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ABSTRACT With the increased use of machine learning algorithms to make decisions which impact people’s
lives, it is of extreme importance to ensure that predictions do not prejudice subgroups of the population with
respect to sensitive attributes such as race or gender. Discrimination occurs when the probability of a positive
outcome changes across privileged and unprivileged groups defined by the sensitive attributes. It has been
shown that this bias can be originated from imbalanced data contexts where one of the classes contains a much
smaller number of instances than the other classes. It is also important to identify the nature of the imbalanced
data, including the characteristics of the minority classes’ distribution. This paper presents FAWOS: a
Fairness-Aware oversampling algorithm which aims to attenuate unfair treatment by handling sensitive
attributes’ imbalance. We categorize different types of datapoints according to their local neighbourhood
with respect to the sensitive attributes, identifying which are more difficult to learn by the classifiers. In order
to balance the dataset, FAWOS oversamples the training data by creating new synthetic datapoints using the
different types of datapoints identified. We test the impact of FAWOS on different learning classifiers and
analyze which can better handle sensitive attribute imbalance. Empirically, we observe that this algorithm can
effectively increase the fairness results of the classifiers while not neglecting the classification performance.

Source code can be found at: https://github.com/teresalazar 1 3/FAWOS

INDEX TERMS Classification bias, fairness, imbalanced data, K-nearest neighborhood, oversampling

I. INTRODUCTION

The growing use of automated decision-making to make
decisions in domains with high societal impact resulted in
the need of developing Fairness-Aware methodologies which
ensure that predictions are discrimination free. This bias
occurs when decisions are made on the basis of sensitive
attributes (e.g. race), containing one or more privileged and
unprivileged groups (e.g. White and Black), where the priv-
ileged groups tend to receive more positive outcomes by the
algorithm.

There have been studies which show that the reason for
discrimination of unprivileged groups can be related to Imbal-
anced Data contexts, where one of the classes contains a
much smaller number of instances than the other classes [1],
[2]. Furthermore, it has been shown that the degradation of
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performance in imbalanced datasets can be linked to data
distribution factors such as the presence of many minority
datapoints inside the majority class regions [3]. In particu-
larly, in [4] the authors demonstrate that most of the data
difficulty factors can be approximated by analyzing the local
neighbourhood of minority datapoints.

In this work we propose FAWOS: a novel Fairness-
Aware algorithm which attenuates discrimination by balanc-
ing the dataset with respect to multiple sensitive attributes.
FAWOS categorizes each point in the dataset according to
the local neighbourhood as in [4]. However, we extend this
work to the fairness domain, considering multiple sensitive
attributes. FAWOS classifies each point as: Safe, Borderline,
Rare, or Outlier, where last three types correspond to unsafe
datapoints that are more difficult to learn [4].

Afterwards, FAWOS performs an oversampling technique
to create new synthetic datapoints which belong to pos-
itive unprivileged groups in order to balance the dataset.
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In addition, we take into account the typology label and try
to create new datapoints around the regions which contain
datapoints that are more difficult to learn.

The proposed approach is evaluated on two real-world
datasets which are commonly used in the literature [5], [6] for
fairness-related studies: Ricci dataset [7] and German Credit
dataset [8]. The Ricci dataset contains data on firefighter
promotion exams as part of the Ricci v. DeStafano court
case [7], with race being considered a sensitive attribute. The
German Credit dataset [8] classifies people as good or bad
credit risks, containing two sensitive attributes: gender and
age.

We analyze the impact of FAWOS on a broad range
of classifiers, namely: Support Vector Machines (SVM)
[9], Gaussian Naive-Bayes (GNB) [10], Decision Trees
(DT) [11], Logistic Regression (LR) [12], and K-Nearest-
Neighbours (KNN) [13]. We measure their performance and
fairness by checking whether privileged and unprivileged
groups are treated equally by the classifiers. The main objec-
tive is that the classifiers’ predictions of positive outcomes
are similar for both privileged and unprivileged groups.
Therefore, this work aims to address the following research
question:

Is it possible to increase the fairness of a classifier
without degrading the classification performance
by oversampling datapoints according to the dis-
tribution of sensitive attributes?

We conclude that FAWOS can effectively increase the fair-
ness results while maintaining the classifiers’ performance.
Regarding the different classifiers’ results, we observe that
KNN and GNB seem to be more affected by imbalanced
datasets. Furthermore, we analyzed the impact of oversam-
pling different types of datapoints (Safe, Borderline, Rare)
in different proportions and show that it is possible to tune
FAWOS’s hyperparameters depending on the datasets sensi-
tive attributes’ distributions to achieve better results.

