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ABSTRACT Air pollution has become the fourth leading cause of premature death on Earth. Air pollution
causes poor health and death; about one case out of every ten deaths worldwide is caused by air pollution,
which is six times more than malaria. Human activities are the main cause of air pollution, such as chemical
industries, road traffic, and fossil fuel power plants. Over the span of several years, monitoring air quality has
become an exigent and essential task. In order to limit the health impact of air pollution and to ensure safe
operation of chemical processes, it is necessary to quickly detect and locate instrumentation defects. There
are several process monitoring techniques in the literature. Among these techniques is the one selected for
this work for the detection and location of sensor faults: the kernel principal component analysis (KPCA)
method, which was selected for its primary advantages of easy employment and less necessity for prior
knowledge. Using the KPCAmethod for monitoring nonlinear systems, the calculation cost and the memory
size are related to the number of initial data. This is currently a major limitation of the KPCA method,
especially in industrial environments. In order to remedy this limitation, in this paper we propose a new
method of detection and localization. The key idea of this approach is to extend the method of localization
based on the principle of reconstruction-based contributions (RBC) by downsizing the kernel matrix in
the characteristic space. The proposed technique is named reconstruction-based contribution reduced rank
kernel principal component analysis(RBC-RRKPCA). The approach is demonstrated using real air quality
monitoring network data and simulated data from the Tennessee Eastman process (TEP) as a challenging
benchmark problem.We also present a comparative study of the performances of the conventional diagnostic
technique RBC-KPCA and the proposed technique RBC-RRKPCA. The results in this paper reveal that the
proposed technique achieves the highest detection and localization accuracy.

INDEX TERMS Quality, fault detection, fault isolation, KPCA, nonlinear process monitoring, RBC,
RRKPCA, Tennessee Eastman process (TEP).

I. INTRODUCTION
The purpose of the chemical industry is to change the chem-
ical structure of natural materials in order to derive prod-
ucts that are useful in other industries or in everyday life.
Chemicals are obtained from raw materials—mainly min-
erals, metals, and hydrocarbons—in a series of processing
steps. Anytime processes that use temperature and pressure
are used to change molecular structure or create new products
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from chemical compounds, there is a risk of fire, explosion,
or emission of liquids, vapors, gases, and toxic substances
that cause air pollution.

Air pollution has significant effects on health and the envi-
ronment. Air pollution is currently the first environmental
concern of the French. Natural phenomena, but especially
human activities, are the source of pollutant emissions in the
form of gases or particles into the atmosphere. Once released
into the air, these substances are transported under the impact
of wind, rain, and temperature gradients in the atmosphere—
sometimes up to thousands of kilometers from the source of
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emission. They can also undergo transformations from chem-
ical reactions under the influences of certain meteorological
conditions (heat, light, humidity, etc.) and from reactions in
the air between these substances. This results in the appear-
ance of other pollutants. The most well-known health effects
of air pollution are those on the respiratory and cardiovascular
systems (cerebrovascular accidents, heart disease, etc.).

The quality of the air we breathe is determined by the
concentrations of different pollutants, which are most often
expressed in micrograms per cubic meter of air (µg/m3).
Over the last fifteen years, four pollutants have been mainly
monitored: sulfur dioxide (SO2), nitrogen dioxide (NO2),
ozone (O3), and particulate matter (PM10). The concentra-
tions of these pollutants are measured at different points in
the French territory, mainly in a situation of urban bottom,
making it possible to evaluate the exposure of the population
to the atmospheric pollution of bottom or proximity to urban
centers.

Currently, monitoring of air pollution (measuring stations
and modeling) has been described in the literature [1], [2] as
ensuring that air quality standards and preventative measures
minimize the harmful effects of changing many pollutants.
The objective of the air monitoring program is to monitor
and characterize the impact of air pollution through retro-
spective analyses based on methods of control for potential
confounders. It also carries out quantitative assessments of
the health impact of air pollution at the national and local
levels, which make it possible to simulate the effects of new
developments or actions to reduce emissions and, thus, guide
the choice of decision makers. At certain times of the year,
especially in winter, spring, and summer, there are peaks (or
episodes) of pollution in the metropolitan territory. A spike
(or episode) is when air pollution exceeds or is at risk of
exceeding the information and recommendation threshold (or
alert threshold) defined by the national regulations for the
four pollutants.

