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ABSTRACT Errors in realistic channels contain not only substitution errors, but synchronization errors as
well. Moreover, these errors are rarely statistically independent in nature. By extending on the idea of the
Fritchman channel model, a novel error category-based methodology for determining channel characteristics
is described for memory channels that contain insertion, deletion, and substitution errors. The practicality
of such a methodology is reinforced by making use of real communication data from a visible light
communication system. Simulation results show that the error-free and error runs using this new method of
defining the channel clearly deviates from the Davey-MacKay synchronization model which is memoryless
in nature. This further emphasizes the inherent memory in these synchronization channels which we are now
able to characterize. Additionally, a new method to determine the parameters of a synchronization memory
channel using the Levenshtein distance metric is detailed. This method of channel modeling allows for more
realistic communication models to be simulated and can easily extend to other areas of research such as
DNA barcoding in the medical domain.

INDEX TERMS Channel modeling, finite-state Markov channel, memory models, synchronization models.

I. INTRODUCTION
Systemswhich exhibit a correlation between errors while also
having synchronization issues are quite common in practical,
real-life applications. Thus, a method to characterize and
model such systems proves beneficial. A few of these appli-
cations involve data transmission especially in cases where
the channel is significantly harsh. Visible Light Communica-
tion (VLC) and Free Space Optical (FSO) communications
are examples of such channels because they suffer drasti-
cally under the influence of interference, signal blocking,
and turbulence. The applications are not only restricted to
the domain of telecommunications either and can easily be
extended to domains such as medicine. An example of this is
described in [1] and [2] where Kracht and Schober modify the
idea of watermark codes and synchronization error channels
described by Davey and MacKay [3] to model and correct
for errors while barcoding DNA in the process of DNA
sequencing. Kracht et al describes how the system works
well, but would benefit from a more complex model which
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incorporates memory into the channel as DNA sequencing
channels are known to exhibit correlations between errors.

There are numerous channel models which take into
account a combination of substitution errors as well as inser-
tion and deletion errors (commonly referred to as synchro-
nization errors). The most cited of which include the Gallager
channel model [4], Zigangirov channel model [5] and the
Davey-MacKay (DM) channel model [3], [6]. In terms of
memory channels, an extensive review is conducted on the
relevant error control techniques and is presented in [7]. More
recently, [8] provides an in-depth look at the modeling of
FSMC for fading channels. There, however, appears to be
little mentioned regarding synchronizationmemory channels.
The focus of this paper will remain on generative chan-
nel models where, in this case, the most cited include the
Gilbert channel model [9], the Gilbert-Elliott (GE) channel
model [10] and the Fritchman channel model [11].

Channel models currently exist for systems with discrete
synchronization errors, and separately for those which are
capable of characterizing memory. However, to the knowl-
edge of the authors, no such model or modeling technique
exists where both scenarios are taken into account in a single
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model. In this paper, we provide a methodology with relevant
channel models to analyze systems with correlated errors in
the presence of insertion and deletion errors. The first contri-
bution of this paper is to introduce the idea of using the Fritch-
manModel and consequently HiddenMarkovModels, which
inherently contain memory to model substitution errors in
addition to synchronization errors by making use of various
error groupings. The second contribution presented in this
paper is a novel Finite-State Makov Channel (FSMC) model
which contains states for insertions, deletions, substitutions
and transmission. This novel FSMC provides a more compre-
hensive model for real-world scenarios and the applicability
of such a model is reinforced by using communication data
from an actual VLC testbed. The use of real-world data in this
analysis also corroborates our intuitive notions of when we
could possibly experience correlated synchronization errors
and indicates when the presented models may be beneficially
used.

The rest of the paper is structured as follows. The DM
channel, as well as the Fritchman model, are further detailed
in Section II along with the metrics used for analysis. This is
followed by Section III where the system setup and approach
is described. Section IV then shows an analysis using a
modified Fritchman model to characterize synchronization
errors. From this, a novel channel that consists of both syn-
chronization errors and memory is formulated and discussed
in Section V. Conclusions are drawn in Section VI.

II. BACKGROUND
A. DAVEY-MACKAY SYNCHRONIZATION CHANNEL
MODEL
The Gallager, Zigangirov and DM models are all binary,
discrete, and memoryless, which means they tend towards an
independent and identically distributed (IID) classification.
Additionally, none of these channels are able to indicate
the positions of errors. For this paper, we focus on the DM
channel as it is the most comprehensive and incorporates ele-
ments from both the Gallager and Zigangirov models. In fact,
Leigh shows that both the Zigangirov and DM channels are
equivalent when the parameters are specifically defined [12].
More comprehensive details regarding the Gallager chan-
nel model are found in [4], [12], [13] and likewise further
information regarding the Zigangirov channel is available
in [5], [12], [13].

