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ABSTRACT Variation in the electromyogram pattern recognition (EMG-PR) performance with the muscle
contraction force is a key limitation of the available prosthetic hand. To alleviate this problem, we propose
a scheme to realize electromyogram signal normalization across channels before feature extraction. The
proposed signal normalization scheme is validated over a dataset of nine transradial amputees that includes
three force levels with six hand gestures. Moreover, we employ three classifiers, namely, linear discriminant
analysis (LDA), support vector machine (SVM) and k-nearest neighbour (KNN), to evaluate the EMG-PR
performance. In addition to the signal normalization scheme, we perform nonlinear transformation of the
features by using the logarithm function. Both schemes facilitate merging of the muscle activation patterns
of different force levels. The experimental results indicate that the force invariant EMG-PR performance
(F1 score of at least 3.24% to 4.34%) of the proposed schemes is significantly enhanced compared to that
obtained in recent studies. Therefore, we recommend using these features along with the proposed signal
normalization scheme and nonlinear transformation of the features to improve the force invariant EMG-PR
performance. The proposed feature extraction method achieves the highest F1 score of 91.28%, 91.39% and
90.56% when using the LDA, SVM and KNN classifiers, respectively.

INDEX TERMS EMG pattern recognition, force invariant features, muscle activation pattern, signal
normalization.

I. INTRODUCTION
In recent decades, researchers have focused on surface
electromyography (EMG) techniques to realize myoelectric
pattern recognition because such techniques can ensure pain-
less and noninvasive detection [1]–[3]. Moreover, the asso-
ciated data acquisition is simple, the frequency spectrum
of the EMG signal is wide (20 Hz to 500 Hz), and
the signal carries more information than force myograms
and mechanomyograms [4], [5]. However, the previously
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developed prosthetic hands that adopted the EMG signal
strength exhibited a limited number of degrees of freedom
(DOFs). Further, researchers have attempted to overcome
the problem of limited DOFs by using the EMG-PR-based
technique [6]–[8]. In the EMG-PR-based approach, multi-
ple features are extracted from the EMG signal, and the
intended hand gestures are predicted using a classifier. Thus,
higher DOFs can be achieved for upper-limb prostheses [9].
However, certain critical factors affect the EMG-PR per-
formance, including variation in the muscle contraction
force [10]–[13], electrode position shift [14]–[16], hand
orientation [17], [18], limb position [17], [19], [20] and
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non-stationarity of the EMG signal [21]. Among these fac-
tors, the variation in the muscle contraction force for a spe-
cific gesture occurs frequently in our daily activities. The
EMG signal amplitude and frequency-domain characteristics
change when the contraction force of a respective muscle
or group of muscles involved in the particular gesture is
varied [22], [23]. Two techniques, frequency summation and
multiple fibre summation, are involved in this force variation.
In the frequency summation and multiple fibre summation
techniques, the action potential sending rate and strength of
the action potential from the central nervous system vary,
respectively [24]. Therefore, through these physiological
changes, the features of EMG signals can be changed with
variations in the muscle contraction force.

Tkach et al. [25] observed that the EMG-PR perfor-
mance of time-domain features degrades when the system
is tested for the same gesture having different force levels.
Furthermore, Scheme and Englehart [26] investigated the
impact of the variation in muscle contraction force on
the EMG-PR performance. To investigate this aspect,
the researchers collected EMG signals with a force variation
of 20% to 80% of themaximumvoluntary contraction (MVC)
in intervals of 10%.Moreover, the authors noted a 55% degra-
dation in the EMG-PR performance when the LDA classifier
was tested for unknown force levels. It was suggested that
training the classifier with all force levels could help achieve
an enhanced EMG-PR performance of 84%. However, pros-
thetic hand users expect the highest EMG-PR performance in
nearly all scenarios, and thus, the performance level should
be more than 90% [26]. To achieve the minimum satisfactory
performance, Hua et al. [27] introduced multitask learning
(MTL) to simultaneously recognize gestures and force levels.
The authors indicated that the combination of frequency-
domain features and convolutional neural networks (CNNs)
was more appropriate than amplitude-based features. When
frequency-domain features were used, an EMG-PR perfor-
mance of 95% was achieved. However, in this study, multi-
ple force levels were used to train the CNN. Consequently,
the training time was considerable, and the training could
not be accomplished using low-cost hardware [11], [28].
Subsequently, He et al. [11] proposed a force invariant fea-
ture extraction method based on the frequency-domain fea-
tures normalized across channels. A satisfactory force invari-
ant EMG pattern recognition of 91% was achieved using
the LDA classifier. However, the major constraint is that
the authors use a specific electrode position on the fore-
arm, which is very tough to ensure for all amputees due
to a small stump length. Thereafter, Al-Timemy et al. [10]
attempted to ensure a satisfactory EMG-PR performance for
nine transradial amputees. The authors introduced a new fea-
ture extraction method known as time-dependent power spec-
trum descriptors (TDPSD), which could achieve an EMG-PR
performance of nearly 90% when the LDA classifier was
trained for all force levels. However, the force invariant
EMG-PR performance of amputees is low due to their small
stumpwith a deformedmuscle structure [29], [30]. Therefore,