Chemical processes are a major source of air pollution.
Therefore, rapid validation, detection, and diagnosis of mea-
surement errors is a crucial step in guaranteeing safe and
optimal operations in chemical processes. In these tasks, sev-
eral data-driven fault detection methods have been developed
in the literature to detect sensor errors or unnatural changes
in main measured air quality parameters [3], [4], [1] and
chemical processes such as the Tennessee Eastman process
(TEP) [5]–[7]. In data-driven modeling [8], machine learning
algorithms such as artificial neural networks (ANNs) and
support vector machines (SVMs) [9]; multivariate statistical
approaches such as kernel partial least squares (KPLS) [10]
and kernel principal component analysis (KPCA) [11]; and
logical analysis of data (LAD) [12] are machine learning
approaches that are used to discover the hidden knowledge
in historical data. KPCA and KPLS are widely used to detect
and diagnose faults in the controlled TEP [13] and in the
air quality monitoring network. In [14], the authors propose
a new defect detection technique that merges the general-
ized likelihood ratio test (GLRT) and exponentially weighted

moving average (EWMA). Recently, in [15], a new defect
detection technique based on the reduced kernel partial least
squares (RKPLS) method was proposed to anticipate the con-
centrations of various pollutants and to aid in understanding
variations in air quality networks.

After fault detection, it is important to identify the process
variables associated with the fault. Indeed, fault identification
is described as the capability of the monitoring process to be
able to discover the origin of the fault. In general, the fault
identification approach depends on the detection procedure
implemented. In the literature, many principal component
analysis (PCA)-based approaches have been proposed, such
as the fault localizationmethod using residue structuring [16].
In 1999, [17] proposed a new method called partial PCA.
Indeed, this approach is defined as an extension of the
residue structuring approach and has been successfully val-
idated [3], [18]. In [19] and [20], the authors proposed an
extension of these methods for fault diagnosis in dynamic
nonlinear systems. Themain idea of thesemethods is to create
a set of partial models so that each model is affected by a
subset of defects.

Another approach to fault localization by PCA is the con-
tribution diagrams approach [21]–[23]. The contributions are
actually the effects of the defect on the observedmeasurement
vector [24], [25]. They are based on the idea that variables
with large contributions to a default detection index are prob-
ably the cause of default. However, even for simple sen-
sor faults, contribution diagrams do not guarantee a correct
diagnosis. As an alternative to contribution diagrams, [13]
proposed a method for calculating contributions based on the
reconstruction of the defect detection index along the direc-
tion of a variable. Reconstructing a defect detection index
along a variable direction minimizes the effect of this variable
on the detection index. Thus, the amount of reconstruction
in one direction of a variable can be used as the amount
of contribution of the variable to the defect detection index
that is reconstructed. Therefore, this amount of reconstruc-
tion will be referred to as the reconstruction-based contri-
bution (RBC) of this variable to the default detection index.
This approach has been developed for the identification of
linear process defects with the PCA technique. In order to
show that the RBC method is better than the contribution
calculation method, a rigorous analysis of the diagnostic
ability is provided for the traditional contribution calculation
method and the RBCmethod. There is evidence that the RBC
method ensures correct fault location and that the incrimi-
nated variable has the largest RBC for the case of random
error amplitudes. These results are generally applicable for
the Squared Prediction Error (SPE) index, Hotteling’s T2
index, and the combined indexes [26] and [27]. The RBC
method depends on the identification of defects by recon-
struction, but it does not require knowledge of fault direc-
tions. However, fault diagnosis for nonlinear systems cannot
be done with contribution diagrams because there seems to be
no way to calculate them with KPCA. Due to the nonlinear
transformation used (which is not explicit), the estimate of
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the magnitude of the defects cannot be performed in the
characteristic space. To have a valid result, it is necessary to
reconstruct the transformed data in the input space; however,
this reverse return operation is called the pre-image problem.
The solution to this problem is to solve an optimization
problem, because there is no exact solution and, even if it
exists, it cannot be unique. In 2010, [28] proposed RBC for
the kernel PCA (RBC-KPCA). In [29], the convergence of the
optimization algorithm is not guaranteed with the Hotteling
T2 index, so RBCs with KPCA are only calculated with the
SPE index and the combined indexes. Nevertheless, the con-
vergence time of the optimization algorithm increases if the
dimension of the kernel matrix is important.

