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ABSTRACT In this research, four unique nonlinear speech features are extracted and analyzed to study
the dissimilarity pattern between when the speaker is being deceitful and truthful based on how human
speech is perceived. The speaker was under stress in a police interrogation where two ground truth and two
deceitful responses were recorded during three different times of the day. Using the audio recordings from all
three sessions, the cepstral features and spectral energy features are extracted. Cepstral features are the Mel
frequency cepstrum coefficient, from where the delta cepstrum and the time-difference cepstrum features are
developed. On the other hand, the spectral energy features are the energy of Bark band energy fromwhere the
delta energy and the time-difference energy features are developed. The Levenberg-Marquardt classification
method and the long short-term memory classification method are then applied to evaluate the accuracy of
detecting deception based on the nine unique training and testing combinations of the three different sessions
and their extracted cepstrum and spectral energy features. In addition, the principal component analysis is
applied to reduce the dimensionality from the extracted features for further improvement. The projected
principal components of the four types of features showed improved accuracy in order to distinguish between
truthful and deceptive speech pattern. After incorporating with principal component analysis, the long
short-term memory classification method with time-difference spectral energy feature shows the highest
recognition rate compared to Levenberg-Marquardt algorithm with other cepstral and spectral features.

INDEX TERMS Cepstral features, deception detection, machine learning, principal component analysis,
spectral features, speech analysis.

I. INTRODUCTION
Deception detection is considerable practical interest in the
field of law enforcement and other government agencies to
identify the potential deception at the border crossing and
in military scenarios for national security applications. It is
also used to evaluate reports from informants at embassies
and consulates throughout the world [6], [36]. Deception is
intentionally causing an individual to accept falsehood as
one that is true. Psychologically speaking someone is being
deceptive when subconscious or conscious movements occur
including the shortened length of speech, a flushed face,
changes in the voice frequency, avoidant eye contact, changes
in the diameter of the eye pupil, and a more rigid body [1].
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Deception is incorporated in everyday interactions, yet it is
challenging for untrained and trained professionals [2], [3]
to accurately detect it without the use of intrusive measures.
Those being commonly used polygraph technology that mea-
sured the changes in respiratory rate, electrodermal activity
(sweatiness of fingertips), blood pressure, and heart rate [3]
using blood pressure cuffs, rubber tubes, and metal plates
attached to the fingers. It is also well known that human
speech has emotion and nonlinguistic information encoded
in it. People who are aiming to be deceptive typically present
minuscule changes in sound pressure, vocal organs, tone,
speed of speech, and increased pause time as compared
to that of a person being truthful [15]. As such, studying
these changes can lead to detecting deception with accuracy.
In recent years, researchers have been studying the multi-
tude of ways in which humans present their deceptive tricks.
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The research includes speech signal analysis [2], [4], [6],
[12]–[15], thermal facial analysis [7], text analysis with
BERT [8], and visual cue analysis [9]–[11] which have
proven to be viable options to detect deception. The principal
difference between the above technologies is that the poly-
graph measures some human responses like respiratory rate,
electro-dermal activity, heart rate, and others through direct
contact, which can lead to numerous challenges and com-
plexities in terms of implementation. As a result, how well
humans or machines may ultimately perform at the task of
detecting deceptive speech continues to remain a challenging
question.

Speech-based deception detection devices will provide a
less invasive option, are inexpensive to produce, and can oper-
ate effortlessly. It could also be used for non-present subjects
which has considerable advantages and has great potential
to be beneficial in real-world applications. Therefore, in this
research, we investigate an unintrusive alternative to detect
the deception using speech signal-based features on a subject
in a high-stress (i. e. police interrogation) environment. This
research explores the cepstral features in terms of proposed
delta cepstrum and time-difference cepstrum, as well as spec-
tral energy features in terms of proposed delta energy and
time-difference energy to analyze and distinguish between
deceptive and truthful speech. The Levenberg-Marquardt
algorithm and the Long Short-Term Memory (LSTM) neural
network models are classification methods that are used to
test the recognition rate using all the four extracted features.