it is challenging to improve the force invariant EMG-PR
performance for transradial amputees.

In this context, we attempt to enhance the force invariant
EMG-PR performance of transradial amputees. To do so,
we propose a scheme to normalize the EMG signal across
channels before the feature extraction method. The signal
normalization scheme is aimed at alleviating the problem
of amplitude variation with the variation in the muscle con-
traction force. The proposed signal normalization scheme is
effective for balancing the forces in the raw EMG signal and
extracted features since the muscle activation pattern across
the channels is unique for each gesture and remains constant
with forces except for the strength of the EMG signal [11].

Notably, although the abovementioned studies were aimed
at enhancing the EMG-PR performance by introducing more
efficient force invariant features, to the best of our knowledge,
none of the existing studies have attempted to balance the
original EMG signal with the variation in the muscle force
levels, thereby balancing the forces for each amplitude-based
feature. The proposed signal normalization scheme can sig-
nificantly enhance the force invariant EMG-PR performance
in terms of the accuracy sensitivity, specificity, precision and
F1 score. Furthermore, we investigate the impact of non-
linear transformation (logarithm) on the signal normalized
features since it enhances the separation margin among the
gestures [10], [36]. Therefore, we establish a feature extrac-
tion method that employs the proposed signal normaliza-
tion scheme and nonlinear transformation of features. The
EMG-PR performance of the recommended feature extrac-
tion method is compared with five existing feature extrac-
tion methods. The experimental results (Section III) indicate
that the proposed feature extraction method can achieve the
highest EMG-PR performance in terms of all the perfor-
mance evaluation parameters. Furthermore, we consider three
widely used classifiers, i.e., LDA, SVM, and KNN, to eval-
uate and validate our experimental results. These classifiers
are selected as they incur a low computational cost and can
achieve a reasonable EMG-PR performance [11], [31]–[33].
In addition, the experimental outcomes are validated sta-
tistically through Bonferroni-corrected analysis of variance
(ANOVA).

The remaining paper is structured as follows. Section II
describes the EMG datasets of transradial amputees, the pro-
posed EMG signal normalization scheme, the feature extrac-
tion method, and the EMG-PR method. Section III presents
the impact of the proposed signal normalization scheme on
the raw EMG signal, the muscle activation patterns of dif-
ferent gestures and a comparison and evaluation of the force
invariant EMG-PR performance. Section IV investigates the
reasons behind the improved EMG-PR performance, and
Section V summarizes the overall experimental results.

