief look, V-PCC first converts the 3D input point cloud into a set of 2D
patches followed by a packing process. The packing process thenmaps the patches into a 2D grid. Such a way
allows compressing the patches utilizing the existing video coding standards. Besides the RD performance,
complexity is another vital factor to consider in performance evaluations. In the V-PCC encoder, the self-time
accounts for on average 15.9% and a maximum of 48.2% of the total-time, which can be a hindrance to
realizing real-time V-PCC applications. One of the most computationally intensive modules of V-PCC is the
grid-based refining segmentation (G-RS). Thus this paper proposes a fast G-RS method that can adaptively
select voxels that need the refining segmentation. More concretely, the proposed method classifies the voxels
based on the projection plane indices of 3D points and only applies the refining process to the selected
voxels. Experimental results demonstrate that the proposed method reduces the complexity of the refining
steps in G-RS, on average, by 60.7% and 62.5% without coding efficiency loss compared to the test model
for category 2 (TMC2) version 12.0 reference software under the random access (RA) and all-intra (AI)
configurations, respectively.

INDEX TERMS Video-based point cloud compression, dynamic point cloud, fast algorithms, low-complex
video encoders, voxel-based refining segmentation, encoder optimization.

I. INTRODUCTION
Advances in three-dimensional (3D) capture technologies
have opened a new chapter in 3D sensing beyond vir-
tual/augmented reality (VR/AR) content creation to smart
factories, robots, and automated driving applications. Fur-
thermore, since the digitalization of 3D space has allowed
users to explore 3D content from any point of view,
the attention of the market in VR/AR has been dramatically
increased [1]. Volumetric 3D data represents 3D scenes and
objects with their geometries, attributes, and temporal varia-
tions and is usually generated by 3D models on a computer
or captured in a real-world environment using multiple cam-
eras. Three main categories of the volumetric 3D data are
static objects (category 1), dynamic objects (category 2), and
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dynamically acquired objects (category 3) [2]. This paper
focuses on the dynamic point cloud.

A dynamic point cloud consists of consecutive static 3D
point cloud frames. In viewing the V-PCC common test
conditions (CTCs) [3], each 3D point cloud frame consists
of 800,000-2,900,000 3D points, and a 3D point is stored
with 10 bits to represent the geometry information and 8 bits
for color (RGB) information. A maximum of 4.3 Gbps band-
width is required to transmit such a point cloud sequence with
a frame rate of 30 fps, and it is challenging in the current
network environment [4]. Therefore, efficient point cloud
compression (PCC) technologies are indispensable.

To respond to such a need, the moving picture experts
group (MPEG) called for a proposal (CfP) for PCC
in 2017. The test model video-based point cloud compression
(V-PCC) is a project that was initiated after CfP for the
dynamic point cloud, and MPEG released a final draft
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international standard (FDIS) of V-PCC as ISO/IEC 23090-5
in July 2020 [5].

V-PCC is to leverage the existing 2D video codecs [1], [6].
Such a way requires a process that converts the 3D point
cloud to 2D videos, and the patch projection proposal by
Mammou et al. [7] was finally adopted in V-PCC. Based on
the similarity of 3D point normals, several 2D patches are
generated for the geometry [8] and attribute [9] components,
respectively. These patches are mapped to a regular 2D grid
without overlapping. Further, occupancy maps are generated
to indicate whether the sample belongs to the patches or
not. The occupancy maps, geometry videos, and attribute
videos are encoded using the conventional 2D video codecs.
The V-PCC solution is video codec agnostic [6], but the
high-efficiency video coding (HEVC) [10] is set as a default
for video-based coding.

The patch projection-based V-PCC achieves superior RD
performance for the dynamic point cloud [11]. The research
efforts to improve the point cloud compression performance
have been continued [12]–[17]. Queiroz et al. [12] proposed
a method that splits the point cloud into voxel blocks and
encodes them in an octree. Mekuria et al. [13] have exploited
different sizes of blocks in octree voxel space for real-time
tele-immersive video processing. Queiroz et al. [14], [15]
utilized Laplace and Gaussian transforms in hierarchical
sub-band transforms coding. Cohen et al. [16] extended the
k-nearest neighbors algorithm (KNN) for sparsely-populated
blocks [16]. However, these outstanding achievements come
at a high computational complexity of V-PCC encoders.