The main contributions of FAWOS are the following:

o The identification of different types of datapoints
according to the local characteristics on the basis of
multiple sensitive attributes which can be binary or
multi-valued.

« The ability of attenuating class imbalance by oversam-
pling the dataset through the creation of new datapoints
which belong to unprivileged groups and have a positive
outcome.

o The possibility of adjusting FAWOS’s hyper-parameters
to control the impact of oversampling different types of
datapoints and the ratio of the number of samples in the
unprivileged group over the number of samples in the
privileged group after oversampling.

o The analysis of the impact of FAWOS on multiple classi-
fiers in terms of Fairness and classification performance.

o The improvement of Fairness results without compro-
mising classification performance.

The remainder of this work is structured as follows:

Section 2 provides some background and literature review
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on the subject, Section 3 describes the proposed approach,
Section 4 presents the experimental setup, Section 5 provides
the results and discussion, and Section 6 presents the conclu-
sions and possible future research.

Il. RELATED WORK

This section presents the related work to FAWOS, which
belongs to the group of Fairness-Aware algorithms, although
imbalanced data techniques can have similar concepts to
these methodologies. While imbalance data algorithms aim
to ensure that the classifiers are not biased towards the
majority group, fairness methodologies such as FAWOS have
the objective of certifying that the probability of a positive
outcome does not change across privileged and unprivileged
groups.

A. IMBALANCED DATA

There are three main approaches to tackle problems of imbal-
anced data: preprocessing methods, algorithm-level methods,
and hybrid methods. While preprocessing methods aim to
modify the data to balance distributions or remove difficult
samples, algorithm-level methods have the objective of mod-
ifying existing classifiers and alleviating the bias towards
majority class. Hybrid-methods combine the advantages of
the two methods [14].

Since FAWOS is a preprocessing method, our focus is
on these types of algorithms. Preprocessing methods can
generate new datapoints belonging to the minority class
(oversampling [15], [16]) or remove datapoints from the
majority class (undersampling [17], [18]). Random under-
sampling is a technique that randomly removes datapoints
from the majority class. Similarly, random oversampling aims
to randomly duplicate datapoints belonging to the minority
class, which can lead to overfitting [19]. To solve this issue,
SMOTE (synthetic minority oversampling technique) [20]
synthesizes new examples for the minority class by interpola-
tion using the k-nearest minority class neighbours. Oversam-
pling methodologies are typically more used in the literature
than undersampling since they are capable of balancing class
distributions without discarding potentially important major-
ity examples [21].

Furthermore, in the work in [4], the authors show that clas-
sifiers learnt from imbalanced data may be deteriorated by the
presence of data difficulty factors. They propose a method for
their identification by analyzing the local neighbourhood of
minority datapoints and consider four types of minority class
examples: Safe, Borderline, Rare and Outlier. The last three
types correspond to unsafe datapoints that are more difficult
to learn.

Similarly to the work in [22], FAWOS applies the algo-
rithm in [4] to identify the different types of examples and use
this information to oversample the dataset by creating new
datapoints using SMOTE’s interpolation technique. While
their algorithm experiments with different configurations that
determine whether or not datapoints from a specific type
should be used to create new datapoints, FAWOS introduces
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hyperparameters for each of the different types to control the
probability of datapoints belonging to each type to be used for
oversampling. Furthermore, FAWOS presents an additional
hyperparameter to control the amount of new points to be
generated. Finally, while their work uses minority class data-
points to oversample the dataset, FAWOS considers the sensi-
tive attributes and target class imbalance when oversampling
the dataset.

B. FAIRNESS

Fairness definitions can be divided into two main categories:
group fairness and individual fairness [23]. Group fairness
states that different groups are treated equally by optimizing
metrics such as Disparate Impact [5], [24]. On the other
hand, individual fairness aims to give similar predictions to
similar individuals. In this work, we focus on optimizing
group fairness to attenuate classification bias by ensuring that
unprivileged and privileged groups receive positive outcomes
at equal rates.

Broadly, Fairness-Aware algorithms have been catego-
rized into three different groups, according to the stage
in which they are performed: preprocessing [25]-[27],
in-processing [2], [28] and post-processing [29], [30]. The
algorithm proposed in this work falls into the preprocessing
category which aims to modify the training data so that an
algorithm does not discriminate unprivileged groups. The
advantage of these algorithms is that they are flexible since
they are independent of the classification algorithm used
afterwards.

