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ABSTRACT Deep-learning architectures were employed to simulate the self-piercing riveting process of
steel and aluminum sheets and predict the cross-sectional joint shape with a zero head height. Four steels
(SPRC440, SPFC590DP, GI780DP, SGAFC980Y) and three aluminum alloys (Al5052, Al5754, Al5083)
were considered as thematerials for the top and bottom sheets, respectively. The key objectivewas to consider
the material properties of these metal sheets (Young’s modulus, Poisson’s ratio, and ultimate tensile strength)
in a deep-learning framework. Two deep-learning models were considered: In the first model, the properties
of the top and bottom sheets were adopted as the scalar inputs, and in the second model, the three properties
were graphically assigned to the three channels of the input image. Both themodels generated a segmentation
image of the cross-section. To assess the accuracy of the predictions, the generated images were compared
with ground truth images, and three key geometrical factors (interlock, bottom thickness, and effective
length) were measured. The first and second models achieved prediction accuracies of 91.95% and 92.22%,
respectively.

INDEX TERMS Self-piercing riveting, cross-sectional shape prediction, deep learning, segmentation map
prediction, material properties.

I. INTRODUCTION
Self-piercing riveting (SPR) is an advanced process to
realize the mechanical joining of two or more sheet metals by
piercing a rivet into the sheets. As the rivet penetrates the top
and bottom sheets, a mechanical interlock is formed between
the two sheets. Because the process is performed under cold
forming conditions, SPR has been widely implemented to
join dissimilar materials such as aluminum alloys and steels,
especially in automobile industries [1]. The SPR process
exhibits many advantages over other conventional joining
techniques such as welding in terms of pre-processing or
energy requirements, quality of results, and environmental
friendliness [2]. Notably, SPR can be used to join two dis-
similar sheets in an inexpensive manner with a small energy
consumption, and a high strength can be achieved.

To reduce the experimental efforts and optimize the
process, it is desirable to perform simulations of the SPR
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process prior to the actual processing. Several researchers
have attempted to perform finite element analyses pertaining
to the SPR process, focusing on the joining process, process
optimization, and fatigue behavior [3]. Porcaro et al. [4]
conducted the earliest 2D numerical simulations of the SPR
process, based on the finite element method (FEM). To val-
idate the simulation results, the force–deformation curves
and deformed shapes were compared to the experimental
results. Moreover, the authors investigated the behavior of
the SPR joints under various quasi-static loading conditions
by converting the 2D model for the riveting process to a 3D
numerical model [5]. Both studies were conducted consid-
ering aluminum alloy 6060 of two different temper types.
Bouchard et al. [6] simulated the 2D riveting process using
finite element software, and compared the numerical results
with experimentally obtained cross-section images. In addi-
tion, a structural analysis was conducted by simulating the
shearing test considering the results of the riveting process.
Furthermore, Atzeni et al. [7] used the FEM to predict the
deformed shape, failure mechanism, and shear resistance of
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an SPR joint by simulating the joining process and tensile
test of Al6082-T4 sheet metal. Similarly, Moraes et al. [8]
attempted to simulate the SPR process for magnesium alloys
by using a large-scale plasticity and damage model based
on internal state variables and FEM to consider the complex
physics phenomena occurring in the joining process. The
numerical results of the final state were compared with the
experimentally obtained cross-sections. Carandente et al. [9]
proposed a 2D model based on a thermo-mechanical FEM
to simulate the SPR process and investigated the effects
of the change in the thermal and strain rate of substrate
materials on the thermal softening and strain hardening.
In most studies, the experimentally obtained and numeri-
cally simulated cross-sections were compared to evaluate
the results, because, in general, the joint quality of the SPR
can be determined by considering the geometrical factors of
the cross-sectional shape such as the rivet flaring, bottom
thickness, and effective length [10]. Haque et al. [11] pro-
posed a simple model to determine the rivet flaring from
the force–displacement curve, without cutting the SPR joint.
Hönsch et al. [12] experimentally and numerically investi-
gated the SPR process of aluminum alloy blanks with coated
steel rivets. To evaluate the simulation results, geometrical
factors of the cross-sections, such as the undercut and bottom
thickness, were compared to the experimentally obtained
values.