In the DM synchronization channel, the queued bits await-
ing transmission may undergo one of three events to proceed
to the next time step. Bits may be inserted into the received
stream with a probability of Pi. Since there is, in theory,
an unlimited number of possible insertions, for n insertions
the probability is given as Pni . A transmission or deletion must
follow an insertion to allow the system to move into the next
time step. A maximum number of insertions I is imposed on
the system for simplification. With a probability Pd , a bit is
deleted from the stream and does not appear in the received
sequence. Lastly, with a probability Pt , a bit is transmitted

FIGURE 1. Davey-MacKay synchronization channel model.

where Pt = 1 − Pi − Pd [3], [6], [12]. Since bit flips are
accounted for, a substitution error may occur on a transmitted
bit with a probability Ps. As such, the sum of the probabil-
ities of a substitution and no substitution must equal unity.
The DM channel model is better illustrated in Figure 1 [13]
where ti and ti+1 indicates the time steps at time i and i + 1
respectively.

Determining the closed-form expression for the capacity
of an Insertion, Deletion, and Substitution (IDS) channel is
quite complex and in fact, it still remains an open problem
in the field of communication and synchronization models.
As such, [3] and [6] provide empirical capacities for the DM
channel for various parameters.

B. FRITCHMAN CHANNEL MODEL AND PARAMETER
ESTIMATION
The simplest way of describing how errors occur in a channel
is with the use of a discrete, memoryless channel, where the
current output is only dependent on the current input [14].
Given an input alphabet X = x0, x1, . . . , xq−1 and an out-
put alphabet Y = y0, y1, . . . , yQ−1, then the set of q × Q
conditional probabilities are given by P(Y = yi|X = xi) =
P(yi|xi). These parameters are able to completely define a
discrete, memoryless channel [14], [15]. Unfortunately, most
real channels exhibit some memory within the system, where
the cause of one error tends to create more errors within that
region of transmission [14]. An easy method of overcoming
this memory in substitution error channels is by converting
them into memoryless channels with the use of interleavers,
as this spreads the errors throughout the sequence making
the distribution IID in nature and ‘‘locally memoryless’’ [16].
While the process of interleaving simplifies the modeling
it adds additional system complexity and delays while also
foregoing the additional channel capacity we may gain by
utilizing the channels inherent memory [16]. Additionally,
the use of interleavers poses significant problems when deal-
ing with synchronization errors, as there is no accurate way
of knowing how many and in what positions the bits were
inserted and deleted. This makes it near impossible to deter-
mine the depth of the interleaver required and thus drastically
restricts the use of them in these considered channels.

Since the models of interest are generative, we are able to
generate statistics based on the error sequences. The alternate
category of discrete channel models are descriptive and are
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FIGURE 2. Three state Fritchman model with single error state.

discussed further in [14]. The Gilbert, GE, and Fritchman
models all have the ability to model memory in a channel
where the errors are binary in nature and have some statistical
dependence between them [14]. Additionally, all these mod-
els employ the use of finite-state Markov models [14], [17],
[18]. This paper once again limits the discussion to Fritchman
models for statistically dependent error channels as it is the
most comprehensive. It has also gained substantial attention
in recent years due to the practicality it offers in modeling
realistic communication channels and the ease of parameter
estimation [17]. Readers may find more information of the
Gilbert and GE channel models in [9] and [10] respectively.

Fritchman used a finite state partitioned Markov model
to model binary errors where the partitioning was done
according to error-free and error states. The Fritchman model
contains N total states, of which K states are partitioned as
good states and the remaining N − K states are bad states.
A condition is also applied where a good state is error-free
and must produce a 0 in the error sequence, whereas a bad
state is erroneous in nature and will always produce a 1 in
the error sequence [11], [14]. Using a single error state not
only reduces complexity, but it allows the model parameters
to be uniquely specified. It also reduces the model parame-
ters from 2K (N − K ) parameters to 2(N − 1) parameters.
In a single error state model, the error free run distribution
can completely specify the model parameters [11]. Figure 2
shows a simplified 3 state Fritchmanmodel with a single error
state, along with the transition and emission matrices shown
in Equations (1) and (2) respectively [11], [17], [18].