The complexity in V-PCC can be classified into two
categories: the 2D domain and the 3D domain complexi-
ties. The former complexity is mainly from the 2D video
coding process, whereas the latter complexity is from the
patch-related process in 3D domain. While a plethora of
research work has been reported to reduce the complexity
of the former case [18]–[23], this paper draws attention to
the lack of research for the latter case in V-PCC [24]–[28].
Becerra et al. [26] reported the V-PCC encoder complexity
utilizing TMC2 software. According to the report, the refin-
ing process is one of the most computationally intensive mod-
ules in the V-PCC encoder concerning execution time and
memory allocation. Thus, the refining procedure has attracted
considerable attention in studies that reduce the complex-
ity of V-PCC encoders. Faramarzi et al. [24] proposed a
software optimization method, which is a bit-exact match
with the anchor software implementation. A grid-based refin-
ing segmentation (G-RS) method [25] was proposed to
reduce the complexity of a point-based refining segmen-
tation method, and its performance evaluated additionally
in a dedicated core experiment (CE) [29]. Despite these
efforts, the G-RS procedure still accounted for 91% to 77%
of the self-time-consuming of the V-PCC encoders [26].
Later, Higa et al. [27] proposed a software optimization
method to avoid unnecessary hash map access, and it was
integrated into the TMC2 software. Seidel et al. [28] pro-
posed a cache-friendly implementation of G-RS, which has

already been integrated into the TMC2 software. Complexity
is a requisite factor to consider for a rapid generalization of
the pervasive and ubiquitous applications of state-of-the-art
technologies. Therefore, we propose an efficient and fast
algorithm in the 3D domain to reduce the complexity of
V-PCC encoders.

One of the complex processes in the 3D domain is the
refining steps in the patch generation process. Each point is
associated with one of the projection planes according to its
normal vector. Then, the initial projection plane index (PPI)
is refined using its neighbors. The conventional refining steps
in V-PCC are applied to all 3D points in the point cloud
iteratively. However, it is unlikely all 3D points are required
for the refining steps because most 3D points are likely to
have accurate initial PPI.

This paper proposes a simple but highly efficient algorithm
to reduce the computational complexity of V-PCC encoders
in the 3D domain. Our goal is to use the simple uniformity
index of PPI distribution in G-RS to select only a few voxels
that need the refining steps, without overly complex opera-
tions. For this purpose, the proposed G-RS scheme is carried
out by adaptively categorizing voxels, and a new voxel clas-
sification strategy is introduced in the presented method. The
experimental results show the proposed method reduces an
average of 60.7% and 62.5% of the self-time of refining steps
without coding efficiency loss by the proposed method under
the random access (RA) and all-intra (AI) configurations,
respectively.

The rest of this paper is organized as follows. Section II
introduces an overview of the V-PCC encoder, related work,
and analysis of the V-PCC encoder. In Section III, the pro-
posed algorithm is presented in detail. Section IV shows the
extensive experimental results of the proposed method, and
Section V concludes this paper.

II. BACKGROUND
This section firstly presents an overview of the V-PCC
encoder. Further, a summary of the time-complexity analysis
of V-PCC encoders is presented.

A. OVERVIEW OF V-PCC ENCODING PROCESS
There are two main steps in the V-PCC encoding process [1]:
1) conversion from 3D points to 2D videos and metadata;
2) video compression. The first step converts a 3D point
cloud into 2D video sequences (i.e., attribute and geometry
videos [8], [9]) and additional metadata such as an occupancy
map and auxiliary patch information, which are essential to
interpret video sequences. This approach has been studied
for many years and enables to leverage of the existing video
coding standards for compressing 2D videos from a point
cloud [7], [11], [30], [31]. Then, the second step produces
compressed video bitstreams and metadata by the HEVC test
model (HM) software [32] multiplexed together to generate
the final V-PCC bitstream. In V-PCC, any video coding stan-
dard can be employed but HEVC is set as a default in TMC2.
In this paper, we are mainly interested in G-RS. For further
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FIGURE 1. Patch generation process in V-PCC [1].

study, details related to G-RS are presented in the next. Other
more detailed descriptions regarding V-PCC can be found in
the literature [6], [33].