II. METHODOLOGY
A. DESCRIPTION OF THE EMG DATASET
In this research, we collect the EMG dataset of tran-
sradial amputees from [10]. The dataset is also publicly
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available on the Khushaba website (www.rami-khushaba.
com/ electromyogram-emg-repository.html). The dataset
involves the information of seven transradial amputees
(TR1-TR7) and two congenital amputees (CG1-CG2). Each
amputee performed six hand gestures, including thumb flex-
ion, index flexion, fine pinch, tripod grip, hook grip (hook
or snap) and spherical grip (power). In general, it is chal-
lenging for an amputee to perform an imaginary gesture.
In the dataset formulation, the amputees overcame this chal-
lenge with the assistance of another intact hand. Additionally,
LabVIEW (National Instruments, USA) software was used
to observe the EMG signal on the screen and confirm the
response. The amputees performed each hand gesture with
three force levels, specifically, low, medium and high. Addi-
tionally, the amputees performed every gesture five to eight
times (also known as trials) with a variable duration of
eight to twelve seconds. Data were collected using a custom
EMG data acquisition system, in which the EMG signal was
sampled at 2000 Hz. Furthermore, differential EMG signal
electrode pairs were placed around the residual forearm with
the common electrode placed on the elbow joint.

B. THE PROPOSED EMG SIGNAL
NORMALIZATION SCHEME
The EMG signal is stochastic in nature. The amplitude
and frequency-domain characteristics of the EMG signal
vary with the muscle contraction force [24]. He et al. [11]
showed that every gesture follows a unique muscle activation
pattern (MAP) across channels, which is unique for every
gesture. Additionally, this MAP for every gesture does not
change with the variation in the force, except for the ampli-
tude. Therefore, the MAP is a stable feature that can be
utilized to design a force invariant EMG-PR system. In this
research, we attempt to alleviate the problem of signal ampli-
tude variation with the force variation. Therefore, we nor-
malize the multichannel EMG signal for a current window
according to the root mean square (RMS) value as defined
in (1). The mathematical formula is as follows:

Normalized EMG Signalj =
Xj√

1
MN

M−1∑
j=0

N−1∑
i=0

x2j,i

(1)

where j and i present the channel and discrete sample values
of sizesM and N (window size), respectively, and Xj denotes
the jth EMG channel of a window.

C. FEATURE EXTRACTION
The multichannel EMG signal is normalized across channels
for each analysis window, as described in Section II-B. Next,
the seven time-domain features and correlation coefficients
are extracted. The features are as follows:

The mean value (MV), also known as the mean absolute
value, reflects the signal strength of the EMG signal. TheMV

can be defined as [34]

MV =
1
N

N−1∑
i=0

|x[i]| (2)

where x[i] is the discrete EMG signal of window size N .
The zero-order power spectrum (P0) indicates the total

power in the frequency domain. P0 can be derived directly
from the discrete time-domain signal by using the Parseval
theorem.

P0 =
N−1∑
i=0

[x[i]]2 =
1
N

N−1∑
k=0

[X [k]X∗[k]] =
N−1∑
k=0

P[k] (3)

where P[k] is the power spectrum, and X∗[k] is the complex
conjugate of X [k] with a frequency index of k .

The second-, fourth- and sixth-order power spectra
(P2, P4 and P6, respectively) are considered to correspond
to the signal power according to Hjorth et al. [35]. The
higher-order signal powers can be mathematically defined
using the differentiation property of the discrete time-domain
signal.

P2 =
N−1∑
k=0

k2P[k] =
1
N

N−1∑
k=0

[kX [k]]
2
=

N−1∑
i=0

[1x[i]]2 (4)

P4 =
N−1∑
k=0

k4P[k] =
1
N

N−1∑
k=0

[k2X [k]]2 =
N−1∑
i=0

[12x[i]]2 (5)

P6 =
N−1∑
k=0

k6P[k] =
1
N

N−1∑
k=0

[k3X [k]]2 =
N−1∑
i=0

[13x[i]]2 (6)

The odd-order power spectra are not considered due to the
zero value.

The first- and second-order average amplitude changes
(AC1 and AC2, respectively) correspond to the average
amplitude change, which indicates the indirect frequency
information [34].