Several Fairness-Aware preprocessing techniques have
been proposed in the literature, including: resampling [26],
[31], [32], relabelling [26], [33], transformation/perturbation
[5], [34], and adversarial learning [27], [35]. The work that
most relates to ours is the resampling work in [26], where
the authors balance the dataset with respect to sensitive
attributes in order to attenuate classification bias. However,
their oversampling technique is achieved through duplication
of datapoints, making them highly focused in a small area,
which can lead to overfitting [19].

In addition, many of the current Fairness-Aware
approaches (including the work in [26]) are unable to for-
mally handle multiple sensitive directly in the algorithm [36].
FAWOS can handle multiple sensitive attributes combined by
integrating such information on neighbourhood analysis to
provide a more powerful fair methodology.

Moreover, most of the approaches evaluate fairness on a
small number of classifiers. Hence, in this work we analyze
the impact of FAWOS on a broad range of learning classifiers
and indicate which can benefit more from Fairness-Aware
methodologies.

lll. FAWOS
In this section, we describe our proposed Fairness-Aware

algorithm: FAWOS. We assume that each training dataset, D,
contains:

81372

A
“ o
* gl u
|
mn® =
|
K
& v-10s-0
LV y=ons=o0
u N v=10s=1
[ | u A v=00s=1
[ | [] sate
<>/\ [ /\ Borderline
v A .. > Rare
A (O outier
A

.
>

FIGURE 1. Diagram of typology and sensitive labels. The datapoint in the
center of the neighbourhood region is Borderline since it has

2 datapoints (green) of the same sensitive and target classes against 3
(yellow) of different sensitive attribute but same target class.

« S - the set of sensitive attributes (e.g. gender and race)
with size M where each S; (e.g. race) contains privileged
attributes (e.g. White, male) represented as 1 and unpriv-
ileged attributes (e.g. Black, Hispanic, female) repre-
sented as 0

o CS - the set of combination of sensitive attributes where
each combination contains at least one unprivileged
attribute (e.g. Black male)

e Y - atarget class where 1 is the positive class and 0O is
the negative class (e.g. receiving credit or not)

o ¥V -the predicted class where 1 is the positive class and
0 is the negative class

We hypothesize that by transforming the ratio between

the positive unprivileged (PU) and the negative datapoints
(NU) to be the same as the ratio between the positive priv-
ileged (PP) and the negative (NP) datapoints we can prevent
unfair treatment. Hence, FAWOS’s objective is to satisfy this
condition:
PY=1AS=1) PY=1A85=0)
PY =0AS=1 PY=0AS=0)
We show that this condition is not satisfied in D and bal-
ance the dataset by creating new synthetic datapoints which
belongto Y = 1 A S = 0. Since there can be multiple
sensitive attributes, we generate all combinations of sensitive
attributes’ values, CS, where each combination contains at
least one unprivileged attribute (e.g. Black male).

CS =S8y X .. x Syy, where S; € {0, 1}, 35;:S5;=0. (2)

ey

For each combination of sensitive attributes, CS;, we cal-
culate the number of synthetic points to generate, N, which
belong to the positive class (Y = 1) and at least one sensitive
unprivileged attribute, as follows:

PP=DY=1AS=1) 3)
NP=DY =0AS=1) )
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FAWOS |
{ Typology } Oversampling { Classification |
. Ide R g i - Classify train - Oversample - Use train and - Compare
S;T...Sn:sg R Er;;r;é:st Splits Dataset's train dataset oversampled performance and
attributes and categorical and Datapoints as using positive datasets for Fairness
respective ordinal features Safe, Borderline, unprivileged classification results between
privileged and - Standardize Rare and Qutlier datapoints and using 5 train and
unprivileged continuous according to local the Typology classifiers: SYM, oversampled
groups features neighbourhood labels. EE’NGNB, LR, datasets
FIGURE 2. Diagram of the experimental setup.
PU =D =1AS8 =CS)) 5) After labeling the datapoints, FAWOS generates N random
NU =D(Y =0AS =CS)) (6) points that belong to PU. To create a new point, FAWOS
|PP| % INU| first selects a point, P, by performing a weighted random
N =oax (—l NP |PU |)) , (7)  selection of a datapoint belonging to PU, where each point

where « is the oversampling factor which is a configurable
parameter used to control the number of points to generate.
As aconsequence, in case « = 1, the ratio will be the same; in
casea < 1,theratio of unprivileged attributes will be smaller,
and in case o > 1, the ratio of unprivileged attributes will be
higher than the ratio of privileged attributes.