1) PATCH GENERATION
Fig.1 shows the patch generation process in V-PCC that is
composed of four main procedures: estimate normals, initial
segmentation, refining segmentation, segment patches. First,
normal vectors at each 3D point are estimated as described
in [34]. Based on the normal vectors, each 3D point is
associated with the PPI in the initial segmentation. Here,
the number of projection planes can be among 6, 10, and
18, and the default number is 6. The associated PPI may be
unreliable due to inexact normal vectors. As it is fatal to the
RD performance, G-RS refines the PPI using the neighbors.
Then, the last step consists of extracting patches with smooth
boundaries.

2) GRID-BASED REFINING SEGMENTATION
G-RS is a fast refining algorithm implemented in the
TMC2 software [25].While the point-based refining segmen-
tation utilizes the individual PPI of nearest-neighboring 3D
points in the refining process, the grid-based method utilizes
the nearest-neighboring voxels.

a: PRE-PROCESSING STEPS
Firstly, the input point cloud in 3D space is divided into subset
voxels by grids along x-, y-, and z- coordinates in a Cartesian
coordinate system using the voxDim parameter9. A 3D point
is represented by a 3D vector and scaled by 9 as follows:

P̂ =
[
x̂ ŷ ẑ

]T
=

1
9

[
x y z

]T
, (1)

where T denotes vector transpose operator.
If one or more 3D points exist in a voxel, it is labeled as a

filled voxel V̂ , and the other case is labeled as an empty voxel.
As for the each filled voxel V̂i, the nearest-neighboring voxels
Ĥi(·) are searched within the search range rα using the K-D
tree search and are represented as follows:

Ĥi(rα) = {(x̂i, ŷi, ẑi)|dx , dy, dz ∈ rα},

where dx = |x̂i − x̂j|, dy = |ŷi − ŷj|, dz = |ẑi − ẑj|. (2)

x̂i, ŷi, ẑi represents a position of V̂i along x-, y-, and z- coor-
dinates in a Cartesian coordinate system. x̂j, ŷj, ẑj represents

a position of V̂j which is a neighboring voxel of V̂i along x-,
y-, and z- coordinates. The default value of rα is six for the
Class A sequences and four for the other Class sequences.

b: REFINING STEPS
The refining steps in G-RS are performed every iteration. The
PPI scores Si(·) in each filled voxel V̂i are calculated for each
PPI p from 0 to K − 1 as follows:

Si(p) =
M−1∑
m=0

8m
i (p),

where 8m
i (p) =

{
1, 2m

i = p
0, otherwise.

(3)

Note that m is an index a 3D point in Vi. 2m
i represents p

ofm-th 3D point in V̂i. K represents the number of projection
planes.

After obtaining Si(·) of each voxel, the smooth score S̄i(·)
is calculated using the PPI scores of its neighbors concerning
p from 0 to K − 1 as follows:

S̄i(p) =
N−1∑
j=0

Sj(p), (4)

where N represents the total number of the nearest-neighbors
of V̂i, which is equal to |Ĥi|. Then, the score of normal vectors
Ni(·) for each point in V̂i is calculated as follows:

Nm
i (p) = nmi · c(p), (5)

where nmi is a normal vector ofm-th 3D point in V̂i, c(p) repre-
sents the constant unit vector corresponding to the projection
plane p, and |Ni| ≤ 1.0.
Lastly, the final score of them-th 3D point in V̂i concerning

the PPI p is calculated as follows:

Fmi (p) = Nm
i (p)+3× S̄i(p),

where 3 =
λ

M
, λ = 3.0(default) (6)

Note M is the total number of 3D points of its neighbors.
Accordingly, the updated PPI of m-th 3D point in V̂i is deter-
mined according to

2́m
i = argmax

p∈K
{Fmi (p)}, (7)

Consequently, G-RS is based on normal vectors of each 3D
point and sum of PPI of its neighbor voxels.