A =

a11 0 a13
0 a22 a23
a31 a32 a33

 (1)

B =
[
1 1 0
0 0 1

]
(2)

The Fritchman model makes use of an empirical technique
where the exponentials from (A.3) and (A.4) are used to fit the
measured data [17]. Since the Fritchmanmodel is designed on
Markov processes, an easier method of parameter estimation
is based on the iterative procedural Baum-Welch algorithm.

This algorithm converges to a maximum likelihood estimator
of {A,B}which seeks tomaximizePr(O|{A,B}) [17]. In other
words, the Baum Welch algorithm is used to find the most
likely transition and emission matrices that could produce a
set of observations. The Baum-Welch algorithm is detailed
in [17]. It is worth noting that for the Fritchman model, only
the transition matrix, A, is estimated as the entries for the
emission matrix, B, are fully known. Additionally, O corre-
sponds to the observed sequence and aij is the probability
of transitioning from state i to state j (the respective entry
in the ith row and jth column of the transition matrix). The
Baum-Welch algorithm is used in this manner to estimate the
transition matrices for all relevant simulations in this paper.

Determining the channel capacity of the Fritchman model
is somewhat of an easier task than that of a memoryless IDS
channel. [19] provides a closed-form equation for the average
entropy of a stationary, ergodic Markov process and is shown
in Equation (3). Here Hi corresponds to the entropy of state i
and is calculated using Equation (4). ρi is the probability that
the source is in state i or in other words the stationary state
probability or steady-state probability of been in state i. From
this, the capacity of the model, C , is readily calculated from
Equation (5).

H =
N∑
i=1

ρiHi bits/symbol (3)

Hi = −
N∑
j=1

aij log2(aij) bits/symbol (4)

C = 1− H bits/symbol (5)

C. PERFORMANCE METRICS FOR MODEL ANALYSIS
To effectively analyze the proposed system, we use the
Chi-Squared (χ2) Goodness of fit test as well as the Mean
Squared Error (MSE). The χ2 and MSE values can be cal-
culated using Equations (A.1) and (A.2) respectively. These
statistics will determine how well the observed data fits with
the expected data.We then look at error-free and error run dis-
tributions to characterize the channel models. The χ2, MSE
and procedure used for the tests are outlined in Appendix A
along with a brief description of the error-free and error run
distributions.

III. ERROR CATEGORY-BASED CHANNEL MODELS SETUP
As mentioned previously, the applications for this type of
analysis is widespread. To better solidify the practicality of
this methodology, data collected from a VLC testbed is used
in this approach. The data is publicly available from [20]
and is originally used in [21], which describes an inter and
intra-vehicle data communication system based on VLC.
We limit the parameters of the VLC data to use 1 syn-
chronization word and a frame length of 10003 symbols
to simplify the analysis, but this procedure can easily be
extended to other parameters and data sets. In particular,
we look at low SNR, low baud rate communication (1.32dB at
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50 Kilobits per second), as well as high SNR, high baud rate
communication (18dB at 1 Megabit per second), as this is
where the most errors in the system occur without complete
failure. This procedure focuses on the symbol level (bit-level
for binary systems) as the transitions within a synchronized
frame are analyzed.

In this approach, we assume that the receiver has full
knowledge of the transmitted data and as a result, the Lev-
enshtein Distance (edit distance) algorithm may be used to
determine the most likely states (insertion, deletion, sub-
stitution or transmission) that the channel traverses during
communication [22]–[24]. This state path is hereon referred
to as the synchronization error sequence and it is obtained for
various communication parameters. Additionally, the error
probabilities for Pt , Ps, Pi and Pd are calculated from this
synchronization error sequence by summing the number of
occurrences of a certain state and dividing this by the total
length of the sequence. These error probabilities allow us to
simulate communication over the DM synchronization chan-
nel for comparison. Depending on the type of error category
of interest, we can also calculate the overall error probability,
Pe, which will be used to simulate the IID plots.
An example synchronization error sequence for an IDS

channel could be, t,t,s,t,t,t,t,i,t,t,t,t,d,t,t,t,t,t,s,t where t
describes an error-free transmission, an s represents a bit flip
or substitution error and an i and d represents an insertion and
deletion, respectively.

The next step is to generate the channel model. For simplic-
ity, we limit the Fritchman model to three states, with a single
error state, as there tends to only be slight accuracy gains with
much more complexity for the additional states [25]. Using
this approach will require some manipulation as the model
is binary in nature, and a synchronization channel produces
a variety of errors (insertions, deletions and substitutions).
As such, the procedure will convert the synchronization chan-
nel errors encountered in an error sequence into a binary
error sequence. This will be used to create a channel model
based on the Fritchman model and Baum-Welch algorithm to
ultimately determine the parameters of the channel.