After calculating the value of N, we consider the typology
of points that belong to PU. We categorize these points
according to the classes’ distribution in the local neigh-
bourhood of each datapoint. This technique is based on the
work in [4], which analyses the class labels of each point’s
k-nearest neighbours using a distance function and calculates
the proportion of neighbours from the same class against
neighbours from the opposite class. The difference in this
work is that we do not only consider the target classes of the
neighbourhood, but we also consider the sensitive attributes
values. Hence, a point can only be considered a neighbour of
another if they have the same value of the target class and the
same values of all the sensitive attributes.

With regard to the neighbourhood, we consider k = 5 as in
the paper in the original paper [4], where the authors state that
smaller values might result in difficulties distinguishing the
types of datapoints and higher values contradict their assump-
tion of the locality of the method. Hence, the proportion from
neighbours from the same classes compared to the opposite
classes can vary from 5:0 (all neighbours belong to the same
target class and sensitive attributes as the analyzed datapoint)
to 0:5. Depending on this proportion, we assign the labels to
datapoints follows:

e 5:0 or 4:1 - Safe datapoint.

e 3:2 or 2:3 — Borderline datapoint.

o 1:4 — Rare datapoint, in case its neighbour has the pro-
portion of neighbours of 0:5 or 1:4. In addition, in case
itis 1:4, the neighbour must be the considered datapoint.
Otherwise, it is considered to be a Borderline datapoint.

e 0:5 — Outlier datapoint.

We use the Heterogeneous Euclidean Overlap Metric
(HEOM) [37] as the distance metric which can handle both
continuous and nominal attributes.
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has a certain probability (weight) of being chosen depending
on its typology label. These probabilities are defined as S,,,,
By, R,, and O,,, being hyper-parameters of FAWOS that can
be configured and tuned to provide optimal results.

After selecting P, FAWOS creates a new synthetic data-
point by interpolation such as SMOTE [20], using P and one
random neighbour of P. Note that since Outlier datapoints
have no neighbours, then the value of O,, always has to be set
to 0.

Algorithm 1 presents the pseudo-code of FAWOS.

IV. EXPERIMENTAL SETUP

In this section, we present the datasets, classifiers and eval-
uation metrics used in our experiments. The summary of the
experimental setup is described in Figure 2.

A. DATA COLLECTION

Our experiments are performed on two fairness-related
datasets which contain sensitive attributes:

a: RICCI DATASET

This dataset is part of the Ricci v. DeStafano court case [7],
containing 118 entries which consider if firefighters should
receive a promotion. The promotion was given to firefighters
if they achieved a minimum combined score of 70 on certain
exams. Within its features, it contains the race, which is
considered to be a sensitive attribute with White (W) being
the privileged group and Black (B) and Hispanic (H) the
unprivileged groups.

b: GERMAN CREDIT DATASET

This dataset contains 1000 credit records which consider
individuals as having good or bad credit risk [8]. It has
20 features with the sensitive attributes being the gender and
age. The sensitive attribute age was converted into a cate-
gorical feature by considering the value of Adult (A) (when
the age is equal or more than 25 years old) and Youth (Y).
This conversion was based on the work in [25] which proves
that this provided the most discriminatory effects. Adult is
considered to be the privileged group and Youth is considered
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Algorithm 1 FAWOS
procedure OVERSAMPLE(D)
PP<—DY=1A8=1)
NP <~ DY =0AS8S=1)
CS < Sop x .. x Sy, where S; € {0,1},3S;: 5, =0
for each CS; € CS do
PU < DY =1AS8=CS))
NU <~ DY =0AS =CS)
weights < []
for each PU; € PU do
weight < GetTypologyWeight(PUj;)
weights.insert(weight)