AC1 =
1

N − 1

N−1∑
i=0

|1x| (7)

AC2 =
1

N − 2

N−1∑
i=0

|12x| (8)

Subsequently, the abovementioned seven features are non-
linearly transformed through a logarithmic function to max-
imize the margin among the gestures, with a focus on the
low amplitude values [10], [36]. The nonlinear mean value,
zero-order power spectrum, second-order power spectrum,
fourth-order power spectrum, sixth-order power spectrum,
first-order average amplitude change and second-order aver-
age amplitude change are denoted as NLMV, NLP0, NLP2,
NLP4, NLP6, NLAC1 and NLAC2, respectively.
The correlation coefficients (CCs) indicate the strength

of the similarity for each pair of EMG channels. The CC
depends only on the correlation between two signals instead
of their signal amplitude change due to the variation in the
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FIGURE 1. Block diagram of feature extraction method.

muscle contraction force. The correlation coefficient ρ(x, y)
for channels x and y can be mathematically defined as
follows.

ρ(x, y) =
Cov(x, y)
σxσy

=

N−1∑
i=0

(xi − x̄)(yi − ȳ)√
N−1∑
i=0

(xi − x̄)2

√
N−1∑
i=0

(yi − ȳ)2

(9)

where x̄ and ȳ present the mean of channels x and y for a
window size of N , respectively. The entire feature extraction
procedure is summarized in Fig. 1.

D. EMG PATTERN RECOGNITION
In this paper, MATLAB 2017a software is used to eval-
uate the EMG-PR performance. We adopt an overlapped
rectangular windowing or segmentation scheme with a win-
dow size of 250 ms and 100 ms overlap between suc-
cessive windows. In this scenario, the EMG-PR system
requires (150 + τ ) ms to predict the intended gesture,
where τ is the processing time of a classifier. Therefore,
the required processing time for the EMG-PR is less than
the recommended limit [37]. Furthermore, the movement
artefacts [38], high-frequency noise [39] and power line arte-
facts [40] are removed using multiple digital filters, specif-
ically, a high-pass filter of 20 Hz, low-pass filter of 500 Hz
and notch filter of 50 Hz, respectively.

To evaluate and compare the impact of the proposed nor-
malization on the EMG-PR performance, we consider four
cases involving seven features with the CC, as described
in Section II-C. The case descriptions are as follows:

This feature extraction method includesMV, P0, P2, P4, P6,
AC1, AC2 and CC and is termed case A. The proposed signal
normalization scheme is not used here.

He et al. [11] used a feature normalization scheme across
channels. In this feature normalization scheme, each of the
considered features (MV, P0, P2, P4, P6, AC1, and AC2) for
a current window is normalized according to Euclidean norm
across channels. Again, normalized features MV, P0, P2, P4,
P6, AC1, and AC2 along with the original CC, termed case B.
In this research, we propose a scheme involving EMG

signal normalization across channels, as described in
Section II-B. This framework is used in case C with the
considered features (MV, P0, P2, P4, P6, AC1, AC2 and CC).
In case D, we employ nonlinear transformation (logarithm)

in addition to the case C features, except CC. Hence, the fea-
ture set includes NLMV, NLP0, NLP2, NLP4, NLP6, NLAC1,
NLAC2 and CC.
In all the cases, the extracted features generate an

84-dimensional feature space (7 features × 8 channels +
8C2 CC = 56+ 28 = 84). However, spectral regression dis-
criminant analysis (SRDA) reduces the high-dimensional fea-
ture space to 5 (total number of gestures−1= 6-1= 5) [41].
To evaluate the EMG-PR performance of the considered
feature extraction method, we use three classifiers: LDA
with a quadratic function [42], [43], SVM with a Gaussian
radian basis kernel function [44], [44] and KNN with three
neighbours [45], [46]. In this study, we consider five trials
with eight channels placed around the forearm since these
channels are variable in this dataset. Moreover, we use four
trials as the training set and the remaining trial as the testing
set. The training and testing sets are changed five times
to ensure that every trial is used as a testing set. In the
training and testing sessions, the number of samples is equal
to the product of the force levels, trials, gestures and num-
ber of samples per trial. Furthermore, the data overfitting
problem is carefully addressed, as confirmed by the negli-
gible difference in the performance between the training and
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testing sessions. Finally, the EMG-PR performance is eval-
uated through the accuracy, sensitivity, specificity, precision,
and F1 score [47], [48]. These performance evaluation param-
eters define the ability to distinguish true positive and true
negative gestures. Further, the F1 score is evaluated based on
both sensitivity and precision to more accurately identify the
true positive gestures. These parameters can be measured as
follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

Sensitivity =
TP

TP+ FN
(11)

Specificity =
TN

TN + FP
(12)

Precision =
TP

TP+ FP
(13)

F1Score =
2× Precision× Sensitivity
Precision+ Sensitivity

(14)

where TP, TN, FP, and FN represent true positive, true nega-
tive, false positive, and false negative values, respectively.