To convert this synchronization error sequence to a binary
form, we will look at five different categorisations or error
category-based groupings: Error or Error-Free, Synchroniza-
tion Error or No Synchronization Error, Substitution Error or
No Substitution Error, Insertion Error or No Insertion Error,
and lastly Deletion Error or No Deletion Error. These are
further explained in the next section.

IV. ERROR CATEGORY-BASED CHANNEL MODELS
ANALYSIS
A. ERROR CATEGORY 1: ERROR OR ERROR-FREE
Firstly, the synchronization error sequence could be con-
verted into a binary error sequence by looking for either an
error or no error. In this case, all errors encountered (inser-
tion, deletion, and substitution) in the synchronization error
sequence will be classified as an error and produce a 1 in the

FIGURE 3. Error-free run distributions of Measured VLC data, simulated
Model data, simulated DM model data and IID data when partitioning
error sequence according to Error or no Error.

binary error sequence, whereas no error is a perfect transmis-
sion and produces a 0 in the binary error sequence. Using the
example synchronization error sequence from the previous
section will produce 0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0 as
the binary error sequence for this case. Figure 3 shows the
error-free run distributions for themeasured VLC system data
(Measured), the corresponding Fritchman model simulated
data (Model), the DM model simulated data, and lastly an
IID sequence.

It is evident from Figure 3a, which shows communication
at low SNR, that the observed channel (Measured) contains
a significant amount of memory as it deviates substantially
from the IID plot which is by definition memoryless. The
Model plot is almost identical to the measured data, which
shows the Fritchman model and the parameters generated
accurately depict the real channel. Additionally, the DM plot
closely follows the IID plot which reiterates the idea that there
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FIGURE 4. Error run distributions of measured VLC data, simulated model
data, simulated Davey-Mackay model data and IID data when partitioning
sequence according to Error or no Error.

is no memory between errors within the DM synchronization
model. Communication at higher SNR, shown in Figure 3b,
shows that all the plots are similar, especially after run lengths
of around 100 consecutive error-free transmissions. This fol-
lows intuition as there are less errors encountered at higher
SNR values. Thus, the few errors produced during transmis-
sion would likely be more sporadic.

Looking at Figure 4, which shows the error-run distribution
of the same models and parameters as above, similar trends
are observed. In both the low and high SNR scenarios, theDM
channel data closely follows that of the IID, while the Mea-
sured and Model data are highly correlated but deviate from
the IID. The deviation is more significant in the case of the
low SNR, shown in Figure 4a. While there is still a difference
between the measured data and IID in the high SNR, shown
in Figure 4b, it is almost negligible. We once again confirm
the accuracy of the generated model as it accurately fits the
measured data. It is also shown in the low SNR case that

FIGURE 5. Error-free run distributions of measured VLC data, simulated
model data, simulated Davey-Mackay model data and IID data when
partitioning sequence according to synchronization error or no
synchronization error.

once an error is experienced, it is likely to cause another
error. Variable cluster sizes are seen, sometimes exceeding
over 100 consecutive erroneous digits. For the IID and DM
data, the cluster of consecutive errors rarely exceeds 5 bits
or symbols for the low SNR case. This is because there is
no form of memory, and it is highly unlikely to see many
consecutive errors.

B. ERROR CATEGORY 2: SYNCHRONIZATION ERROR OR
NO SYNCHRONIZATION ERROR
Next, only synchronization errors are isolated. In this
case, a transmission and substitution error will produce
a 0 in the binary error sequence stream, whereas an
insertion or deletion produces a 1. Using the example
synchronization error sequence in Section III will pro-
duce 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1 as the binary error
sequence for this case. The error-free run distribution for the
four plots with this partitioning of errors is shown in Figure 5.
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FIGURE 6. Error run distributions of measured VLC data and simulated
model data when partitioning sequence according to synchronization
error or no synchronization error at low SNR data transmission.

It is evident in the low SNR case, shown in Figure 5a, that
the DM model follows an IID trajectory quite closely while
the Measured data, and subsequently the Fritchman Model
data, deviates from it. This, again, indicates memory between
symbols of correct transmission and synchronization errors.
The Model plot closely follows the Measured data, showing
that the model created using the above process adequately
describes our system characteristics. The plots in Figure 5b
are inconclusive as there were not enough synchronization
errors present at high SNR values to be accurately modelled
and simulated.