N ax (UL o))

for N points do
P < RandomWeightedSelect(PU , weights)
neighbour <— random.select(5Closest(P))
newPoint < Interpolate(P, neighbour)
D.insert(newPoint)

return D > The Oversampled Dataset

procedure GET TYPOLOGY WEIGHT(P)
N <« NeighboursOfSameTypes(P)
if IN| = 5 or [N| = 4 then
weight < S,
elseif |[N| =3 or [N| = 2 then
weight < By,
else if |[N| = 1 then
NN < NeighboursOfSameTypes(Ny)
if INN| = 0 or (JNN| = 1 and NNgy = P) then
weight < R,,
else
weight < By,
else
weight < 0

return weight

procedure NEIGHBOURS OF SAME TYPES(P)
N <« 5Closest(P)
neighbours < []
for each N; € N do
if NV = PY and N} = PS then
neighbours.insert(N;)
return neighbours

procedure SCLOSEST(P)
return The 5 closest nearest neighbours of P

procedure RANDOM WEIGHTED SELECT(PS, WS)
return An element from PS with probabilities/weights
of each element being selected.

procedure INTERPOLATE(P, N)
return A new point by Interpolation of P and N
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to be the unprivileged group. In addition, the gender feature
was generated from the personal status feature since it was not
directly included in the dataset. In the gender feature, Male
(M) is the privileged group and Female (F) the unprivileged
group.

Each dataset is divided into 70% and 30% for training and
testing. We report the average performance results of running
10 different training-test splits. Both datasets are tested on the
same test dataset.

The datasets’ features were categorized into continuous,
ordinal or categorical. The continuous features were stan-
dardized using scikit-learn’s StandardScaler [38]. Ordinal
features were converted into ordinal integers following a
predefined order and categorical features were label encoded.

B. CLASSIFICATION
We wanted to analyze the performance and fairness results
of a broad range of classifiers when applied to fairness-
related datasets. In addition, we wanted to investigate which
classifiers benefit more from FAWOS. As such, we test the
performance and fairness on three different datasets:
« the train dataset
« the oversampled dataset generated through a simple ran-
dom fair oversampling (RFO) algorithm presented in
Algorithm 2. This algorithm was developed in the scope
of this work.
« the oversampled dataset generated through FAWOS.
The first two datasets are used as the baseline for this study.

Algorithm 2 Random Fair Oversamplor (RFO)
procedure OVER SAMPLE(D)
PP« DY =1A8S=1)
NP <~ DY =0AS8S=1)
CS < Sop x .. x Sy, where S; € {0, 1},3S;: S5, =0
for each CS; € CS do
PU <~ DY =1AS=CS)
NU < DY =0AS =CS))
v ()
for N points do
P < RandomSelect(PU)
D.insert(P)

return D

> The Oversampled Dataset

For classification we used scikit-learn’s classifiers [38],
namely: Decision Trees (DT) [11], Logistic Regression
(LR) [12], Support Vector Machines (SVM) [9], K-Nearest-
Neighbours (KNN) [13], and Gaussian Naive-Bayes (GNB)
[10]. All classifiers were tuning using grid search on the
hyperparameters presented in Table 1.

C. EVALUATION

For performance evaluation, the objective is to check if
our oversampling technique can increase the fairness results
while not neglecting the classifiers’ performances. For mea-
suring the performance, the standard (uniform) accuracy
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TABLE 1. Experimental setup of classifiers’ hyperparameters.

Classifier \ Hyperparameters
min-samples-split: { 0.1, 0.325, 0.55, 0.775, 1 }
DT min-samples-leaf: { 0.1,0.2,0.3,0.4,0.5 }

criterion: {’gini’, ’entropy’}
C: logspace(-4, 4, 20)

LR penalty: { ’11°, 12" }

solver: { 'newton-cg’, ’Ibfgs’, ’liblinear’, ’sag’, ’saga’ }

C:{0.1, 1, 10, 100 }

SVM gamma: { ’scale’, "auto’ }

kernel: { 'rbf’, ’poly’, ’sigmoid’ }
n-neighbours: { 3,5, 11,19 }

KNN weights: { "uniform’, "distance’ }
metric: { ’euclidean’, 'manhattan’ }

GNB ‘ var-smoothing: logspace(0, -9, 100)

(ACC) is used, given by:
ACC=P[Y =y|Y =y]. (8)

With regard to fairness metrics, a common used metric to
evaluate group fairness is the Disparate Impact (DI) [5], [24],
given by:

_PY=1]8=0]
PIY=1|S=1]
This metric compares the proportion of individuals that

were predicted to receive a positive output for two groups:

an unprivileged group and a privileged group. We propose an
adaptation of DI, Adapted Disparate Impact (ADI), given by:

DI ©)

DI if DI <1

L
DI’

ADI = (10)

otherwise.