B. TIME-COMPLEXITY PROFILING IN TMC2
The considerable complexity of the HEVC encoders [35]
is beyond the scope of this paper. Our interest is the
self-complexity of V-PCC encoders, which can be measured
by subtracting HEVC encoding time and color conversion
time from the total encoding time. Table 1 shows the average
measured time under the AI and RA configurations. On aver-
age, it accounts for 38.4% and 15.9% of total encoding time
under the AI and RA configurations, respectively. Although
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TABLE 1. The average percentage of self-time of TMC2 12.0 over the total
encoding time under the RA and AI configurations.

TABLE 2. Time consumption ratio of each procedure in the patch
generation process.

it seems to be a small percentage in the entire encoding time,
the encoding performance of the basketball_player point
cloud is of 0.016 fps. Such can be an obstacle to the rapid
spread of high-quality real-time V-PCC applications.

Becerra et al. [26] carried out a detailed complexity profil-
ing to identify the complexity level of each coding module.
According to the report, the patch generation procedure is the
most complex in the V-PCC encoder.

The average time consumption ratio of each procedure in
the patch generation is investigated and shown in Table 2.
G-RS accounts for the most execution time in the patch
generation process: an average of 62.9% for the Class A test
sequences, 32.33% on average for the Class B sequence, and
18.0% or more on average for the Class C sequences.

Further, Fig 2 shows the average execution time of
each step in G-RS. Note that step3 refers to finding the
nearest-neighboring voxels in G-RS, and the rest represents
steps that the refining PPI iteratively. The step3 and rest steps
can be optimized further, which takes up on average 44%
and 53% of the entire G-RS time, respectively. However,
the complexity from step3 is within the library used for the
K-D tree search. Thus, our goal is to reduce complexity of
the refining steps but to avoid overly complicated schemes.
Details are presented in the next section.

III. PROPOSED METHOD
Fig. 3 shows the overall proposed voxel classification
scheme in G-RS. The proposed method first classifies a
voxel as either direct edge-voxel (DE-V) or no edge-voxel
(NE-V) according to uniformity index. The neighboring

FIGURE 2. Time consumption ratio in the G-RS process with TMC2 12.0.

voxels labeled with NE-V of the current DE-V are classified
as either NE-V or indirect edge-voxel (IDE-V) according
to extended uniformity index. Based on the voxel classifica-
tion, the refining steps are only limited to DE-V and IDE-V.
This section presents details on the proposed method. Then,
the overall algorithm is summarized.

A. VOXEL CLASSIFICATION
G-RS smooths out inaccurately associated PPI to obtain uni-
form regions for more accurate patch segmentation. It is
intuitively clear that voxels with non-uniform PPI distribution
are the candidates to be examined by G-RS. We distinguish
three types of voxels:

a. Voxels with PPI variations within their voxel. They are
denoted by DE-V and can be either a single-point (S-DE,
Fig.4 (a)) or multi-points (M-DE, Fig.4 (b)) in a voxel.
The former is usually isolated 3D points, and the latter
indicates the presence of a point cloud surface.

b. Voxels with uniform PPI distributionwithin their voxel but
non-uniform compared to the nearest-neighbors. They are
clustered with discontinuity PPI from their neighbors and
denoted by IDE-V.

c. Voxels with uniform PPI distribution within their voxel
and the nearest-neighbors. These voxels are considered as
uniform regions and they are denoted by NE-V (Fig.4 (c)).

In our approach, we employ a selective G-RS procedure,
which treats three types of voxels differently. DE-V and
NE-V are determined using uniformity index. Later, IDE-V
is determined among NE-V using extended uniformity index.
The following subsections present details on simple yet pro-
foundly effective voxel-type decision schemes that can itera-
tively detect the refining candidates.