Recently, Oh et al. [13] proposed a deep-learning model
to predict the cross-sectional shape from the input punch
force of the SPR process, and the three key geometric factors
in the cross-section were measured to assess the prediction
quality. Deep-learning models offer several advantages over
other simulation methods such as the FEM; specifically,
deep-learning models do not require the implementation of
any assumptions, and because these approaches are data-
driven, all complex problems can be solved with sufficient
data. The authors obtained predictions for CFRP-GA590DP
and SPFC590DP-Al5052 combinations by using only the
punch force as the input parameter. Because the characteris-
tics of the materials used in the process were not considered
as parameters, the prediction results were limited to the given
material combination. In this regard, it is desirable to develop
a model that can be used to predict the results considering the
materials, to facilitate the use of novel materials in the SPR
process.

Considering these aspects, in this study, based on the
authors’ previous work [13], two deep-learning models were
developed, which could consider the material properties of
the top and bottom sheet materials (steel and aluminum
alloy, respectively) in a deep-learning framework and predict
the cross-sectional joint shape for various sheet combina-
tions. As the first model, the previously developed genera-
tive model (known as the scalar-to-seg model [13]), which
was based on a convolution neural network (CNN) [14] and
generative adversarial network (GAN) [15] with residual
blocks [16] was adopted. However, in contrast to the previ-
ous model, which adopted the punch forces as the inputs,

the material properties of the top and bottom sheets were
considered as the inputs. As the second model, the pix2pix
model [17] was adopted and modified to predict the geo-
metrical shape from the input image, containing not only the
material properties of the top and bottom sheets but also those
of the rivet. The twomodels were trained to learn themapping
from the material properties to a cross-sectional shape for a
given material combination. Because the punch force was not
an input parameter in these models, the models were designed
to generate an optimal result in which the head height
(gap between the rivet head and top sheet) was zero.

II. DATA PREPARATION
Figure 1 shows the schematics of the two deep-learning
models adopted in this study. Both the models consider the
material properties of the sheets as an input and have the same
overall structure: the generator generates the cross-sectional
image of the given materials, and the discriminator deter-
mines whether the given image is the generated image (fake)
or ground truth image (real). The methods differ in terms
of the type of input data and network structure. In the case
of Model 1, a vector consisting of three material proper-
ties of the top and bottom sheets is input to the generator.
In contrast, in the case of Model 2, an image in which the
material properties are represented as values of the R, G,
and B colors is input to the generator. The details on the
inputs and network structures of the twomodels are explained
in Sections III-A and B.

To obtain the ground truth data for the model, SPR
experiments were conducted using 12 different combinations
of steel and aluminum sheets. The list of materials and their
properties are presented in Table 1 and 2. A C-type rivet
and DZ type die were used for all combinations, and the
corresponding geometric dimensions and shapes are shown
in Figs. 2(a) and 2(b), respectively. Additional information
regarding the rivet is presented in Table 3. The notations of
the 12 combinations, referred to as the condition numbers in
the paper, are presented in Table 4. The SPR process was con-
ducted thrice for each combination, by using a hydraulic rivet-
ingmachine (Rivset Gen2, BÖLLHOFF)with a pre-clamping
force of 4 kN. The punch force for each combination was set
such that the head height for the result was zero.

Using the optical microscopic (OM) images obtained by
cutting the specimen after the SPR experiments, segmen-
tation maps were prepared manually (see Fig. 2(c)) and
used as the ground truth data of the models. As shown
in Fig. 2(c), a segmentation map involved four classes
(assigned to each channel of the image) representing the
location of the rivet, top sheet, bottom sheet, and background
with red, green, blue, and black colors, respectively. The
three key geometrical factors of the cross-section, which are
indicative of the quality of the SPR process, are shown in
the segmentation map in Fig. 2(c). These factors, namely,
the interlock (amount of rivet flaring), bottom thickness
(distance between the rivet foot and bottom sheet), and effec-
tive length (amount of rivet pierced into the bottom sheet)
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FIGURE 1. Data flow of two models used to predict the cross-sectional shape. The overall
structures of Models 1 and 2 are similar, but they differ in the network structure of the generator
and type of inputs.

TABLE 1. Properties of steel (top sheet) used in the SPR experiment.

TABLE 2. Properties of the aluminum alloys (bottom sheet) used in the SPR experiment.

FIGURE 2. Dimensions of (a) rivet and (b) die used in the SPR experiment.
The segmentation map generated from the OM image is shown in (c), and
the key geometrical factors that indicate the SPR joint quality are shown.

were measured to assess the prediction quality, as described
in Section IV.