When the value of DI is bigger than 1, it means that the
unprivileged class became the privileged class. As such, val-
ues of 0.5 (where the proportion of unprivileged individuals is
twice as small) and 2 (the proportion is twice as large) of DI,
would have the same value of ADI: 0.5. This is useful since
we are expecting values smaller than 1 for DI using the train
dataset and values around 1 for DI using the oversampling
dataset. In addition, in the cases where there is more than one
sensitive attribute being considered, we calculate the average
value of ADI of all the sensitive attributes.

However, DI may never be aligned with a perfect predictor
Y=v [39]. There are other fairness metrics which consider
an algorithm to be fair if it is independent of the sensitive
attribute while conditioned on Y. For instance, Average Abso-
lute Odds Difference (AOD) [40] represents the average of
absolute difference in FPR and TPR for unprivileged and
privileged groups, given by:

|FPRs—o — FPRs—1| + |TPRs—=0 — TPRs—1]|

AOD = 5 (11)
where FPRg—; and TPRg—; are given by:

FPRs_s =P[Y =1|S=sY =0] (12)

TPRs_y = P[Y =1|S=sY =1] (13)
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TABLE 2. Typology of sensitive attributes distribution values in the ricci
dataset.

|S% B% R%
27

O% | Total % | Ratio +/-
32

W+

5 0 0
w- |11 o0 1 23 ‘ 1.39
B+| 0 10 0 0 10
B- |10 6 0 0 ‘ 16 ‘ 063
H+ [ 0 4 2 0 6
H-| 7 6 0 0 ‘ 13 ‘ 046

TABLE 3. Typology of sensitive attributes distribution values in the
german credit dataset.

| S% B% R%
AM+ | 33 14

O % | Total % | Ratio +/-
47

0 0
AM - 1 10 3 3 17 275
AF+ 3 10 1 1 15 3
AF- 0 2 1 2 5
YM+ 0 3 0 4 9
YM- 0 1 0 2
YF+ 1 4 0 0 5
YE- | 0 3 0 0 3 167
TABLE 4. Experimental setup.
Variables | Settings
Ricci
Datasets German Credit
Classifiers

SVM, GNB, DT, LR, KNN

0,0.4,0.6
0,0.5,0.5

0.33,0.33,0.33
0,0.6,0.4

Varied from 0.6 to 1.4

(and Hyperparameters from Table 1)

Typology Weights (Sw, Bw, Ruw)

Oversampling Factor (o) |

A value of 0 indicates equality of odds. Furthermore, in the
cases where there is more than one sensitive attribute being
considered, we calculate the average value of AOD of all the
sensitive attributes.

V. RESULTS AND DISCUSSION
In this section we present the experimental results from fol-
lowing the setup described in the previous section.

The experiments can be divided into two main parts. In the
first part, we analyze the typology and sensitive classes’
distributions in the Ricci and German Credit datasets before
oversampling. In the second part, we analyze the Fairness and
performance results of FAWOS and the baseline. In addition,
we investigate which are the most robust configurations of
Typology Weights (S,,, By, R,,) and Oversampling Factor ()
providing the best results for each classifier in particular.

A. DISTRIBUTION OF TYPOLOGIES AND

SENSITIVE ATTRIBUTES

In this section, we analyze the sensitive attributes’ distri-
butions of the Ricci and German Credit datasets before
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TABLE 5. Performance classification and fairness results for SVM, DT, GNB, LR, KNN on the ricci dataset.

Sw =0 Sw =0 Sw =033 Sy =
By =04 w =05 By =033 By, =06
Baseline RFO | Ry =06 Ry =05 Ry, =033 Ry =04 | p-value
a 0.6 0.6 0.6 0.9
SVM ACC 0.94 0.96 0.94 0.95 0.95 0.95
ADI 0.31 0.34 0.40 0.35 0.35 0.33
AOD 0.09 0.03 0.05 0.06 0.06 0.05 0.086
a 0.9 0.7 1.0 0.7
DT ACC 0.87 0.82 0.87 0.85 0.83 0.85
ADI 0.33 0.43 0.41 0.44 0.47 0.47
AOD 0.20 0.22 0.14 0.15 0.16 0.16 0.048
a 1.0 1.0 1.0 1.2
GNB ACC 0.86 0.85 0.84 0.87 0.87 0.86
ADI 0.18 0.47 0.39 0.40 0.40 0.42
AOD 0.31 0.15 0.18 0.14 0.14 0.17 0.45
a 0.6 0.6 1.3 0.7
LR ACC 0.99 0.98 0.99 0.98 0.99 0.99
ADI 0.34 0.33 0.35 0.34 0.33 0.35
AOD 0.01 0.02 0.02 0.02 0.02 0.01 -
« 1.4 1.4 0.7 0.7
KNN ACC 0.89 0.88 0.89 0.88 0.89 0.89
ADI 0.14 0.37 0.31 0.34 0.28 0.26
AOD 0.35 0.25 0.24 0.20 0.18 0.19 0.180