B. DIRECT EDGE-VOXEL AND NO EDGE-VOXEL DECISION
We introduce the notion of uniformity index that indicates
whether the PPI distribution is uniform in a voxel. For each
filled voxel, the PPI score Si represents a histogram that
indicates the self-statistics about the homogeneity of PPI in a
voxel. From these statistics, we can estimate the uniformity
level within a voxel in terms of segmentation. The uniformity
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FIGURE 3. Proposed voxel classification scheme. DE-V stands for direct edge-voxel, IDE-V stands for indirect edge-voxel, and NE-V stands for no
edge-voxel.

FIGURE 4. Examples of direct edge-, and no edge-voxels in a 2D domain.
(a) Single 3D point in a voxel (S-DE) (b) Multiple 3D points in a voxel
(M-DE). (c) No edge voxel. The color indicates the PPI of its 3D point.

index Ui is defined using Si as follows:

Ui =
Si(p∗i )

|Si|
, where p∗i = argmax

p∈K
Si(p). (8)

Note |Si| denotes the total number of 3D points in V̂i. Each
filled voxel V̂i are firstly classified based on Ui as below:

V̂i ∈

{
DE-V, Ui 6= 1
NE-V, Ui = 1.

(9)

C. INDIRECT EDGE-VOXEL DECISION
We extend the PPI reference range for the uniformity index
from within a voxel to the nearest-neighbors and intro-
duce a notion of extended uniformity index that indicates
whether NE-V is still uniform compared to its neighbors.
A histogram for the extended uniformity index is S̄i. For
each filled voxel, the smooth score S̄i represents a his-
togram that indicates the local-statistics about the homogene-
ity of PPI in a voxel within the defined reference range.
Similar to uniformity index, we can estimate extended uni-
formity index Ûi within the selected reference range as
follows:

Ûi =
Si(p̄∗i )

|Si|
, where p̄∗i = argmax

p∈K
S̄i(p). (10)

As shown in Table 3, NE-V typically constitutes most of
a point cloud, and it is expensive to examine Ûi for every

FIGURE 5. An example of V̂i and its neighboring voxels V̂j ∈ Ĥi (1).

NE-V. For this reason, IDE-V candidates V̂j are constrained
to the neighbors of V̂i to reduce the amount of necessary
computation and memory access for obtaining S̄j. However,
to achieve the best RD performance and speed the G-RS
process even further, we have limited the distance between
V̂i and V̂j for determining IDE-V. The distance is denoted
by rβ , and Ûj in the refining process of V̂i is represented as
follows:

Ûj =
Sj(p̄∗i )

|Sj|
,

where V̂j ∈ Hi(rβ ), p̄∗i = argmax
p∈K

S̄i(p). (11)

Because we only consider NE-V in the second classifica-
tion, Ûj can be further simplified by comparing p∗j and p̄∗i
(Ûj = p̄∗i /p

∗
j ). NE-V is finally classified based on Ûj as

below:

V̂j ∈

{
IDE-V, Uj = 1 and Ûj 6= 1
NE-V, Uj = 1 and Ûj = 1.

(12)

D. OVERALL ALGORITHM
Fig.6 shows a flowchart of the proposed algorithm, and the
additional steps by the proposed algorithm are represented
with a dotted line and summarized as follows:

80092 VOLUME 9, 2021



J. Kim, Y.-H. Kim: Fast G-RS Method

TABLE 3. Distribution of the three types of voxels in V-PCC.

Pre-processing steps:
Step 1. Partitioning the coordinate space into voxels,

Eq. (1)
Step 2. Tagging the filled voxels in the grid.
Step 3. Searching Ĥ of the filled voxels, Eq. (2)
Refining steps:
Step 4-1) Calculating S for each filled voxel (Eq. (3))
Step 4-2) 1st voxel classification according to Eq. (9)
Step 5-1) Checking whether V̂i is in a list of the total filled

voxels.
Step 5-2) If V̂i ∈ {DE-V, IDE-V}, go to Step 5-3. Other-

wise, go to Step 5-1.
Step 5-3) Calculating S̄i, Eq. (4).
Step 5-4) 2nd voxel classification according to Eq. (12).
Step 6 - 7) Following the conventional way.