To overcome this problem, we have proposed in this article
a new fault diagnosis technique, which combines the benefits
of the reduced rank KPCA technique and the principle of
RBC. The proposed technique, RBC-RRKPCA, ameliorates
the detection and localization performances compared to con-
ventional RBC-KPCA. The principle of the RBC-RRKPCA
is first to construct the reduced reference model by using
RRKPCA, and second to use the SPE index and the principle
of RBC for detection and localization purposes. The key
objective of this paper is to prove the application of the
proposed technique for fault diagnosis using real air quality
monitoring network data and simulated TEP data.

The rest of the paper is organized as follows. In Section II,
a review of KPCA and RRKPCA methods is presented.
In Section III, we present the suggested RBC-RRKPCA
method and its mathematical formulation. Section IV demon-
strates the effectiveness of the developed fault diagnosis
approach using real air quality monitoring network data and
simulated TEP data. Conclusions are given at the end of the
paper.

II. FAULT DETECTION METHODS
A. NOTATIONS
In the Table 1, all notations are presented.

B. REVIEW OF KPCA METHOD
The KPCA method is a simple and interesting technique
developed by Schölkopf et al. [30] to model faithfully the
non-linear relationships between process data. Using ker-
nel function [31], KPCA can ably project input data with
a linearly inseparable structure over a higher dimensional
space in which data can be linearly separated. Compared
to other nonlinear extensions of PCA [32], [33], the KPCA
method only needs to solve an eigenvalue problem without
any nonlinear optimization.

The characteristic space H is transformed non-linearly
from the original space E using a nonlinear projection func-
tion φ. Let the sample x ∈ E, its projection in the character-
istic space H via the function φ can be defined as:

φ : E ⊂ Rm
→ H ⊂ Rh

x → φ(x) (1)

TABLE 1. Notations.

Let X = [x1, . . . , xi, . . . , xN ]T the normalized input data
matrix.

Where x ∈ E ⊂ Rm is an input data vector, where m
presents the process variables number and N presents the
samples number. The implicit KPCA model can be given by
the Eigen- values decomposition of the covariancematrixC8,
which is given by:

C8 =
1
N

N∑
i=1

φ(xi)φ(xi)T (2)

Let χ = [φ(x1) . . . φ(xi) . . . φ(xN )]T ∈ RN×h defines the
matrix of data in the characteristic spaceH, so the covariance
matrix C8 can be expressed as follows:

C8 =
1
N
χT χ (3)

The principal components of the projected data in the char-
acteristic space are calculated by solving the decomposition
into eigenvalues and eigenvectors of the matrix C8 such that:

λjµj = C8 µj; j = 1, . . . , h (4)

With µj is the jth eigenvector and λj is the jth eigenvalue
associated. For λj 6= 0, it exists αi,j; i = 1 . . .N coefficients
such that all eigenvectors µj may be considered as a linear
combination of [φ(x1) . . . φ(xi) . . . φ(xN )] and can be defined
by:

µj =

N∑
i=1

αi,j φ(xi) (5)

However, the projection function φ is not known and the
covariance matrix C8 in the characteristic space cannot be
computed. The use of kernels bypasses the need to know
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explicitly the function φ. The representation of the kernel
otherwise reduces the nonlinear complex algorithms inE into
simple linear formulations inH. Thus, we use the kernel trick
(kernel trick), used primarily for the support vector machine
(SVM) [34], [35], any algorithm in which the data appear as
scalar products can be implicitly realized in H using kernel
functions that allow the design of non-linear versions of linear
algorithms.

Then, for all x, x ′ ∈ Rm, and if k(., .) is a positive definite
kernel function on space that satisfies Mercer’s theorem [36],
the scalar product enters and is defined as follows:

k(x, x ′) =
〈
φ(x), φ(x ′)

〉
H (6)

We define K ∈ RN×N the kernel matrix whose elements
[K ]ij are determined from the equation(6) by:

K = χχT =

k(x1, x1) · · · k(x1, xN )
...