As indicated in Fig. 1 and mentioned previously, Model
2 requires an image input. To obtain the input image, the three
considered properties of the materials used in the SPR pro-
cess, specifically, the elastic modulus, Poisson’s ratio, and
ultimate tensile strength, were normalized and assigned as R,
G, and B channels, respectively. Figure 3 shows two sample
input images corresponding to different material combina-
tions. Normalized values of elastic modulus, Poisson’s ratio,
and ultimate tensile strength are written in red, green, and
blue, respectively. Each value indicates a pixel value of the
R, G, and B channel of an image. As shown, the colors
of the top and bottom sheets in two images are different
as different materials were used. Comparing the left and
right images, only the B values of steel sheets are different
because only ultimate tensile strength is different for the
steels (see Table 1). Moreover, the locations of the materials
were set considering the actual states of specimens before the
process. The colors of the rivet and top and bottom sheets
appeared different as different materials were used, as shown
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TABLE 3. Properties of the rivet used in the SPR experiment.

FIGURE 3. Input images for Model 2. Three material properties (elastic
modulus, Poisson’s ratio, and tensile strength) of the rivet, top and
bottom sheets are considered as R, G, B channels and the corresponding
values (normalized) are written in red, green, and blue color, respectively,
in above images. In other words, the color of a material represents
material properties (e.g., the left and right images have different colors as
they correspond to different combinations of steel and aluminum
materials, as indicated below the images). The locations of the materials
are set considering the actual states before the process.

TABLE 4. Notations of the 12 combinations of steel–aluminum sheets
used in the SPR experiment. (referred to as the condition numbers).

in Fig. 3. Furthermore, the properties of the rivet were consid-
ered as parameters in the input image along with the top and
bottom sheets, which allowed the model to take into account
any change in the material of the rivet as well as the top and
bottom sheets.

III. DEEP-LEARNING MODELS
A. MODEL 1: USING MATERIAL PROPERTIES
AS THE SCALAR INPUTS
Figure 4 shows the structure of Model 1 to predict the
cross-sectional shape of the specimen after the SPR pro-
cess. A previously proposed generative model (scalar-to-seg
generator) [13] was adopted, which was based on the CNN
and conditional GAN (cGAN) [18] architecture with residual
blocks. As shown in Fig. 4, Model 1 involved a generator and
discriminator. The generator generated the cross-sectional
image from the condition vector and random noise vector,
and the discriminator determined whether the image was real
(ground truth) or fake (prediction). This type of GAN model
has been widely used in image processing applications, for
instance, to solve image generation problems. The output
image of the generator, known as the segmentation map,
consisted of four channels that represented the rivet, top

sheet, bottom sheet, and background class, and each pixel
value (between 0 and 1) indicated the probability that the
pixel belonged to each class. The objective functions for the
generator and discriminator were as follows:

min
D
V (D) =

1
2
Ex,c[(D(x, c)−1)2]+

1
2
Ec,z[(D(G(c, z), c))2]

(1)

min
G
V (G) =

1
2
Ec,z[(D(G(c, z), c)− 1)2]+ λEx,c,z
× [−x lnG(c, z)] (2)

To enhance the learning stability, the least-squares GAN
loss (LSGAN) [19] and extra cost function (the right most
term in (2)) were used. Furthermore, residual connec-
tions [16], [20] were implemented, as shown in Fig. 4,
to enable effective learning with deeper layers. More details
regarding the adopted model can be found in [13].

Notably, unlike the previous model [13], a condition vector
composed of the material properties of the top and bottom
sheet materials, was used as the input of the generator instead
of the scalar punch forces. Because the punch force was not
an input parameter, it was set such that the head height was
zero. The materials of only the top and bottom sheets were
considered as the inputs because the rivet materials did not
change. The elastic modulus, Poisson’s ratio, and ultimate
tensile strength were considered as the material properties,
as, in general, these properties are representative of amaterial.
Therefore, the condition vector involved six scalar values
(with the top and bottom materials corresponding to three
values) after the properties were normalized to range between
−1 and 1. Additionally, the ratio of the number of feature
maps for the random noise vector to those of the condition
vector was set as 3:1 based on trial and error (the value was
10:1 in the previous work [13]); the corresponding numbers
of channels of the random noise vector and condition vector
after the linear layer (project and reshape) were 768 and
256, respectively. The influence of the input parameters on
the training increased owing to the increase in the number
of components of the input from 1 (only the scalar punch
force was considered as the input in [13]) to 6 (vector con-
sisting of six scalar values). Although models with instance
normalization [21] and full pre-activation [22] were tested,
superior results were not achieved. In addition, we attempted
to enhance the quality of the resulting images by adding the
feature mapping loss utilized in the pix2pixHD model [23]
to the objective functions; however, the impact on the
results was negligible. The deep-learning source codes were
implemented using Python and TensorFlow.
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FIGURE 4. Structure of Model 1. The model consists of a convolutional generator and discriminator. The generator
features two types of residual blocks, as shown in the bottom of the image. The condition vector, which consists of
the three material properties of the top and bottom sheets, is input to the generator, with a random noise vector.