E. STATISTICAL TEST
To evaluate the statistical significance between any two fea-
ture extraction methods, we perform Bonferroni-corrected
ANOVA with a confidence level of 95%. In this study,
the amputee-wise EMG-PR performance under three train-
ing cases is concatenated to form a 27-dimensional vector
(9 amputees × 3 training-test cases), and Bonferroni-
corrected ANOVA is performed. Additionally, the ANOVA
findings are discussed in Sections III-E and III-F, with the
number of training-testing cases being one.

III. RESULTS
A. IMPACT OF EMG SIGNAL NORMALIZATION ACROSS
CHANNELS
The multichannel raw EMG signal with three force levels
shown in Fig. 2a indicates that the signal amplitude changes
more markedly than the frequency-domain characteristics.
Therefore, the EMG signal of the 250 ms window (sampling
frequency × window size = 2000 × 0.25 = 500 samples)
is normalized across channels according to the RMS value.
The normalized signal is shown in Fig. 2b for all channels
with three force levels. Fig. 2b indicates that the EMG signal
normalization scheme balances the three forces.

B. MUSCLE ACTIVATION PATTERN
To observe the MAP with three forces, we consider the
eight-channel EMG signal of amputee 1 with six hand ges-
tures. Next, a feature (MV) is calculated for a single window,
and the features for all forces are scaled between 0 and 1.
Finally, the scaled MV values are plotted in a radar plot.
Fig. 3 shows the MAP of the six hand gestures with three
force levels, with A, B, C andD indicating the four considered
cases. CaseA in Fig. 3 corresponds to a uniqueMAP for every
gesture, and the strength of the active muscles increases with

the increase in the muscle contraction force. Furthermore,
a weak EMG signal strength is present at the inactive muscle
positions due to propagation of the EMG signal through the
skin. The EMG signal strength decays with increasing EMG
source separation. Moreover, the MAP is not identical for all
force levels for an amputee, although an intact limbed sub-
ject produces identical MAPs for all force levels [11], [49].
The possible reasons may be lack of proper training to per-
form a given gesture and the deformed muscle structure.
In addition, Fig. 3 shows that the problem of EMG signal
strength variation with the force levels is alleviated when
feature normalization (case B) and EMG signal normalization
scheme are implemented across channels (case C). In addi-
tion, the logarithm transformation of the signal normalized
feature (case D) shows improved feature overlapping for the
three force levels.

C. FORCE INVARIANT EMG-PR PERFORMANCE
WITH A SINGLE TRAINING FORCE
To evaluate the force invariant EMG-PR performance,
we train the classifiers with a single force level and test them
with all force levels. The average EMG-PR performance and
standard deviations across the amputees for different training
cases are shown in Table 1. The experimental results shown
in Table 1 indicate that the proposed EMG signal normal-
ization scheme used in cases C and D provides better force
invariant EMG-PR performance in terms of the accuracy,
sensitivity, specificity, precision and F1 score. In addition to
the highest EMG-PR performance, cases C and D achieve
the lowest coefficient of variation in most cases. Again, it is
noted that nonlinear transformation through the logarithm
function (case D) significantly contributes to the force invari-
ant EMG-PR performance since the p values (Appendix A,
Table 5) are less than 0.012 when case C is compared with
case D (except for the F1 score with the KNN classifier
(p = 0.019)). In this study, the proposed signal normalization
scheme with nonlinear transformation (case D) improves the
accuracy, sensitivity, specificity, precision and F1 score by
1.45%, 4.35%, 0.89%, 4.13% and 4.34%, respectively, when
case D is compared to the existing feature normalization
scheme (case B) with the LDA classifier trained at a medium
force level. Additionally, the SVM and KNN classifiers fol-
low a trend similar to that of LDA and yield a nearly similar
performance enhancement. However, for training with a sin-
gle force, the LDA classifier achieves the highest F1 score of
77.99% when trained under a medium force level. To demon-
strate the significant performance improvement induced by
the proposed signal normalization scheme along with nonlin-
ear transformation (case D) compared with cases A and B,
we consider the Bonferroni-corrected ANOVA findings for
each classifier. The highest p value (Appendix A, Table 5)
is less than 0.001 for all cases, which demonstrates that the
proposed signal normalization scheme with nonlinear trans-
formation (case D) significantly improves the force invariant
performance.
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FIGURE 2. The raw EMG signal where (a) is the original EMG signal and (b) is normalized EMG signal across channels.
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FIGURE 3. The radar plot of six hand gestures for three force levels using MV feature where (A) is the original feature,
(B) is feature normalized across channels, (C) is the proposed signal normalized feature and (D) is the proposed signal
normalized feature with logarithm transformation.
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TABLE 1. The EMG-PR performances where the classifiers are trained with a single force level and tested with all force levels.