Although these techniques and classification methods are
well known separately in the domain of artificial intel-
ligence and signal processing, however, investigating dif-
ferent spectral and cepstral features (i. e. Mel frequency
cepstrum coefficients (MFCCs) [6], [36], [37], [40], spec-
tral roll of point [40], spectral flux [19], [38], [40], spec-
tral centroid [40], spectral compactness, FFT [16], spectral
variability, linear prediction cepstrum coefficients [44], log-
arithmic of energy, fundamental frequency and zero-crossing
rate [40], [43]), develop new features (delta cepstrum, time
difference cepstrum, delta energy, time difference energy)
in conjunction with principal component analysis (PCA),
and find an innovative solution at top-level design approach
are key novelty of this research work. This research is also
aimed to optimize the features and neural network classifiers
to achieve a better recognition rate. In the early stage, for
example, the PCA was used in a diabetes disease prediction
and achieved with an increased rate of accuracy at 82.1% [5]
which inspires us to apply it in this research. By applying
PCA to the cepstrum features and the spectral energy features,
a higher recognition rate is achieved to detect deception
which is the main objective of this paper. Fig. 1 shows the
overall proposed deception detection workflow from top-
level design approach.

The remainder of the paper is organized as follows. The
challenges and issues on deception detection based on pre-
vious research work are discussed in Section II. Section III
shows the database that is used to experiment with this

research. Section IV shows the cepstrum and spectral energy
features extraction and analysis approach. The results of the
projected principal component analysis of the previous data
sets are presented in SectionV. SectionVI presents the feature
matching techniques and their comparative results before and
after applying the PCA. Finally, Section VII concludes the
paper and discusses future research work.

II. PREVIOUS RESEARCH WORK
In recent years, numerous avenues have been studied to test
the possibility of accurately detecting deception in humans
using technological aid. Studies on deceptive behavior have
analyses conducted on the facial, gestural, and biometric
data as well as psychological evaluations on human percep-
tion [12]. They have all shown that these unique features can
be used to recognize when a person is being deceptive to a
certain extent. Challenges encountered include small/limited
deceptive speech corpus, only intra-gender studies (single-
gender), and low accuracy due to lack of training sam-
ples [2]. Ullah et al. extracted MFCC features to distinguish
between deceptive speech and non-deceptive speech using
the Levenberg-Marquardt Backpropagation algorithm [36].
The database used for that work is a collection of utterances
from the audio recording of a male suspect under criminal
investigation. Based on prosodic, lexical, and acoustic fea-
tures and using the Columbia-SRI-Colorado (CSC) corpus,
Graciarena et al. in SRI International proposed a Support Vec-
tor Machine (SVM) and Gaussian Mixture Model (GMM)
combination system to detect deceptive and non-deceptive
speech [12]. They also ran tests with the CSC corpus using
a combination of acoustic GMM and prosodic/lexical SVM
with similar accuracy results. Using a radial basis func-
tion neural network (RBFNN), SVM, and relevance vector
machine (RVM), Zhou et al. tested eighteen (18) combined
prosodic and non-linear dynamic (NLD) features as input to
detect deception from speech signals [14]. Table 1 shows the
different methods or algorithms used in previous research
work to test unique speech features and how accurately they
recognize deception.

III. EXPERIMENTAL DATABASE
For this research, the data being used was collected during a
police investigation between a law enforcement officer and a
guilty male criminal. The speaker was asked the same set of
questions at three different times of the day. Two questions
were designed to get non-deceptive responses and two ques-
tions were designed to get deceptive responses. The database
used in this research is a set of speech utterances from audio
recordings of a male criminal suspect during an interrogation
by a law enforcement officer [6], [13]. During the polygraph
testing, the criminal was asked a series of questions at three
different times of day that resulted in accumulating twelve
responses of ‘No’. For analysis, six deceptive responses and
six truthful responses were used. Within each of the three
sessions, two sets of deceptive utterances labeled Q4 and Q5
as well as two sets of truthful utterances labeled Q7 and Q9
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FIGURE 1. An overview of deception detection workflow from top level design approach.

TABLE 1. Feature and classification method comparison of deception detection techniques.

were designated for reference and analysis. The speech utter-
ances were sampled at a rate of 16000 samples per second.
Fig. 2 shows the reference signals that are used to investigate
the deception detection in this research.

All the voice signal data was then processed individually
to extract unique sets of voice features for inspection. Fea-
ture extraction is important to test the data’s importance and
relevance in terms of being useful to detecting deception.
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Once the relevant data is analyzed, it is passed through artifi-
cial neural network models to train and test the robustness of
the features extracted.