Figure 6 shows the error run distributions for the Measured
VLC system data and the corresponding models simulated
data for the synchronization no synchronization error parti-
tioning at low SNR. It can be seen that there are at most two
consecutive synchronization errors for this system, and the
occurrence of synchronization errors, in general, are quite
low. For this reason, the plots of the IID and DM channel
are not visible, as simulating these channels with such low
error probability allowed for at most a single synchronization
error between error-free runs. However, it is worth noting
that while this system may not have substantial synchroniza-
tion errors, the procedure and methodology used can still be
applied for harsher channels where more severe synchroniza-
tion errors do exist.

C. ERROR CATEGORY 3: SUBSTITUTION ERROR OR NO
SUBSTITUTION ERROR
In this error category, we focus on how substitution errors
affect the error-free and error run distributions. In this
scenario, a transmission and synchronization error will pro-
duce a 0 in the binary error sequence stream, whereas a
substitution error produces a 1. Using the example syn-
chronization error sequence from Section III will pro-
duce 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 as the binary error
sequence for this case. The error-free run distribution for
the various plots with this partitioning of errors is shown

FIGURE 7. Error-free run distributions of measured VLC data, simulated
model data, simulated Davey-Mackay model data and IID data when
partitioning sequence according to substitution error or no substitution
error.

in Figure 7, where 7a and 7b show the plots for low SNR
and high SNR communication respectively. These error-free
and error run distribution plots are almost identical to the
plots shown in Figure 3 and Figure 4. This indicates that the
most common type of error encountered in the system are
substitution errors and a similar insight into them naturally
follows.

D. ERROR CATEGORY 4: INSERTION ERROR OR NO
INSERTION ERROR
The following case is added for completeness of the analysis
as the previous error categories already indicated that there is
a low probability of producing synchronization errors in the
system, and subsequently insertion errors. For the case where
partitioning is done according to insertion or no insertion
error, the plots for the error-free runs and error runs are
shown in Figure 9 and Figure 10, where each subfigure shows
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FIGURE 8. Error run distributions of measured VLC data, simulated model
data, simulated Davey-Mackay model data and IID data when partitioning
sequence according to substitution error or no substitution error.

low and high SNR data transmission. Only transmission
for low SNR is shown for the error run distributions as
there are too few insertions that occur at sufficiently high
SNR communication. Since our interest for this error cate-
gory is in the analysis of insertion errors, an insertion will
produce a 1 in the binary error sequence, while a trans-
mission, substitution and deletion will all be analyzed as
no error and produce a 0. For the given synchronization
error sequence this will produce a binary error sequence of
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.

E. ERROR CATEGORY 5: DELETION ERROR OR NO
DELETION ERROR
Once again, the following case is added for completeness for
the reasons explained above. For this case, where partitioning
is done according to a deletion or no deletion error, the binary
error sequence obtained from the example synchroniza-
tion error sequence is 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.

FIGURE 9. Error run distributions of measured VLC data, simulated model
data, simulated Davey-Mackay model data and IID data when partitioning
sequence according to insertion error or no insertion error.

To obtain this sequence, a 1 is placed in the binary error
sequence when a deletion occurs in the synchronization error
sequence. All other likely states produce a 0 in the binary
error sequence. The plots for the error-free runs and error
runs are shown in Figure 11 and Figure 12. Again, only
the error-free runs have an associated low and high SNR
communication. The error run distribution only indicates the
low SNR communication as too few deletion errors are pro-
duced at high SNR communication. These plots once again
are almost the same as the plots obtained for the cases of
synchronization error or no synchronization error, and inser-
tion error or no insertion error. As such, the analysis and
observations would follow similar explanations.

F. CHI-SQUARED AND MSE ANALYSIS OF PLOTS
Tables 1 - 5 outline the various Chi-Squared and MSE values
obtained for various plots under different communication
parameters. To better explain the values found in each table,
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FIGURE 10. Error run distributions of measured VLC data and simulated
model data when partitioning sequence according to insertion error or no
insertion error at low SNR data transmission.