IV. EXPERIMENTAL RESULTS
In this section, the performance of the proposed method is
evaluated. First, the experimental conditions are introduced.
Further, the overall performance of the proposed algorithm
is compared with TMC2 12.0. Lastly, the performance of
the proposed method is analyzed with different values of
encoding parameters.

A. EXPERIMENTAL CONDITIONS
The proposed method was implemented in the V-PCC ref-
erence software TMC2 12.0 [36]. As shown in Table 4,
the performance was evaluated for lossy geometry and lossy
attributes under the AI and RA configurations, respectively.
The seven dynamic point cloud sequences, defined in V-PCC
common test conditions (CTCs), were used for experiments.
The detailed descriptions of the point clouds are in Table 5,
and each test point cloud is shown in Fig. 7. The perfor-
mance evaluation of the proposed algorithm complied with
the number of frames presented in Table 5. We used the five
quantization parameters (QP) are in Table 6, from low bitrate
(R01) to high bitrate (R05) [37].

Furthermore, since the bitrates generated by the anchor and
the proposed algorithm are not the same, the Bjontegaard-
delta-rate (BD-rate) [37] was used to compare the respec-
tive rate-distortion (RD) performances. The BD-rates are
reported for the geometry and attribute independently. For
the geometry, the BD-rates were reported in terms of both

FIGURE 6. Flowchart of the proposed grid-based refining segmentation
procedure in TMC2.

TABLE 4. Test Conditions.

point-to-point PSNR (D1) and point-to-plane PSNR (D2) [3].
Besides, the BD-rates were represented for the Luma, Cb, and
Cr components for the attribute. To compare the complexity
reduction, we made changes to the V-PCC reference software
and, therefore, to report the self-time of the refining steps,
G-RS, and the V-PCC encoder. As an index of the com-
plexity reduction, the self-time was compared respectively,
as follows:

1T [%] =
1
RN

RN−1∑
i=0

TA(i)− TP(i)
TA(i)

× 100, (13)
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FIGURE 7. 3D point cloud sequences. (a) loot (b) redandblack (c) soldier (d) queen (e) longdress (f) basketball_player
(g) dancer_player.

TABLE 5. Test point cloud.

TABLE 6. Quantisation parameters of the common test conditions.

where TA and TP are the self-time of original TMC2 and
TMC2 with the proposed method respectively. RN represents
the total number of variants. A higher value of1T represents
more time saving by the proposed method, and a negative
BD-rate indicates that the proposed method achieves a better
coding efficiency than the V-PCC anchor.

In the following subsections, firstly, the overall perfor-
mance of the proposed fast algorithm is introduced. Then
the individual performance of the proposed algorithm with
different encoding options is presented.

B. OVERALL PERFORMANCE
Tables 7 and 8 show the performance of the proposed method
under the AI and RA configurations, respectively. Note that

rβ for IDE-V is set to 2 for the Class A test point cloud and
1 for the rest of test point cloud sequences in the overall
experimental result. The performance comparisons depend-
ing on rβ are discussed in the next subsection. Besides,
1TT , 1TG, and 1TR are represented the time saving of
the self-time of the V-PCC encoder, G-RS, and the refin-
ing steps, respectively. From Table 7, the proposed method
can reduce an average of 18.0%, 26.9%, and 62.5% of
self-time of V-PCC encoder, G-RS and the refining step
compared with the V-PCC anchor respectively in the AI
case. As a trade-off between complexity and RD coding
performance, the proposed method provides a fast refining
procedure based on edge-voxels in G-RS procedure without
coding loss. The performance loss of Luma, Cb, and Cr
components are only on average 0.04%, 0.06%, and 0.08%,
respectively. Besides, the proposed method can achieve an
average of -0.02% and -0.03% BD-rate gain compared with
the V-PCC anchor for the D1 and D2 in the AI case,
respectively.