IV. FEATURE DEVELOPMENT AND EXTRACTION
The purpose of feature engineering is to analyze and dis-
tinguish between deceptive and truthful utterances quantita-
tively and reliably from speech [2]. When someone is being
dishonest, there is a variety of complicated combinations of
specific emotions and speech characteristics that could be
studied from these features. In this paper, we extracted two
cepstral and two spectral energy features from the reference
speech signals that is shown in Fig. 2. The two cepstrum
features extracted are time-difference cepstrum, and delta
cepstrum while the two spectral energy features extracted are
time-difference energy, and delta energy.

FIGURE 2. Reference speech signals.

A. CEPSTRUM FEATURE DEVELOPMENT AND EXTRACTION
Deception detection based on extracted cepstrum features
was studied to understand how speech features can be used to
detect human emotion and deception. Cepstral representation
of an utterance provides a depiction of the local spectral
properties of the signal [3], [6], [9]. Each speech utterance
was divided into frames within a 20ms duration, with 320
samples, and a 50 percent overlap. Using a 1024-point DFT,
the cepstrum features were calculated. Each frame was then
divided into 24 critical bands ranging up to approximately
7500 Hz which illustrates in Table 2. To take out DC, the first
band starts with the frequency resolution (DF). The power
spectral density, global masking threshold, and quiet thresh-
old were acquired after normalizing each frame to see which
frame of speech was above the threshold of at least 3dB
above the global masking threshold. The DFT points were
doubled compared to the previous 512-DFT points for more
points available to obtain more accurate results. Fig. 3 shows
the initial pipeline of the cepstrum feature extraction process
where the MFCC feature is extracted.

MFCCs are computed by summing up the weighted log
energy magnitudes in a band around a center frequency as

TABLE 2. Cepstrum feature critical band filter bank.

FIGURE 3. Cepstrum feature extraction pipeline.

shown in (1), where n = 1, 2, . . .K the number of cepstral
coefficients, K is equal to the number of band index and Sk
represents the Hamming window function used.

MFCCn =

K∑
k=1

(
log10 Sk

)
cos

[
n
(
k−

1
2

)
π

K

]
(1)

Once MFCC features are extracted, the delta cepstrum
is calculated by taking the difference between successive
MFCCs as shown in (2).

delta cepstrum (n) = MFCCn+1 −MFCCn (2)

The delta-cepstral features added to the static MFCC fea-
tures strongly improves speech recognition accuracy [17]. For
these reasons, some form of delta cepstral features is part of
nearly all speech recognition systems.

The frame-to-frame difference cepstrum, to indicate the
time-dependent variation, is obtained as a feature using the
following expression that is shown in (3), where i indicate
the number of frame index.

difference cepstrum (m)=MFCCn (i+1)−MFCCn (i) (3)

For instance, using delta cepstrum features of critical band
11 and time-difference cepstrum features of critical band 18,
Fig. 4 and Fig. 5 respectively show their feature domain rep-
resentations of truthful and deceptive utterances of the word
‘No’. The pattern of true ‘NO’ utterances is distinguishable
from the pattern of deceptive ‘NO’ utterances.
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FIGURE 4. Delta cepstrum 11.

FIGURE 5. Time-difference cepstrum 18.

B. SPECTRAL FEATURE DEVELOPMENT AND EXTRACTION
Spectral energy features extracted for analysis are that of
delta energy and time-difference energy feature. Each utter-
ance was divided into frames within a 20ms duration and a
50 percent overlap for extraction. Using a 1024-point DFT,
the spectral energy feature was calculated. For every frame
and value, spectral energy is estimated within a certain range
of frequency bins [26]. Each frame was divided into 21 Bark
Bands within a 7700Hz frequency, as seen in Table 3. Spectral
energy over the Bark scale is more natural in approximating
the perception in the ear [18]. Critical bandwidth tends to
remain constant (about 100 Hz) up to 500 Hz and increases
to approximately 20 percent of the center frequency above
500Hz [18]. The critical bandwidth [24] is calculated approx-
imately using (4) where frequency f is in Hz.