FIGURE 11. Error run distributions of measured VLC data, simulated
model data, simulated Davey-Mackay model data and IID data when
partitioning sequence according to deletion error or no deletion error.

we will make use of the entries in the first block of Table 1.
Here the values correspond to low SNR communication when
the bin width is set to 1 and the plots compared are the IID

FIGURE 12. Error run distributions of measured VLC data and simulated
model data when partitioning sequence according to deletion error or no
deletion error at low SNR data transmission.

and the Measured data when using the Error or Error-Free
categorisation. As can be read off the table, aχ2 value of 7202
is obtained which leads to a p-value of 0 as the df (degrees
of freedom) is 35. This leads to the conclusion that the null
hypothesis, HN should be rejected as the p-value is less than
the 0.01 significance value that is used. This implies that
there is a significant difference between the IID andMeasured
data plots for the given parameters, which again reiterates
the notion that the measured VLC data contains memory as
it deviates significantly from a memoryless IID. Likewise,
the MSE column indicates an MSE value of 8113 which is
calculated using k = 36 data points. Here, the lower the
relative MSE value, the more alike the compared plots are.
While these values vary depending on the bin widths used
(this may need to be optimised for a true representation),
they still provide a good general indicator of how similar
or contrasting the plots are to each other. In particular, it is
noticed that at low SNR communication, the Model data and
Measured data are generally in agreement with each other
while significantly differing from the DM and IID channel
plots. It is also evident that at these low SNR communica-
tion parameters, the DM plots are quite similar to an IID
distribution. At high SNR communication, all the plots start
to converge and we see a decrease in the Chi-Square and
MSE values for these parameters. From the analysis of the
real-world data, it is evident that our notions of when we
will experience correlated errors are correct. At high SNR
communication, the channel experiences fewer errors and
starts to degenerate into an IID model. Again, we refer the
reader to Appendix A for a discussion on these metrics as
well as the method implemented for the calculation of each
statistic.

V. A NOVEL MEMORY SYNCHRONIZATION CHANNEL
MODEL
While the above setup and analysis is useful for model-
ing memory in synchronization channels, it is not without
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TABLE 1. Values obtained for Chi-Squared and MSE analysis for various plots and bin widths using the Error or Error-Free categorisation.

TABLE 2. Values obtained for Chi-Squared and MSE analysis for various plots and bin widths using the Substitution Error or No Substitution Error
categorisation.

TABLE 3. Values obtained for Chi-Squared and MSE analysis for various plots and bin widths using the Synchronization Error or No Synchronization Error
categorisation.

limitations as only specific, unique errors may be analyzed
at a given instance. In this section, a new model is developed
which can incorporate memory and multiple types of errors
within the channel simultaneously, as opposed to converting
the errors into a binary form first.

We again assume the receiver has full knowledge of the
transmitted data and that each state emits a unique symbol

(t, s, d or i) into the synchronization error sequence to iden-
tify that particular state ie. that the states are completely
visible. This reduces the model to a simple Markov chain.
For this analysis, the synchronization error sequence is used
directly, where the method of producing the synchronization
error sequence is identical to that described in Section III.
This sequence, along with the emission matrix, which is a
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TABLE 4. Values obtained for Chi-Squared and MSE analysis for various plots and bin widths using the Insertion Error No Insertion Error categorisation.

TABLE 5. Values obtained for Chi-Squared and MSE analysis for various plots and bin widths using the Deletion Error or No Deletion Error categorisation.

diagonal of ones, will produce the transition matrix, A, for a
four-state Markov model, which is illustrated in Figure 13,
when run through the Baum-Welch algorithm. This process,
while simple, produces accurate transition matrices for the
memory synchronization channel.

FIGURE 13. Four state Markov model for IDS channel.

A. MEMORY SYNCHRONIZATION CHANNEL MODELS
OBTAINED FROM REAL-WORLD DATA
We once again apply this technique to the data from the VLC
system [21] with the same parameters as before. Figure 14
shows the transition matrix heatmap for low SNR communi-
cation in the VLC system. The actual values for the transi-
tion matrix are shown in Equation (6). Using Equations (3)
and (5) leads to an error entropy of 0.0247 bits/symbol and
consequently a capacity of 0.9753 bits/symbol. From this,

FIGURE 14. Transition matrix heat map at low SNR communication.

a directed graph that represents the Markov chain can be
plotted. This is illustrated in Figure 15. It is evident from this
model that once a transition occurs, the channel is most likely
going to remain in this state. The same thing occurs with
substitution errors, as the self-transition probability of this
state is quite high. It is also worth noting that the probability
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FIGURE 15. Directed graph for proposed IDS memory model at low SNR
communication.

FIGURE 16. Transition matrix heat map at high SNR communication.

of transitioning from a synchronization error (either deletion
or insertion) to a substitution error is also quite high, while
transitioning from any error back to normal transmission is
relatively small. This adequately illustrates the memory we
notice between the three error states, as well as the long runs
of error-free transmissions observed.