. . .
...

k(xN , x1) · · · k(xN , xN )

 (7)

The application of the kernel trick, to calculate the dot
product

〈
φ(x), φ(x ′)

〉
H , can simplify the problem of decom-

position into eigenvalues and eigenvectors of the covariance
matrix C8 as follows, see [29] for a detailed explanation:

N3V = KV (8)

where 3 = diag(λ1 . . . λj . . . λN ) is the diagonal matrix
of eigenvalues λj ranked in descending order and V =[
α1 . . . αj . . . αN

]
is the matrix of their relative eigenvectors.

Since it is essential to guarantee the normality of eigenvectors
µj in the equation(4), as:〈

µj, µj
〉
H = 1; j = 1 . . . n (9)

With n is the number of non-zero eigenvalues. Replacing
equation (5) in equation (9) yields:

〈
µj, µj

〉
H =

N∑
i,k

αi,jαk,j 〈φ(xi), φ(xk )〉H

=

N∑
i,k

αi,jαk,jKi,k

=
〈
αj,Kαj

〉
H

= λj
〈
αj, αj

〉
H (10)

Or Ki,k = k(xi, xk ). The corresponding eigenvectors αj
must be normalized as follows:〈

αj, αj
〉
H =

∥∥αj∥∥2 = 1
λj
; j = 1, . . . , n (11)

Then, the eigenvectors of the covariance matrix C8 con-
struct a matrix µf such as:

µf =

[
α1
√
λ1
χT , . . . ,

α`
√
λ`
χT ,

α`+1
√
λ`+1

χT , . . . ,
αn
√
λn
χT
]

= 3−1/2VχT (12)

where ` the number of principal components is the most sig-
nificant and sufficient to explain the variability of a process,
the eigenvector matrices and eigenvalues can be decomposed
into two sub-matrices as follows:

µf =
[
µ̂f µ̃f

]
∈ RN×n

;3 =

[
3̂ 0
0 3̃

]
∈ Rn×n (13)

µ̂f and 3̂ represent the matrices of the `first eigenvectors and
the ` first eigenvalues, respectively. µ̃f and 3̃ represent the
matrices of the (n − `) last eigenvectors and the last (n − `)
eigenvalues, respectively.

There are several kernel functions in the literature such as:

• Laplacian kernel:

k(xi, xj) = exp(−

∥∥xi − xj∥∥
σ

) (14)

• Gaussian kernel (radial basis function (RBF)):

k(xi, xj) = exp(−

∥∥xi − xj∥∥2
2σ 2 ) (15)

In equation (2), we assume that the transformed data φ(xi)

are implicitly centered
N∑
i=1
φ(xi) = 0. Generally, this is not

the case, it leads to the normalization of the kernel matrix,
where we replace K with the Gram matrix (G) as follows:

G = K − ENK − KEN + ENKEN (16)

With EN = 1
N

1 . . . 1
...
. . .

...

1 · · · 1

 ∈ RN×N .

Once the KPCA model is obtained, the kernel vec-
tor k(xtest ) ∈ R1×N of a test vector xtest ∈ Rm

can be determined using the training data as k (xtest) =
[k (x1, xtest) · · · k (xi, xtest) · · · k (xN , xtest)]. Before pro-
jecting the test vector into the feature space by the retained
eigenvectors, the kernel vector k(xtest ) must be centered. Then
we have:

k̄(xtest ) = k(xtest )− E1K − k(xtest )EN + E1KEN (17)

With E1 = 1
N [1, . . . , 1] ∈ R1×N

To compute the selected PC (`), we apply the cumulative
percent variance (CPV) [37]. The cumulative percent vari-
ance (CPV) can be expressed as:

CPV (`) =

∑̀
j=1
λj

m∑
j=1
λj

100% (18)