BWc (f ) = 25+ 75[1+ 1.4
(

f
1000

)2

]
0.69

Hz (4)

Frequency in Hz is converted to the Bark scale for analysis
purposes. Each frame is normalized with the global masking
threshold, and power spectral density to extract the spectral

TABLE 3. Spectral feature critical band filter bank.

FIGURE 6. Spectral feature extraction pipeline.

energy feature [18]. For reference purposes, the quiet thresh-
old for hearing is obtained. The total energy of the spectral
components that are at least 3dB above the global threshold
of every frame of utterance is calculated to get the features.
To obtain the spectral energy feature specifically, the sum of
each of the 21 bands’ energy levels above the threshold was
produced. It was then normalized to calculate the delta energy
feature and the time-difference energy feature. Fig. 6 shows
the initial pipeline of the spectral energy feature extraction
process.

To indicate the time-dependent variation, the frame-to-
frame difference energy features are extracted using the
expression in (5), where i is indicative of the number of the
frame index.

difference energy (m) = NSPEn (i+ 1)− NSPEn (i) (5)

The delta energy features are obtained by calculating the
difference between successive normalized spectral energies’
as can be seen in (6).

delta energy (n) = NSPEn+1 − NSPEn (6)

Using time-difference spectrum and delta spectrum fea-
tures from Bark band 12 and Bark band 1 shown as an exam-
ple in Fig. 7 and Fig. 8 respectively to depict their feature
domain representations of truthful and deceptive utterances
of the word ‘No’. Distinguishable patterns between truthful
and deceptive utterance ‘No’ are visible.
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FIGURE 7. Time-difference energy 12.

FIGURE 8. Delta energy 1.

V. PRINCIPAL COMPONENT ANALYSIS
The time-difference cepstrum and spectral feature and the
delta cepstrum and spectral feature could provide the more
accurate feature matching classification results by incorpo-
rating with the PCA. While working on data deception, it is
observed that large datasets are often challenging to interpret
the results more accurately. Therefore, the PCA aids in data
dimension compression while minimizing loss of informa-
tion and increasing interpretability. It is a type of reduction
method that considers the original dataset as rows signifying
characteristics in high dimensional space and all the rows are
put up to directions that represent the best set of features [5].
The PCA constructs a group of new latent variables that
reduce the dimensions of the original data space. The main
variation information is then extracted from the newmapping
space and extracts the statistical features. As a result, the new
solution of the spatial features of the original data can be
constructed. In the new mapping space, the variables are
composed of linear combinations of the original data which is
a method that reduces the dimensions of the projection space.

Due to the statistical eigenvectors in the projection space
being orthogonal to each other, the correlation between

variables is eliminated and the complexity of the original pro-
cess internal function and documentation of coeff = pca(X),
the principal characteristic analysis is simplified [25]. Using
MATLAB’s internal function and documentation of coeff =
pca(X), the principal component analysis of the raw data
was obtained for the n-by-p data matrix dependent on the
specified feature. The function takes a feature matrix as input,
in this case, the cepstrum and spectral features matrix data,
and performs PCA analysis on it. Each column in the PCA
coefficient matrix contains a coefficient for one principal
component. The columns are organized in descending order
of component variance. Using the data obtained after apply-
ing the PCA in MATLAB, Levenberg-Marquardt and LSTM
feature matching techniques were used to find the recognition
rate and compare the results between these two methods with
existing works.

VI. FEATURE MATCHING
In many speech processing tasks, deep neural networks have
been successfully used in speaker verification [27], [28],
speech enhancement [29]–[31], and speech recognition
[32]–[34], deception detection [6], [18], and emotion recog-
nition [13]. Spectral and cepstrum features and the tar-
get result of ‘True’ and ‘False’ speech were applied to a
Levenberg-Marquardt neural network model and an LSTM
neural networkmodel for training. The Levenberg –Marquart
backpropagation algorithm and LSTM algorithm are feature
matching techniques that are used to test the accuracy of train-
ing and testing data both before and after the application of
PCA. Applying the PCA in the spectral energy and cepstrum
feature improves the results of both the feature matching
techniques. The neural network models use the extracted
features to calculate a more accurate level of deception
detection.