The same analysis is performed for communication at
higher SNR values, which yields the transition matrix
heatmap shown in Figure 16, and the directed graph shown
in Figure 17. Equation (7) represents the transition matrix
obtained for high SNR communication. Equation (3) unfor-
tunately cannot be used to determine the entropy in this case
because the Markov chain is not ergodic as it is reducible
and contains states that are isolated and absorbing in nature.
It is, however, still evident from the high SNR communication
analysis that once the system is in an error-free (transmission)
state, it will more than likely continue in this state. Even if a
substitution error occurs, the system quickly returns to the

FIGURE 17. Directed graph for proposed IDS memory model at high SNR
communication.

transmission state with very little probability of consecutive
errors. It is even shown that as soon a single deletion occurs,
the system still immediately returns to error-free transmis-
sion. It is worth noting that since no insertions are observed
at high SNR, we assume there are no transitions out of this
state, hence the insertion state is isolated in Figure 17. Once
again the analysis of the real-world data corroborates our
notion of when the memory models may be beneficially used.
As expected, from the high SNR transition matrix shown in
Equation (7), it is noticeable that the channel degenerates into
a memoryless IID model where the transitions are likely to
stay in the error-free state while sporadically transitioning
to a substitution-error state before quickly returning to an
error-free transmission. This additionally provides a useful
method in determining if a system inherently contains mem-
ory as this captured memory is clearly indicated by the values
obtained in the respective transition matrix.

ALowSNR

=


0.9986 0.0011 1.535× 10−4 1.089× 10−4

0.0203 0.9797 0 0

0.0122 0.8293 0.1585 0

0.0571 0.6429 0 0.3

 (6)

AHighSNR

=


0.9980 0.0020 1.0120× 10−6 0

0.9421 0.0579 0 0

1 0 0 0

0 0 0 1

 (7)

VI. CONCLUSION
Various memory models and synchronization error channels
are discussed, but there is, unfortunately, no overlap which
accounts for IDS channels that contain statistically dependent
errors. Firstly, a novel technique to determine channel char-
acteristics and model parameters is introduced which builds
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onto the idea of the Fritchman model while making use of
the Levenshtein distance and different error categories. The
proposed channel models show a clear distinction for low
SNR communication in the error and error-free runs from the
DM channel, which seeks to only model statistically indepen-
dent synchronization errors. Finally, a more encompassing
model, which can be viewed as a Markov chain, that accounts
for insertion, deletion, and substitution errors is described.
The new method is more enveloping of practical, real-world
communication channels and is demonstrated by making use
of data from a VLC system. This method additionally serves
as a way to indicate if a channel inherently contains corre-
lated errors (synchronization or otherwise) and it is evident
that at high SNR communication, the model degenerates
into an IID channel. This technique may even be applied
to other channels in applications such as the barcoding of
DNA sequences.

APPENDIX.
A. PERFORMANCE METRICS FOR ANALYSIS AND
METHODOLOGY
To compare and quantify the similarities, and conse-
quently, differences, between the various plots produced; the
Chi-Square (χ2) and Mean Squared Error (MSE) metrics are
used. This Appendix outlines the background on the various
analysis metrics used as well as the procedures and methods
used when calculating these quantities.

1) CHI-SQUARED (χ2) GOODNESS OF FIT
The Chi-Squared test is a non-parametric test that is used
to determine if the observed data is significantly different
from expected data and is calculated using Equation (A.1)
where k is the number of data samples, oi is the observed
data at sample i and ei is the expected value of the
ith sample [26]–[28].

χ2
=

k∑
i=1

(oi − ei)2

ei
(A.1)

As this is amethod used in hypothesis testing, two hypothe-
ses first need to be constructed and later tested. The null
hypothesis HN describes the situation where there is no
significant difference in the distributions of the compared
plots whereas the alternative hypothesis, HA, describes the
situation where there is a significant difference in distribution
between the compared plots. For all the tests, a strict signifi-
cance value of 0.01 is used, but it is not uncommon to use 5%
or 10% depending on the scenario. The degrees of freedom
vary as a function of the bin size and the context of the plots.

2) MEAN SQUARED ERROR (MSE)
The Mean Squared Error is a metric that is traditionally used
to indicate how close a regression line is to a set of observed
values [29]. Here we will use the MSE, in a similar fashion
to the χ2 metric, as an indicator of how similar the various
error-free run plots are. The MSE equation is described by

Equation (A.2) where the variables are defined as before for
the χ2 equation. Unlike the Chi-Squared metric, there is no
way of determining a good fit with the MSE value alone and
thus we will need to compare different MSE values from
different plots against each other, where a larger value of the
MSE indicates amore significant difference between the plots
compared.