oversampling. To this end, we investigate whether or not
the dataset is imbalanced by calculating the ratio presented
in Equation 1. In addition, we explore the percentage of
datapoints which belong to each typology label.

Tables 2 and 3 present the distribution of typology labels
for each sensitive attribute combination in the Ricci and
German Credit datasets before the Oversampling stage,
respectively.

Regarding the Ricci dataset, it can be observed that the
privileged attribute, White, is the most represented in total,
containing a total of 55% of the datapoints. In addition,
almost all of its positive points are labeled as Safe, which
suggests that they are easier to be learned by the models.
With regard to the Black and Hispanic unprivileged attributes,
it can be observed that there are more negative datapoints than
positive, contrary to the White privileged attribute. In addi-
tion, there are also some Hispanic Rare datapoints within the
positive target class, which means that they should be more
difficult to learn.

Looking at Table 3, we can observe that the majority
of points belong to the combination of privileged attributes
Adult Male positive, where almost all the datapoints belong
to the Safe and Borderline labels. However, in this dataset,
the differences of positive/negative ratios between the com-
binations of privileged and unprivileged attributes are not as
noticeable as in the Ricci dataset. Furthermore, one particular
fact that stands out is the fact that the ratio of Adult Female
is bigger than the ratio of Adult Male, whereas the ratio
of Young Female is smaller than the ratio of Young Male.
This means that considering combinations of several sensitive
attribute values is important since in this case it is clear that
the most discriminated group is the Young Female group.
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B. FAIRNESS OF THE CLASSIFIERS

In the second part of the experiments, we compare the perfor-
mance and fairness results between the train dataset (baseline)
and the oversampled datasets (RFO and FAWOS). The sum-
mary of the experimental setup can be observed in Table 4.
For each dataset and classifier in the table, we report the
optimal Oversampling Factor, «, for each of the Typology
Weights’ configurations presented, which provide the best
results in terms of AOD when compared to the baseline.
In case of a tie, we report the result with the best values of
ADI and ACC. In addition, if there are multiple « values
providing similar results, we report the results of the lowest «.
The values of @ were varied from 0.6 to 1.4. These threshold
values were obtained through experimentation and values
outside this range did not yield better results. We run each
configuration 10 times, and report the average results of ACC,
ADI and AOD.

Looking at the results, it can be observed that FAWOS can
reduce unfair treatment of unprivileged groups as the values
of AOD are closer to 0 and the values of ADI are closer to
1, when compared to the baseline and RFO in almost all
the setups. In addition, we can also state that the values of
ACC remain closer to the values of the baseline, which means
that FAWOS does not degrade the classification performance
when increasing the fairness.

With regard to the classifiers’ results in the Ricci dataset,
it can be observed that the classifiers which seem to be most
affected in terms of fairness (ADI and AOD) by imbalanced
data are KNN, GNB and DT. Furthermore, the classifiers
which seem to benefit more from FAWOS in terms of fairness
are KNN, GNB and DT. KNN uses the k-closest training data-
points in the feature space to make the classification and since
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TABLE 6. Performance classification and fairness results for SVM, DT, GNB, LR, KNN on the german credit dataset.

Sw =0 Sw =0 Sw =033 Su=0
By =04 By =05 By=033 By, =056
Baseline RFO | Ry, =06 Ry =05 Ry, =033 Ry =04 | p-value
«a 1.0 0.9 14 0.9
SVM ACC 0.73 0.73 0.73 0.74 0.73 0.74
ADI 0.89 0.90 0.95 0.95 0.93 0.96
AOD 0.09 0.07 0.05 0.06 0.05 0.05 0.035
a 1.3 1.1 1.2 1.4
DT ACC 0.69 0.69 0.69 0.69 0.69 0.69
ADI 0.93 0.96 0.97 0.96 0.96 0.97
AOD 0.07 0.03 0.02 0.03 0.03 0.02 0.234
«a 1.2 0.9 0.7 0.7
GNB ACC 0.70 0.70 0.71 0.71 0.71 0.71
ADI 0.91 0.97 0.97 0.97 0.97 0.97
AOD 0.11 0.04 0.05 0.05 0.05 0.05 0.153
a 0.9 0.8 0.8 0.8
LR ACC 0.72 0.71 0.71 0.71 0.72 0.70
ADI 0.92 0.97 0.98 0.98 0.97 0.98
AOD 0.08 0.05 0.04 0.05 0.05 0.04 0.030
a 1.2 0.8 14 14
KNN ACC 0.71 0.70 0.71 0.71 0.71 0.70
ADI 0.88 091 0.93 0.94 0.94 0.93
AOD 0.10 0.09 0.07 0.07 0.08 0.08 0.036