B. MODEL 2: GRAPHICAL IMPLEMENTATION
OF MATERIAL PROPERTIES
Figure 5 illustrates the structure of Model 2, used to
predict the cross-sectional shape of the specimen after the
SPR processing. By adopting the pix2pix architecture [17],
which is based on cGAN, the generator generated a segmenta-
tion map as an output image, similar to that of Model 1, from
an input image. However, in contrast to Model 1, the input
was an image and not a vector, and thus, the prediction task
corresponded to image-to-image generation. The generator
had an encoder–decoder structure based on the U-Net [24]
architecture, in which the skip-connection was well utilized
to recover the lost information during the encoding process.
More detailed information regarding the model can be found
in [17].

As shown in Fig. 5, an image, representing the material
properties, location of the rivet and top and bottom sheet as
colors (as explained in Section II), was input to the generator.
The segmentation map was generated through the decoding
layers by using the information of the givenmaterial extracted
through the encoding layers. Note that, in Model 2, the rivet
material was also considered, so rivets made of different
materials can be simulated.

In a previous work [17], the authors ignored the effect
of the random noise vectors (z) in the pix2pix model and
did not report on any effective solution to obtain a highly
non-deterministic output image. However, we attempted to
utilize random noise vectors in this study to ensure a small
amount of stochasticity to take into account the repetition of
the experiments. To fully exploit the random noise vector by
preventing it from being ignored through encoding layers,
we added the vector in the bottleneck layer of the genera-
tor; consequently, sufficient non-deterministic results were
obtained to express the repetitions. In addition, a softmax

layer was used as the last activation layer of the generator in
Model 2 instead of the tanh layer. Thus, the output image was
a segmentation map composed of four classes, in which each
pixel took 0 or 1 values on each class. Instead of the L1 loss,
CEE was used as an extra cost function of the generator,
and the loss functions of Model 2 were the same as those of
Model 1 (written in (1) and (2)).

C. TRAINING DETAILS
In both the models, the learning proceeded in the same
manner, with the same data set. The training was performed
in two sessions. Figure 6 shows the data set for each session,
in which the 12 combinations of top and bottom sheets were
divided into training data and test data. In session 1, among
the three aluminum sheets (Al5052, Al5754, Al5083), one
aluminum sheet (Al5754) was fixed as the bottom sheet as the
test data and the combinations of the other two aluminum and
steel sheets were used for training. In this scenario, the pre-
diction was conducted on the aluminum sheet for which the
model was not trained, corresponding to a prediction on a new
material. Similarly, one steel sheet (SPFC590DP) was fixed
as the top sheet as the test data, and the others were used
for training. The training images were augmented by weak
shear transformation (×50) and left-right flip (×2). Conse-
quently, 2400 and 2700 images were used in each training
session (considering the three repetitions of the experiments
for each combination). The learning rate, lambda of L2 regu-
larization, and batch size were determined using the random
search method as 10−6.8 ≈ 1.58 × 10−7, 10−5, and 12,
respectively, for Model 1. For Model 2, the corresponding
values were 3×10−7, 10−4, and 12. The models were trained
using TITAN RTX GPUs, and the Adam [25] optimizer was
adopted. To validate the model, early stopping regulariza-
tion was implemented: In general, as the training progresses,
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FIGURE 5. Structure of Model 2. The model consists of a U-Net based generator and convolutional
discriminator. An image containing information regarding the material properties is input to the
generator that involves a skip-connection. A random noise vector is added to the bottleneck layer to
enable the repetitions of the experiment. Each block in the right side of the figure, surrounded by a
thick line, represents the network structure inside the blocks filled in with the same color.