A. LEVENBERG-MARQUARDT
Levenberg-Marquardt is known for having high accuracy
and speed for feed-forward neural networks [6]. The Lev-
enberg - Marquardt algorithm works by performing a com-
bined training process using complex curvature around the
area [18]. The steepest descent algorithm is then used until
the proper local curvature is acquired to make a quadratic
approximation [18]. Then to speed up the convergence pro-
cess, it becomes the Gauss-Newton algorithm, which means
it requires less memory allocation and provides ease of use
when selected. This neural network model is comprised of an
input layer, multiple hidden layers, and an output layer as can
be seen in Fig. 9.

Each set of spectral energy and cepstrum features is used
independently in the network. Batch mode was used to train
the network with a target value of 1 for deceptive speech,
and 0 for nondeceptive speech. In each case, any resulting
value above 0.5 was deceptive speech, and any value below
0.5 was nondeceptive speech. When training the network,
it was observed that between 7 and 20 epochs were enough to
achieve low mean-squared error as can be observed in Fig. 9.
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FIGURE 9. Levenberg-marquardt neural network model.

FIGURE 10. Levenberg-marquardt algorithm learning curve.

For each of the four features, Session 1 was used for train-
ing with Session 2, and Session 3 was used independently for
testing. Session 2 was then used for training with Session 1,
and Session 3 was used for testing. Lastly, Session 3 was
used for training while Session 1, and Session 2 were used
independently for testing. Table 4 presents the results before
and after applying PCA for both sets of features. The trained
network performed well for both sets of features especially
after applying PCA. The results in Table 4 with bold red
coloring are the indication of misclassified data.

The time-difference spectral energy feature correctly
detected deceptive speech in 19 out of 24 (79.16%) cases
before applying PCA. After applying PCA, the time-
difference spectral energy feature correctly detected decep-
tive speech in all 24 (100%) cases. The delta spectral
energy feature correctly detected deceptive speech in 18 out
of 24 (75%) cases before applying PCA. After applying

FIGURE 11. Long short-term memory network architecture.

PCA, the delta spectral energy feature correctly detected
deceptive speech in 21 out of 24 (87.5%) cases. The
time-difference cepstrum feature correctly detected decep-
tive speech in 20 out of 24 (83.33%) cases before applying
PCA. The delta cepstrum feature correctly detected decep-
tive speech in 19 out of 24 (79.16%) cases before applying
PCA. After applying PCA, the delta spectral energy feature
correctly detected deceptive speech in 22 out of 24 (91.66 %)
cases.

B. LONG SHORT-TERM MEMORY
Deep learning methods like LSTM are also widely known as
powerful machine learning tools for classification problems.
LSTM model is a type of recurrent neural network (RNN)
model that is capable of learning long-term dependencies
between time-series data [20]. The LSTM neural network is
an improved algorithmwith neurons that can keep memory in
their channels to effectively mitigate the vanishing gradient
problem [23]. The key of the LSTM neural network is the
cell state which can add or remove information to the cell
state through the gates [35]. An LSTM network consists of
four interactive cells including an input gate, an output gate,
a forget gate, and an internal unit. The input gate controls the
level at which the cell state updates. The output gate controls
the level at which the cell state is added to the hidden state.
The forget gate controls the level at which the cell state forgets
of rests. It also retains information from the internal state
that allows the LSTM unit to forget the unit’s memory [20].
The internal unit adds information to the cell state. The gates
work together to trace the flow of data from the input end to
the output end of the cell. The basic internal LSTM network
architecture is represented in Fig. 11.

The input gate is represented by it , the forget gate is
represented by ft , the internal cell candidate is represented
by gt , and the output gate is represented by ot . The inputs
are the cell state Ct−1, the hidden layer output ht−1, and the
sequence vectorX (t) at time t and the outputs are the cell state
Ct , the LSTM hidden layer outputs ht [22], [23].
Equation (7) is used to calculate the input gate.

it = σ (Wi • [ht − 1, xt ]+ bi) (7)
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TABLE 4. Feature matching results using levenberg-marquardt before and after applying PCA.

TABLE 5. Feature matching results using LSTM before and after applying PCA.

Equation (8) is used to calculate the forget gate.

ft = σ (Wf • [ht − 1, xt ]+ bf ) (8)

To calculate the output gate, equation (9) is used.