The number ` of selected principal components is chosen
if the CPV is higher than 95%.
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C. REVIEW OF RRKPCA METHOD
The main idea of the reduced rank KPCA method [38] is
to remove the dependencies between the variables in the
characteristic space and to keep a set of data reduced from
the original one Xr = [x1, . . . , xi, . . . , xr ]T ∈ Rr×m, where r
is the number of observations retained. In order to identify the
reference RR-KPCAmodel, the new most useful observation
in terms of system information is saved in a reduced learning
data matrix Xr . We consider that the system operates under
normal conditions for N0 moments. At each moment t , a new
observation is collected, its kernel vector kxt is calculated and
the kernel matrix is updated by adding a column and a line to
the previous one, such as:

K t
r =

[
K t−1
r kxt
kTxt k(xt , xt )

]
∈ Rr×r (19)

After the updating of the kernel matrix, we compute its
rank. The rank value leads to two possibilities: in the first
possibility the reduced data matrix increments by adding the
new observation, if the kernel matrix has a full rank, this
describes that the new observation is rich in information and
defines the independence between the projected data in the
feature space. In the second possibility, the reduced data
matrix remains unchanged and we are returning the kernel
matrix to its previous state, if the kernel matrix does not have
a full rank, this describes that the new observation is not rich
in information and causes the dependence between the data
projected in the feature space.

Once all the observations have been evaluated, the reduced
data matrix Xr ∈ Rr×m is obtained and the reduced kernel
matrix is constructed, as:

Kr =

k(x1, x1) · · · k(x1, xr )...
. . .

...

k(xr , x1) · · · k(xr , xr )

 ∈ Rr×r (20)

Then, the reference model RR-KPCA (eigenvalues and
eigenvectors) is estimated.

D. FAULT DETECTION INDEX
As in the linear PCA approach, the quadratic prediction
error (SPE) is generally used for the detection of faults
in the residual space using the Kernel PCA. However, the
conventional KPCAmethod does not provide any data recon-
struction approach in the characteristic space. Thus, the cal-
culation of the SPE index is difficult. In [39] the authors
proposed a simple expression for calculating the SPE index in
the characteristic space at the moment k , which is represented
as follows:

SPE(xk ) = k̄(xk , xk )− k̄T (xk ) V̂ 3−1 V̂ T k̄(xk ) (21)

The process is considered in the normal situation at the
instant k if:

SPE(xk ) < δ2α (22)

where δ2α is the control limit of the SPE index, can be calcu-
lated using the chi2 distribution χ2, given by:

δ2α = gχ2
h,α (23)

With h degrees of freedom and α is a confidence threshold
with (0 < α < 1). The parameters g and h are determined as
follows:

g =
b
2a
et h =

2a2

b
(24)

where a and b represent the mean and variance of the
index SPE .

III. SUGGESTED RBC-RRKPCA METHOD
A. PRINCIPLE
The idea of the RBC-RRKPCA method is to define the
reconstruction of a defect detection index along the direction
of a variable. Then, the variable with the largest amount
of reconstruction is possibly the defective variable. In what
follows, we will present the mathematical formulation of the
proposed RBC-RRKPCA with the fault detection index SPE.

B. MATHEMATICAL FORMULATION
Consider Xr ∈ Rr×m the reduced learning data matrix with
r is the reduced data number and m the number of sensors,
when a fault occurs in the sensor xi, the faulty observation
is x ∈ Rm and the fault direction is ξi. Thus, the measure
reconstructed along the direction ξi is defined by:

zri = xr − ξifi (25)

The objective of the reconstruction is to find the amplitude
of default fi such as the fault detection index of the recon-
structed measurement SPE

(
zri
)
is minimized. It is therefore

a question of solving the following optimization problem:

fi = argmin SPE (xr − ξifi) (26)

In the case of RBC-PCA, the contribution based on the
reconstruction of the variable xi to the index SPE,RBCi is the
amount of reconstruction in the direction ξi, can be expressed
as follows:

RBCi = SPE (ξifi) (27)

Nevertheless, [29] showed that the reconstruction contri-
bution RBC of the index SPE cannot be calculated as shown
in Equation (27) for the KPCA method. As a result, the RBC
value can be calculated as the difference between the detec-
tion index of the faulty observation x and the detection index
of the reconstructed observation zri as follows:

RBCi = SPE(zri )− SPE(xr ) (28)

Using equation(21), the detection index of the recon-
structed observation zri is defined by the following equation:

SPE(zri ) = k̄(zri , z
r
i )− k̄

T (zri ) V̂ 3
−1 V̂ T k̄(zri ) (29)

To calculate the RBC value in a direction ξi for the SPE
index, where ξi = [0 0 1 . . . 0] and the value 1 is placed in
the ith position. Therefore, it is about solving the optimiza-
tion problem described by equation (26). Two optimization
methods have been studied in [29]: the iterative method of
fixed point [40], which calculates the value fi directly and
the Newton’s optimization method, which not only allows to
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calculate fi, but also to find the convergence conditions of the
optimization algorithm. Indeed, it has been shown that the
algorithm fixed point is a special case of Newton’s algorithm
with large values of the kernel parameter σ ,this condition
ensures the minimization of the objective function and the
convergence of the optimization algorithm. An important
characteristic of the fixed point algorithm is that it does not
imply the value σ explicitly, it means that the algorithmwould
converge with any value σ . According to equation, (29) the
derivative of the index SPE(zri ) with respect to fi is given by:

∂SPE(zri )

∂fi
=
∂ k̄(zri , z

r
i )

∂fi
− 2k̄T (zri ) V̂r 3

−1
r V̂ T

r
∂ k̄(zri )

∂fi
(30)

With V̂r and3r are the first ` eigenvectors and eigenvalue of
the reduced gram matrix, respectively. Thus, the derivative of
k̄(zri , z

r
i ) with respect to fi is defined by:

∂ k̄(zri , z
r
i )

∂fi
= −2ErT1

∂k(zri )

∂fi
(31)

With k̄(zri , z
r
i ) = 1 − 2k̄T (zri )E

r
1 + ErT1 KEr1 ,E

r
1 =

1
r

[
1 · · · 1

]
∈ R1×r

Using equation(17), the derivative of k̄(zri ) with respect to
fi can be expressed as follows:

∂ k̄(zri )

∂fi
= Fr

∂k(zri )

∂fi
(32)

With Fr = I − Er and Er = 1
r

1 · · · 1...
. . .

...

1 · · · 1

 ∈ Rr×r

The substitution of equation (31) and (32) in (30) leads
to the following of the derivative of the index SPE(zri ) with
respect to fi:
∂SPE(zri )

∂fi
= −2

[
Er1 + FTr V̂r 3

−1
r V̂ T

r k̄(z
r
i )
]T ∂k(zri )

∂fi
(33)

The derivative of the vector k(zri ) with respect to fi is given
by the following expression:

∂k(zri )

∂fi
=
∂k(zri )

∂zri

∂zri
∂fi

=
2
σ
(Brζi − k(zri )fi) (34)

With Br


k(zri , x

r
1)(x

r , xr1)
T

k(zri , x
r
2)(x

r , xrr )
T

...

k(zri , x
r
r )(x

r , xrr )
T


Then the equation of the drift of the index SPE(zri ) with

respect to fi (33) can be rewritten as follows:
∂SPE(zri )

∂fi
= −

4
σ

[
Er1 + FTr V̂r 3

−1
r V̂ T

r k̄(z
r
i )
]T

×
(
Brζi − k

(
zri
)
fi
)

(35)

To solve the optimization problem described by equa-
tion (26) and to find the amplitude fi which minimizes the
detection index associated with the reconstructed measure,

we put the equation (35) to zero. The solution of fi is given as
follows:

fi =
ζ Ti B

T
r

[
Er1 + FTr V̂r 3

−1
r V̂ T

r k̄r (z
r
i )
]

kTr (zi)
[
Er1 + FTr V̂r 3

−1
r V̂ T

r k̄r (z
r
i )
] (36)

The flowchart summarizes the method of diagnosing
defects by the proposed methodRBC-RRKPCA is presented
in Figure 1.

IV. SIMULATION RESULTS
The effectiveness of this method has been proven and evalu-
ated in terms of:
• Good detection rate (GDR) is defined as the ratio
between the total number of defects detected and the
total number of defective data

• False alarm rate (FAR): is calculated as the ratio between
the total number of false alarms and the total number of
data without fault

• Computing time (TE): the calculation time allo-
cated for the execution of the algorithm of online
detection.