FIGURE 6. Visual representations of the training and test data for sessions 1 and 2. In both the
sessions, one of the top or bottom sheets was selected as the test data, and the other sheets were
considered for training. All the images correspond to the ground truth data.
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FIGURE 7. Comparison of prediction results of Models 1 and 2 with the ground truth images. In session 1, the aluminum
(bottom sheet) type was Al5754, and only type of steel (top sheet) was changed. As the condition number increased,
the ultimate tensile strength of the steel sheet increased. The bottom-left number marked in the ground truth images
indicates the number of repeated experiment. The labels marked in the predicted images such as z1, z2, and z3 indicate
different random noise vectors (z).

FIGURE 8. Comparison of prediction results of Models 1 and 2 with ground truth images. For session 2, the type of
steel (top sheet) was fixed as SPFC590DP, and only the type of aluminum (bottom sheet) was changed. As the condition
number increased, the ultimate tensile strength of the aluminum sheet increased. The bottom-left number marked in
the ground truth images indicates the number of repeated experiment. The labels marked in the predicted images such
as z1, z2, and z3 indicate different random noise vectors (z).
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the test data loss initially decreases and starts to increase
at a certain point, while the training data loss continues to
decrease. This phenomenon indicates that the model is overfit
to the training data; to avoid overfitting, the model should be
stopped at the point at which the test data loss is minimized.

IV. RESULT AND DISCUSSION
The test results (generated images after training) of the two
models are shown in Figs. 7 and 8. In both figures, the ground
truth images are represented in the first row of each condition,
and the images predicted using Models 1 and 2 are presented
in the second and third rows, respectively. Three images
were generated using different z to express the experimental
trials for each condition. Therefore, the three columns of
each condition correspond to the repeated experiments for the
ground truth images and the use of different z for the predicted
images.

Figure 7 shows the results of session 1. As the condition
number changed from (2) to (5) to (8) to (11), the ultimate
tensile strength of the steel sheet increased.Moreover, the size
of the cavity (empty space between the rivet and top sheet) in
the ground truth images increased with the increasing tensile
strength of the steel sheet. In other words, a larger cavity
appeared when a higher strength steel was used as the top
sheet. The comparison of the ground truth data and prediction
results of Models 1 and 2 shown in Fig. 7 indicates that both
the models achieved satisfactory predictions for session 1 for
all test conditions in terms of the change in the cavity in each
condition.

The results of session 2 are shown in Fig. 8. The test was
performed with three combinations of the top and bottom
sheets. The steel (top sheet) was fixed for the test data, and
three types of aluminum (bottom sheet) were considered.
Similar to the results for session 1, as the condition number
changed from (4) to (6), the ultimate strength of the aluminum
sheet increased; however, in contrast to the images shown
in Fig. 7, the size of the cavity in the ground truth images
decreased even though the same steel was used as a top
sheet for all the test conditions. This phenomenon occurred
because the rivet was located in a relatively higher position
owing to the smaller amount of rivet pierced into the bottom
sheet when aluminum with a higher strength was used as bot-
tom sheet. The comparison of the predicted images with the
ground truth images in Fig. 8 shows that both the models well
predicted the cross-sectional shape in all the test conditions
in terms of the cavity size.

To quantitatively assess the results, the three key geometry
factors shown in Fig. 2(c) were measured. The measure-
ments were obtained for both the left and right sides of the
images, and the values were averaged. The measurement
results of the interlock, bottom thickness, and effective length
were compared with those of the ground truth, as shown
in Figs. 9, 10, and 11, respectively. Indexes (a) and (b) in the
figures represent the results of sessions 1 and 2, respectively.
The ultimate tensile strength of steel or aluminum increased
along the x-axis in all the graphs.

FIGURE 9. Measurement of the interlock for the prediction results and
ground-truths. The black, blue, and red lines represent the ground-truths
and predictions of Models 1 and 2, respectively. For (a), the aluminum
(bottom sheet) type was fixed as Al5754, and the x-axis indicates the
change in the steel materials (top sheet). For (b), the steel (top sheet) was
fixed as SPFC590DP, and the x-axis indicates the change in the aluminum
materials (bottom sheet).

FIGURE 10. Measurement of the bottom thickness for the prediction
results and ground-truths. The black, blue, and red lines represent the
ground-truths and predictions of Models 1 and 2, respectively. For (a),
the aluminum (bottom sheet) type was fixed as Al5754, and the x-axis
indicates the change in the steel materials (top sheet). For (b), the steel
(top sheet) was fixed as SPFC590DP, and the x-axis indicates the change
in the aluminum materials (bottom sheet).