Ot = σ (Wo • [ht − 1, xt ]+ bo) (9)

To calculate the output of the hidden layer, equation (10)
is used.

ht = Ot • tan(Ct ) (10)

To calculate the current candidate cell state, equation (11)
is used.

C̃t = tanh (Wc • [ht − 1, xt ]+ bC ) (11)

To calculate the current state cell, equation (12) is used.

Ct = ft • Ct−1 + it • C̃t (12)

From Equation (7) – (12), σ representative of the sigmoid
activation function, Wi, Wf , and Wo are representative of the
input gate weight matrix, the forget gate weight matrix, and
the output gate weight matrix respectively, and bi, bf , bo, are
representative of the input gate bias, the forget gate bias, and
the output gate bias, respectively.

Each set of spectral energy and cepstrum features is used
independently in the network. Batch mode was used to train
the network with a target value of 1 for deceptive speech,

and 2 for nondeceptive speech. When training the network,
it was observed that the elapsed computational time was
approximately 40-47 seconds for both the cepstrum and
spectral energy features. They all ran for the max amount
of 2000 epochs at 1 iteration per epoch. In each case, any
resulting value below 1 was deceptive speech, and any value
above 1 and below 2 was nondeceptive speech. For each of
the four features, Session 1 and Session 2 were used for
training, and Session 3 was used for testing. Session 2 and
Session 3 were then used for training with Session 1 was
used for testing. Lastly, Session 1 and Session 3 were used for
training while Session 2 was used for testing. Table 5 presents
the results before and after applying PCA for both sets of
features.

The trained network performed well for both sets of
features especially after applying PCA. The results shown
in Table 5 with bold red color are the indication of mis-
classified data. The time-difference spectral energy fea-
ture correctly detected deceptive speech in 11 out of 12
(91.66%) cases before applying PCA. After applying PCA,
the time-difference spectral energy feature correctly detected
deceptive speech in all 12 (100%) cases. On the other
hand, the delta spectral energy feature correctly detected
deceptive speech in 7 out of 12 (58.3%) cases before
applying PCA. After applying PCA, the delta spectral
energy feature correctly detected deceptive speech in 10 out
of the 12 (83.33%) cases. The time-difference cepstrum
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TABLE 6. Results comparison of recent deception detection techniques.

feature correctly detected deceptive speech in 10 out of 12
(83.33%) cases before applying PCA. After applying PCA,
the time-difference cepstrum feature correctly detected
deceptive speech in 11 out of the 12 (91.66%) cases. The delta

cepstrum feature correctly detected deceptive speech in 6 out
of 12 (50%) cases before applying PCA. After applying PCA,
the delta cepstrum feature correctly detected deceptive speech
in 9 out of the 12 (75%) cases.
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When we experimented, we ran the algorithm and we
trained and tested it multiple times using LSTM and
Levenberg-Marquardt. Each time we ran it, we got the same
results (i.e. 100%) for the time-difference energy feature. Due
to the size of the data used, overfitting could have occurred.
However, if we expand the size of the corpus for further
analysis and verification of the test results of our proposed
extracted feature using the same process and the classifier
methods, the recognition rate could change from 100%.

VII. CONCLUSION AND FUTURE RESEARCH
We have extracted a few unique speech signal features. Dif-
ferent classifiers are applied for deception detection before
and after PCA which was performed on the data. Using
the Levenberg-Marquardt algorithm, it shows the correct
detection of deceptive speech using the delta energy feature
before applying PCA (75% recognition rate) compare to
after applying PCA (87.5% recognition rate). However, the
time-difference energy feature correctly detects the deceptive
speech at the recognition rate of 79.17% and 100% before and
after applying PCA respectively. Similarly, before applying
PCA to the delta cepstrum, the deception detection rate is
79.17% and after applying PCA, the deception detection rate
is at 91.7% accurate. While using the LSTMmethod with and
without incorporation PCA in the time-difference energy, the
deception detection rate is 91.7% and 100%. From the anal-
ysis, it can be inferred that the spectral energy features after
applying PCA provided the best classification results. Further
research using more speech utterances from a multitude of
speakers, which is hard to obtain, can confirm the results
of the proposed feature classification methods in detecting
deception. Studying the use of a field-programmable gate
array (FPGA) with the post PCA data is an implementation
method where this research could expand as further research
direction to create a software-hardware device to improve the
accuracy for real-life applications.
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