MSE =
1
k

k∑
i=1

(oi − ei)2 (A.2)

3) ERROR-FREE RUN AND ERROR RUN DISTRIBUTIONS
Two of the most important metrics used to define dis-
crete channel models are the error-free run distribution and
the error run distribution. The error-free run distribution is
defined as Pr(0m|1), which is the probability of receiving
a stream of m or more consecutive error-free transmissions
following an error. An error run distribution is defined as
Pr(1m|0) and describes the probability of receivingm or more
consecutive errors after an error-free transmission [17].

In general, for the Fritchmanmodel, the error-free runs and
error runs are given by Equations (A.3) and (A.4) respec-
tively, which describes these distribution events in terms of
weighted exponentials [11], [17]. Here, λi represents the
eigenvalues of Agg and Abb where Agg and Abb are the diag-
onal sub-matrices which form part of the transition matrix A
and fi is the corresponding transition probability from aij [11],
[17]. For a single error state Fritchmanmodel, Equation (A.3)
is simplified to Equation (A.5) [17].

Pr(0m|1) =
k∑
i=1

fiλ
m−1
i (A.3)

Pr(1m|0) =
k∑

i=k+1

fiλ
m−1
i (A.4)

Pr(0m|1) =
N−1∑
k=1

aNk (akk )m

akk
(A.5)

4) PROCEDURE FOR χ2 AND MSE CALCULATIONS
For both the χ2 and theMSE, the data from the error-free runs
is segmented into different bins according to a predefined
bin width. Bin widths of 1, 5 and 10 are chosen for Error
vs Error-Free segmentation as well as Substitution Error vs
No Substitution Error segmentation while bin widths of 100,
500 and 1000 are selected for the remaining segmentation
plots. The rationale behind this is to ensure that the large
counts condition is met. The large counts condition states that
each category (in our case each bin) has an expected outcome
of at least 5 [26]. This is done to ensure the criteria of the χ2

analysis is met as five or more occurrences in each expected
bin satisfies the criteria for the central limit theorem which
allows the distributions to be normally distributed in nature
ie. there needs to be a large enough samples for the central
limit theorem to bemet as the χ2 statistic is based on a normal
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distribution [27]. Additionally, the traditional definition of the
error-free runs, Pr(0m|1), which is the probability of receiving
a stream of at least m consecutive error-free transmissions
following an error is replaced by a stricter criteria in the
χ2 and the MSE analysis where the bins are categorised by
exactlymerror-free transmissions following an error. In other
words, if the bin width is set to 5, we would have categories
or bins of 1 to 5 error-free transmissions, 6 to 10 error-
free transmissions, 11 to 15 error-free transmissions and so
on. Here the bin 1 to 5 error-free transmissions does not
represent at least 1 to 5 error-free transmissions but rather
how many times exactly 1,2,3,4 or 5 error-free transmissions
occur. This is done to satisfy the criteria that

∑k
i=1 ri = 1

where ri is the proportion or percentage of counts in each
category [28]. In other words, all counts are independent
and cannot attribute to multiple categories. Finally, a cutoff
for the number of consecutive error-free runs must be set
as many of the longer chains of error-free transmissions
become less frequent and often times the counts are less than
five occurrences. Again, the rationale is to satisfy the large
counts criteria so that the χ2 analysis is valid. As the longer
runs of error-free transmissions are less likely to occur in
the expected variable, the first bin that has a frequency or
occurrence count less than 5 is selected as the cutoff value
and all subsequent categories, including the cutoff bin, are
grouped together as a single bin. Once the segmentation of
data into bins is complete the χ2 and MSE statistics may
now be calculated using Equation (A.1) and Equation (A.2)
respectively.

For the χ2 statistic, the p-value is then calculated using
the degrees of freedom which corresponds to the number
of bins less one. Once the p-value is obtained we can then
compare this to the significance level originally chosen for
the analysis. If the p-value is less than the significance level,
the null hypothesis is rejected and consequently, the alternate
hypothesis is accepted [26]–[28]. If the p-value is greater
than the significance level, it implies there is not enough
evidence to suggest the null hypothesis is wrong and thus
we accept it as true. It is worth noting that as the bin width
increases, the degrees of freedom (categories) decreases.
In some cases, there is only one bin that contains all counts
and the corresponding Chi-Square and MSE values tell us if
the total expected number of errors is in agreement with the
total measured number of errors for the given parameters.
Furthermore, we note that more accurate values for these
metrics will be obtained when using optimised bin widths for
given parameters.
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