FIGURE 11. Measurement of the effective length for the prediction
results and ground-truths. The black, blue, and red lines represent the
ground-truths and predictions of Models 1 and 2, respectively. For (a),
the aluminum (bottom sheet) type was fixed as Al5754, and the x-axis
indicates the change in the steel materials (top sheet). For (b), the steel
(top sheet) was fixed as SPFC590DP, and the x-axis indicates the change
in the aluminum materials (bottom sheet).

As shown in Fig. 10, the bottom thickness increased along
the x-axis for the ground truth data in both sessions, and
the prediction results of Models 1 and 2 exhibited the same
tendency of the ground truth data. Thus, the bottom thickness
was influenced by the change in the aluminum and steel
sheets.

However, the effective length decreased along the x-axis
only in session 1, and no conspicuous tendency was observed
in session 2, as shown in Fig. 11(b). In other words,
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the effective length was influenced only by the change in
steel sheets and not by that in the aluminum sheets. As in
the case of the bottom thickness, the prediction results of both
models followed the tendency of the ground truth data in both
sessions. Therefore, both the models were adequately trained
to learn the relationship between the cross-sectional shape
after SPR processing and material combinations.

For the interlock, the prediction results of the two models
did not follow the tendency of the ground truth data in both
the sessions (see Fig. 9), likely because the interlock did not
exhibit a significant increasing or decreasing trend in the case
of both the steel and aluminummaterials considering the total
ground truth data (including training and test data).

Tables 5 and 6 present the percentage accuracies of the
interlock, bottom thickness, and effective length for Models
1 and 2, respectively. For Model 1, the accuracy for sessions
1 and 2 was 89.60% and 94.30%, respectively; the total
averaged accuracywas 91.95%. ForModel 2, the accuracy for
sessions 1 and 2 was 88.80% and 95.63%, respectively; the
total averaged accuracy was 92.22%. Overall, both models
exhibited a high performance to predict the cross-sectional
shape after SPR processing, although the total accuracy for
Model 2 was slightly higher than that for Model 1.

TABLE 5. Percentage accuracies for the interlock, bottom thickness, and
effective length for the results of Model 1.

TABLE 6. Percentage accuracies for the interlock, bottom thickness and
effective length for the results of Model 2.

These prediction results demonstrate the advantage of
using deep-learning models in addressing SPR process prob-
lems instead of conventional simulation methods. Notably,
the cross-sectional shape after the SPR processing of

any metallic material can be predicted by using various
deep-learning models if the material properties are known.
In this study, to simplify the task, the change in the rivet
material was not considered; however, any change in the rivet
material can be considered by simply adding the material
properties of the rivet along with those of the top and bottom
sheets.

V. CONCLUSION
Two types of deep-learning model were applied to predict
the cross-sectional shape of specimen after SPR processing,
by taking into account the material properties. Four steels
(SPRC440, SPFC590DP, GI780DP, SGAFC980Y) and three
aluminum alloys (Al5052, Al5754, Al5083) were used as
materials for the top and bottom sheet, respectively, leading
to 12 combinations of steel and aluminum sheets. The key
contributions of this work can be summarized as follows:

- The two models were based on a GAN, which consisted
of a generator and discriminator and generated segmentation
(cross-sectional) images from the material properties of the
considered combinations. The first model adopted a CNN
with residual blocks and used a vector including the material
properties of the top and bottom sheets as the input to the
generator. In the second model, based on the pix2pix archi-
tecture, an image in which the material properties of the top
and bottom sheets and rivet were represented as colors was
input to the generator.

- The training for both models was performed over two
sessions. In both the sessions, the combinations of materials
not used in training were used as testing data to verify the
predictive ability of the model for new materials.

- The key geometrical factors for the cross-section,
specifically, the interlock, bottom thickness, and effective
length, were measured to assess the quality of prediction.
The corresponding accuracies were 89.60% and 94.30% for
Model 1 and 88.80% and 95.63% for Model 2. The total
averaged accuracies for Models 1 and 2 were 91.95% and
92.22%, respectively.

- The geometrical shape of the SPR processing for any
metallic material can be predicted using a deep-learning
model if the material properties are known; in this manner,
the time spent on establishing the SPR process for new
materials can be reduced.
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