Table 8 shows the proposed method saves on average
of 17.1%, 28.2%, and 60.7% of self-time of V-PCC encoder,
G-RS, and the refining step compared with the V-PCC
anchor in the RA case without coding loss, which is on
average, 0.06%, -0.03%, and -0.27% for the Luma, Cb, and
Cr components, respectively. Also, the proposed algorithm
can achieve an average of 0.12% and 0.14% BD-rate loss
comparedwith theV-PCC anchor for theD1 andD2 in the RA
configuration, respectively. From these experimental results,
we had a conclusion that the proposed algorithm significantly
reduces the computational complexity of the refining step
in G-RS procedure of the V-PCC anchor without coding
loss.

Fig. 8 shows a typical example of the subjective quality
comparison between the V-PCC anchor and the proposed
method in the soldier test point cloud, whose RD perfor-
mance loss is the largest among the test sequences. As can
be seen, overall, the edges of the point cloud were well
preserved by the proposed method. Moreover, some parts
in the reconstructed point cloud by the proposed algorithm
show better subjective quality than the anchor, for example,
the shoulder part as shown in Fig. 8. However, the differences
are pretty trivial. Therefore, the proposed method reduced the
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TABLE 7. Performance of the proposed algorithm compared with the V-PCC anchor under the AI configuration.

TABLE 8. Performance of the proposed algorithm compared with the V-PCC anchor under the RA configuration.

complexity while maintaining the objective and subjective
quality of the anchor.

C. ACCURACY OF DIRECT EDGE-VOXEL
The determination rate (DR) and hit rate (HR) were calcu-
lated using the TMC2 software as follows:

RD(P|A) =
N (P|A)
N (A)

× 100

RH(A|P) =
N (A|P)
N (P)

× 100, (14)

where RD(P|A) and RH(A|P) denote DR and HR respectively.
N(·) indicates the total number of voxels of the equiva-
lent event. A denotes voxels included 3D points associated
with the refined PPI by G-RS in TMC2 12.0 (anchor), and
P represents DE-V.
As shown in Table 9, the RH(A|P) of DE-V is from 93.38%

to 97.91% and 95.97% on average. It indicates that most of
the 3D points in DE-V are associated with the refined PPI by
anchor G-RS. That is, the accuracy of DE-V is high to predict
voxels that contain the 3D points that are associated with the
refined PPI. Besides, the RD(P|A) of DE-V is from 92.02%
to 59.16%. 75.09% of voxels, on average, are DE-V among
voxels include 3D points associated with the refined PPI by
G-RS in TMC2 12.0.

The updated 3D points by G-RS and 3D points belongs
to DE-V are compared visually. Fig. 9 shows the Class C
test sequences in which the white dots represent the updated
3D points by G-RS. As seen, most updated 3D points are at
the boundaries (surfaces) of the point cloud. It is due to the

TABLE 9. Hit rate (HR, RH) and determination rate (DR, RD) of the direct
edge-voxels.

fact it is challenging to obtain accurate normal vectors on the
surface of the point cloud [38]. Similarly, Fig.10 shows the
case in which the white dots represent 3D points that belong
to DE-V. 3D points in DE-V align within the surface of the
point cloud. It is consistent with the updated 3D points in
G-RS, as shown in Fig. 9.

D. PERFORMANCE COMPARISONS UNDER DIFFERENT
VALUES OF SEARCH RANGE FOR IDE-V
The number of excluded voxels in the refining process is pre-
sented. The higher the number of skipped voxels, the lower
the complexity of the encoder. Fig.11 depicts the specific
percentage of skipped voxels at each iteration under rβ is
equal to rα . Since each test Class employs different values for

VOLUME 9, 2021 80095



J. Kim, Y.-H. Kim: Fast G-RS Method

FIGURE 8. An example of the subjective quality comparison between the
proposed method and V-PCC anchor. The example is the ‘‘soldier’’ with the
frame number of 536 under r1, the RA configuration. Note that the frame
number of 536 is the first frame of the ‘‘soldier’’ defined in the V-PCC
CTC.

the voxel-dimension and the number of iterations, we sum-
marized statistical data accordingly. From it, the number
of skipped voxels increases as the iteration increases. The
reason behind this is that the number of DE-V decreases
through the refining process. For instance, in the first iter-
ation, approximately 10% of the total number of voxels on
average are excluded as for the Class A and Class B test
point-cloud sequences, and almost 40% of voxels are skipped
in the case of the Class C point cloud sequences. These
numbers converged to over 90% in the last iteration for the
Class B and Class C test sequences. Furthermore, the pro-
posed edge-voxel-based fast algorithm shows better perfor-
mance with a point cloud encoded with a larger voxel-size
e.g., Class B and Class C test sequences) than a smaller one
(e.g., Class A test sequences), which is consistent outcomes
with the original G-RS when compared with the point-based
method.