D. FORCE INVARIANT EMG-PR PERFORMANCE
WITH TWO TRAINING FORCES
To improve the force invariant EMG-PR performance,
we employ two training forces and test with all force levels.
Table 2 shows the average EMG-PR performance across all
amputees under the different training cases. The experimen-

tal results shown in Table 2 demonstrate that the proposed
signal normalization scheme used in cases C and D achieves
the highest EMG-PR performance in terms of all performance
evaluation parameters, i.e., accuracy, sensitivity, specificity,
precision and F1 score. In addition to the highest EMG-PR
performance, cases C and D achieve the lowest coefficient
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TABLE 2. The EMG-PR performances where classifiers are trained with two force levels and tested with all force levels.

of variation in most cases. Additionally, nonlinear trans-
formation of the signal normalized features through the
logarithm function helps significantly enhance the force
invariant EMG-PR performance since the obtained p values
(Appendix A, Table 6) between cases C and D for each
classifier are considerably smaller than 0.001. The proposed

signal normalization scheme along with nonlinear transfor-
mation (case D) enhances the accuracy, sensitivity, speci-
ficity, precision and F1 score compared with those obtained
using the existing feature normalization scheme (case B) by
1.09%, 3.26%, 0.66%, 3.09% and 3.24%, respectively, when
the LDA classifier is trained under low and high force levels.

VOLUME 9, 2021 79861



M. J. Islam et al.: Novel Signal Normalization Approach to Improve Force Invariant Myoelectric Pattern Recognition

TABLE 3. The EMG-PR performances where the classifiers are trained and tested with all force levels.

However, the LDA classifier achieves an improved F1 score
of 88.29% when the LDA classifier is trained under low
and high force levels. Additionally, the SVM and KNN clas-
sifiers provide consistent EMG-PR performance similar to
that of the LDA. To demonstrate the significant performance
enhancement induced by the proposed signal normalization
scheme with nonlinear transformation (case D) against cases
A and case B, we evaluate the Bonferroni-corrected ANOVA
findings for each classifier. The obtained highest p value
(Appendix A, Table 6) is less than 0.001 for all cases, which
confirms the significant improvement in case D.

E. EMG-PR PERFORMANCE WITH ALL TRAINING FORCES
To further enhance the EMG-PR performance, we train the
classifiers with all force levels and test them with all force
levels. Table 3 shows the average EMG-PR performance with
the standard deviation across all amputees. The experimental
results shown in Table 3 imply that the proposed signal nor-
malization scheme used in cases C and D achieves the highest
EMG-PR performance in terms of all the performance evalua-
tion parameters, i.e., the accuracy, sensitivity, specificity, pre-
cision and F1 score. Additionally, cases C and D correspond
to the lowest coefficient of variation in almost all cases. As in
the previously described scenarios, the nonlinear transforma-
tion of the signal normalized features significantly enhances
the EMG-PR performance and achieves the highest p value
(Appendix A, Table 7) of 0.005 between cases C and D for all
classifiers. Thus, the proposed signal normalization scheme
along with the nonlinear transformation (case D) enhances
the accuracy, sensitivity, specificity, precision and F1 score
compared with those of the existing feature normalization
scheme (case B) by 0.99%, 2.98%, 0.58%, 2.72% and 2.98%,
respectively, when the LDA classifier is used. In this training
case, the LDA classifier achieves an F1 score of 91.28%,