FAWOS uses the k-nearest neighbours to create new synthetic
datapoints then it is clear that KNN achieves better results.
GNB is a probabilistic classifier with strong independence
assumptions between the features. Hence, creating new posi-
tive unprivileged synthetic datapoints can help the algorithm
increase its fairness. With regard to Decision Trees, although
its fairness results increased substantially, its accuracy seems
to have degraded. SVM fairness results also improved. With
regard to the LR classifier, almost no improvements were
registered. Concerning the typology weights and « values
configurations, it is difficult to reach conclusions since it is
not possible to find a common pattern for all classifiers. This
might have to do with the fact that the Ricci dataset contains
very few Rare datapoints.

Regarding the German Credit dataset, the first conclusion
is that the classifiers in the baseline were able to provide
good fairness results. This might have to do with the fact
that this dataset contained more datapoints. Nevertheless,
the fairness results of AOD achieved with FAWOS are almost
optimal, reaching values of 0.02 for DT, 0.04 for LR, 0.05 for
GNB and SVM and 0.07 for KNN. Concerning the typology
weights, it can be observed there is not much difference in the
results. This probably has to do with the fact that the positive
unprivileged groups in this dataset contain almost no Rare
and Safe datapoints, with the majority being Borderline.

Finally, we performed Kolmogorov-Smirnov test of
normality followed by Student’s one-sided t-tests with signif-
icance level of @ = 0.05 to verify the statistical significance
of FAWOS values of AOD compared to the best baseline
(train or RFO). Looking at the p-values presented in the
tables, it can be observed that in the seven times FAWOS out-
performed both baselines, four were statistically significant.
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In addition, the two times RFO outperformed FAWOS were
not statistical significant.

VI. CONCLUSION AND FUTURE WORK

We proposed FAWOS: a Fairness-Aware oversampling algo-
rithm based on the distributions of multiple sensitive
attributes’ datapoints. To the best of our knowledge, this is
the first work which proposes to reduce bias in machine
learning by considering the typology presented in [4] adapted
to Fairness.

Moreover, we evaluated the fairness performance of dif-
ferent classifiers on fairness-related datasets, and analyzed
their improvements on the oversampled datasets. Further-
more, we observed which typology weights and oversam-
pling factor configurations achieved the best results for each
dataset. Revisiting the question presented at the start of this
work:

Is it possible to increase the fairness of a classifier
without degrading the classification performance
by oversampling datapoints according to the dis-
tribution of sensitive attributes?

We conclude that FAWOS can effectively increase the
fairness results of ADI while maintaining the performance
in terms of accuracy. We evaluated the performance of
different classifiers (SVM, DT, GNB, LR, KNN) without
applying FAWOS and conclude that KNN and GNB seem
to be more affected by imbalanced datasets, presenting
low fairness results. However, FAWOS is able to improve
the fairness of all classifiers, in particular for KNN, GNB
and DT.

In addition, by experimenting with different typology
weights configurations, we concluded that some of them
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resulted in better values of fairness, depending on the
datasets’ distributions.

There is, however, a limitation to our approach: for
extremely large datasets (e.g. Adult Income [41]), our algo-
rithm becomes infeasible when calculating the distances
between all datapoints. As such, we propose to applying
approximation distance function to FAWOS. In addition,
future work comprises the following:

« Investigating other values of k with regard to the local

neighbourhood.

o Exploring other approximation distance functions

for calculating the distances between all datapoints
such as the Heterogeneous Value Difference Metric
(HVDM) [37].

We hope that this work inspires the community to
develop more Fairness-Aware algorithms and consider sensi-
tive attributes’ data distribution patterns for attenuating clas-
sification bias.
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