Furthermore, Fig.12 shows counterpart skipped voxels
under the value of rβ is equal to one (rβ = 1). Fewer
voxels were selected for the refining step when the search
range for IDE-V is limited to the value one compared
with the full-search range (rβ = rα). The Class A test
sequences show distinct differences, in particular, at the
beginning of the iterations. 10% to 20% of voxels on aver-
age were skipped with rβ = rα , whereas around 60% to

FIGURE 9. Updated 3D points in V-PCC grid-based refining segmentation.
White color represents points that are associated with refined PPI.
(a) Basketball player (b) Dancer player.

FIGURE 10. 3D points in direct-edge voxels in V-PCC grid-based refining
segmentation. White color dots represent 3D points in direct edge-voxels.
(a) Basketball player (b) Dancer player.

70% of voxels were excluded with rβ = 1 at the first
iteration. Further, while about 20% of voxels went through
the refining step at the last iteration under rβ = rα , only
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FIGURE 11. Percentage of excluded voxels by the proposed method under rβ = rα . (a) Class A sequences. (b) Class B and C
sequences.

FIGURE 12. Percentage of skipped voxels by the proposed method under rβ = 1. (a) Class A sequences. (b) Class B and C sequences.

TABLE 10. Performance of the proposed algorithm compared with the
V-PCC anchor under the RA configuration with rβ set to 1.

10% of the total number of voxels were examined under
rβ = 1.
Fig.13 visually compared the refined voxels in the soldier

test point cloud at the iteration-number ten by the anchor
and proposed method, respectively, in which the white dots
represent points in updated voxels. As can be seen, the white
dots in the original and the proposed method are notably
aligned. It indicates that the proposed method predicts

TABLE 11. Performance of the proposed algorithm compared with the
V-PCC anchor under the RA configuration with rβ set to 2.

well the voxels that need the refining process with high
accuracy.

Lastly, we analyzed the RD performance of the proposed
method with different search ranges for IDE-V. In terms
of complexity reduction, the self-time of G-RS was com-
pared with the anchor under the RA configuration. Table 10,
Table 11, and Table 12 show the RD comparisons of the
proposed method with the anchor under rβ set to one, two,
and rα . As can be observed, the larger rβ is, the better
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FIGURE 13. Updated points of the soldier sequence in V-PCC grid-based
refine segmentation. White color represents points in refined voxels at
iteration no 10. (a) anchor (b) rβ = 2.

TABLE 12. Performance of the proposed algorithm compared with the
V-PCC anchor under the RA configuration with rβ set to rα .

RD performance the proposed method can achieve for the
geometry and the attribute. Also, rβ is related to the number
of skipped voxels in the refining step. It is corresponding
experimental results with our analysis mentioned previously.
Based on these experimental results, in this paper, we selected
rβ as 1 for the Class B and Class C sequences and 2 for the
Class A sequences to obtain a better RD performance balance
in the encoding time reduction.

V. CONCLUSION
This paper presents a fast G-RS method in V-PCC. Voxels
with the non-uniform PPI distribution are likely to be affected
by G-RS. For this reason, we employ uniformity index of a
voxel in the proposed method. The uniformity is examined
within a voxel or predefined search range. The former indi-
cates the self-uniformity of a voxel itself, and the latter means
the local-uniformity that is compared with neighbors. The
proposed method skips the refining steps for voxels of which
PPI distribution is uniform. Experimental results show that
the proposed fast algorithm can reduce on average 60.7% and
62.5% of the self-time of the refining steps of G-RS in the

TMC2 12.0 reference software without RD coding loss under
the RA and AI conditions, respectively.
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