FIGURE 4. The amputee-wise EMG-PR performances using LDA classifier.

and the value for the other two classifiers, SVM and KNN,
follow that of the LDA classifier. Finally, we evaluate the
ANOVA findings between cases D and A, and D and B for
each classifier. The highest p value (Appendix A, Table 7) is
less than 0.001, which demonstrates that the proposed signal
normalization schemewith nonlinear transformation (case D)
can significantly enhance the performance.

The amputee-wise EMG-PR performance (F1 score) under
the four cases (cases A–D) when using the LDA classifier
is shown in Fig. 4, where the classifier is trained and tested
under all force levels. Fig. 4 indicates that the nonlinear
(logarithm) transformation of the proposed signal normal-
ized features (case D) corresponds to the highest EMG-PR
performance across all amputees except for TR3, for which
the proposed signal normalization scheme (case C) achieves
the highest performance. The two other classifiers, SVM and
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TABLE 4. The comparison of EMG-PR performance where the classifiers are trained and tested with all force levels.

KNN, also provide an EMG-PR performance similar to that
of LDA.

F. COMPARISON OF THE EMG-PR PERFORMANCE
We compare the proposed signal normalization scheme
with nonlinear transformation of features (case D) with
five recently reported models, namely, temporal-spatial
descriptors (TSD) [31], TDPSD [10], Symmlet-8 wavelet-
based features with five levels of decomposition (wavelet)
[50], six time-domain features (TDF) [51] and six-order
autoregressive coefficients with RMSvalues (AR-RMS) [52].
A comparison of the average EMG-PR performance with the
standard deviation across nine amputees is shown in Table 4.
The proposed signal normalization scheme with nonlinear
transformation (case D) achieves the highest EMG-PR per-
formance in terms of the accuracy, sensitivity, specificity,
precision and F1 score. When comparing case D with each
of the existing feature extraction methods, the highest p
value, as shown in Appendix A, Table 8 (ANOVA), is 0.009;
this result strongly suggests that the proposed signal nor-
malization scheme with nonlinear transformation (case D)
significantly improves the EMG-PR performance compared
with that of the considered models. In particular, case D
achieves the highest performance, and TSD achieves the
second-highest EMG-PR performance.

The amputee-wise EMG-PR performance (F1 score)
obtained using the six feature extraction methods is shown
in Fig. 5, with the LDA classifier trained and tested under
all force levels. Fig. 5 indicates that the proposed signal
normalization schemewith nonlinear (logarithm) transforma-
tion (case D) achieves the highest EMG-PR performance for
most of the amputees. In TR6 and TR7, the proposed case D
achieves the second-highest EMG-PR performance.

IV. DISCUSSION
In our daily life, we employ various muscle force lev-
els for each gesture, depending on the activities. However,
the variation in the muscle force levels is considered a vital
limiting factor leading to unsatisfactory EMG-PR perfor-
mance of myoelectric prosthetic hands [10]–[13]. The rea-
son for the degraded EMG-PR performance is that when
the muscle force level is changed, the corresponding ampli-
tude and frequency characteristics of the EMG signal also
change depending on the physiology of the muscle [22]. The
EMG signal amplitude changes more dominantly than the
frequency-domain characteristics [11], [27].

In this study, the proposed EMG signal normalization
scheme aims to balance the signal amplitude for different
force levels. The proposed signal normalization scheme is

FIGURE 5. The amputee-wise EMG-PR performances using LDA classifier.
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highly effective since the MAP is unique for each gesture
except in terms of the signal strength, which changes with
the muscle force levels [11]. Thus, when the EMG signal is
normalized by the RMS value across the channels, all the
force levels are balanced through the higher amplification of
the low-force EMG signal than the high-force EMG signal.
The advantages of the proposed signal normalization scheme
are that it provides a consistent performance enhancement
in terms of the accuracy, sensitivity, specificity, precision
and F1 score, is effective for all transradial amputees with
different stump lengths and does not require individual nor-
malization of each feature. In addition, nonlinear transfor-
mation of the signal normalized features (case D) facilitates
enhancement of the separation margin among the gestures.
Thus, nonlinear transformation also significantly contributes
to the force invariant EMG-PR performance. The proposed
signal normalization scheme with nonlinear transformation
of the features (case D) improves the force invariant EMG-PR
performance (F1 score when using the LDA) by 3.24%
to 4.34% compared to the feature normalization scheme.
Therefore, the proposed signal normalization scheme with
nonlinear scaling of features represents the best option for the
force invariant EMG-PR recognition of amputees, in contrast
to using a feature normalization scheme [11]. Therefore,
the proposed signal normalization scheme with nonlinear
transformation of the features (case D) achieves the highest
F1 score (LDA, 91.28%; SVM, 91.39%; KNN, 90.56%), sat-
isfying the criterion of the lowest EMG-PR performance [26].
Specifically, the proposed signal normalization scheme pro-
vides a consistent EMG-PR performance even when using
different classifiers and overcomes the high classifier depen-
dence of phasor-representation-based force invariant feature
extraction methods [12]. In addition, the achieved EMG-PR
performance is much better than that with the TDPSD, TSD
and recently proposed fractal feature set [10], [31], [53].
Further, compared to the recommended method, traditional
feature extraction methods, namely, AR-RMS, TDF and
wavelet, provide very poor force invariant EMG-PR perfor-
mance [50]–[52]. Therefore, these feature extraction methods
should be modified for use in this context.

In this study, it is also observed that the MAP of transra-
dial amputees does not follow a trend with the force levels
similar to that of intact limbed subjects [11]. The possi-
ble reasons for the irregular MAP in the case of amputees
may be the deformed muscle structure and lack of proper
training. [29], [30]. Hence, the proposed signal normaliza-
tion scheme does not achieve a satisfactory force invariant
EMG-PR performance when only a single training force is
adopted. An amputee must be suitably trained to generate a
repetitive MAP for every gesture under different force levels
before using the myoelectric prosthetic hand. In this scenario,
the proposed signal normalization scheme can likely provide
satisfactory force invariant EMG-PR performance using only
a single training force.

TABLE 5. P-values when the classifier is trained with single force level
and tested with three force levels.

Furthermore, it is noted that the classifiers provide higher
EMG-PR performance when they are trained with the
medium force level (for a single training force) and low
and high force levels (for two training forces). The likely
reason is that the adjacent force level(s) is (are) highly
correlated. In this case, it is preferable to select a training
force level such that the other testing force levels are highly
correlated.

Finally, we evaluate the proposed EMG signal normaliza-
tion scheme offline. In future work, the real-time EMG-PR
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TABLE 6. P-values when the classifier is trained with two force levels and
tested with three force levels.

performance of the proposed EMG signal normalization with
nonlinearly transformed features (case D) can be studied
to identify the robustness. In addition to the amplitude,
the frequency-domain characteristics vary with the muscle
force levels. Therefore, the frequency-domain characteristics
should be considered in the future.

V. CONCLUSION
In this paper, we propose an EMG signal normalization
scheme that is very helpful to balance the amplitude variation
problem with muscle contraction forces. In addition to signal
normalization, the nonlinear transformation of the features
by the logarithm function helps in overlapping the MAP of
different force levels and maximizing the margin among the
gestures. Therefore, we establish a feature extraction method
(case D) in which both the proposed signal normalization

TABLE 7. P-values when the classifier is trained and tested with three
force levels.

scheme and nonlinear transformation of the features are
implemented. Compared to the considered recently reported
models, the proposed feature extraction method helps signif-
icantly enhance the force invariant EMG-PR performance in
terms of the accuracy, sensitivity, specificity, precision and
F1 score. The experimental results also imply that the three
classifiers provide almost identical EMG-PR performance,
with the LDA classifier performing slightly better.

APPENDIX A
See Tables 5–8.
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TABLE 8. The p-values between different feature extraction methods.
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