• Average convergence time for fault location (TC):
average convergence time of the optimization
algorithm

• Good location rate (GLR): is defined as the ratio
between the average value of RBC for the root cause of
the change in the process and the total value of RBC for
all directions

A. APPLICATION TO THE AIRLOR AIR QUALITY
MONITORING NETWORK
The RBC-KPCA and RBC-RRKPCA techniques were used
for diagnosis of defects on the air quality monitoring.

The air quality monitoring network (AIRLOR), operating
in Lorraine, France. The AIRLOR contains 20 posts spread
over several sites: rural, peri-rural and urban. Each post was
used to acquire certain pollutants in the air, such as nitrogen
oxides (NO and NO2), ozone (O3), carbon monoxide (CO),
and sulfur dioxide (SO2). In this study, six stations are served
for recording additional metrological parameters. The main
objective is to detect the defects of the sensors, whichmeasure
the ozone concentration O3, the nitrogen oxides NO, and
NO2. The phenomenon of photochemical pollution exhibits
a non-linear dynamic behavior [4], [1] and [14]. The obser-
vation vector contains 18 controlled variables, corresponding
respectively to the concentration of ozone, nitrogen oxide,
and nitrogen dioxide of each station.

x(k) =


v1(k) v2(k) v3(k)︸ ︷︷ ︸

station1

. . . v10(k)v11(k) v12(k)︸ ︷︷ ︸
station4

. . . v16(k) v17(k) v18(k)︸ ︷︷ ︸
station6


T

(37)

400 observations were used in the training phase to con-
struct the RBC-RRKPCA and RBC-KPCA reference model,
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FIGURE 1. Flowchart for defect diagnosis by RBC-RRKPCA method.

besides, 1000 observations were used in the testing data
phase. In this study, the RBF kernel was used and the ker-
nel parameter is chosen using Tabu search algorithm [41].

The number of reduced observations selected using the
proposed RBC-RRKPCA method is equal to 227, from
400 observations.
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FIGURE 2. Air quality monitoring station.

To test the proposed fault detection algorithm, two faults
with different amplitudes and time of appearance are intro-
duced:

• Fault 1: is an additive fault by adding only 25% of
the standard variation of (NO2) of station 3 between
observations 350 and 650.

• Fault 2: is an additive fault by adding only 35% of the
standard variation of (NO) of station 6 between obser-
vations 500 and 800.

FIGURE 3. Fault detection results for Fault 1.

Figure 3 and Figure 4 present the evolution of the
SPE index using RBC-KPCA and RBC-RRKPCA methods.
As Fig. 3 and Fig. 4 show, the faults are correctly detected
with the RBC-KPCA method, but with the presence of sev-
eral false alarm for the 95% confidence limit. However,
when using the proposed RBC-RRKPCA method, the FAR
is decreased.

After detecting the fault, it is necessary to isolate its cause.
Therefore, for each new observation, the RBC amount in the

FIGURE 4. Fault detection results for Fault 2.

FIGURE 5. Fault localization using RBC-RRKPCA method for Fault 1.

18 directions (process variables) is calculated for the two
faults using the RBC-KPCA and RBC-RRKPCA methods.

Figure 5 and Figure 6 shows the average RBC values using
the RBC-RRKPCA method, calculated for each variable, for
all defect samples and for the directions of the two analyzed
faults.

As the Figure 5 shows, we can notice that the mean RBC
values of the variable (NO2) of the 3rd station (direction
9) is the larger relative comparing to the values of the other
variables, which means that it is the defective variable.

As shown in Figure 6, we can notice that the mean RBC
values of the variable (NO) of the th station (direction 17)
is the larger relative in contrast to the values of the other
variables, which means that it is the defective variable.

Table 1 Table 2 represents the performances considered for
the comparison between the two faults diagnosis methods.
Note that the proposed method can significantly reduce the
calculation time and the false alarm rate and guarantees a
good detection rate especially in the case of second fault.
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FIGURE 6. Fault localization using RBC-RRKPCA method for Fault 2.

TABLE 2. Fault diagnostic performances for RBC-KPCA and RBC-RRKPCA
methods.

In addition, Table 2 shows that RBC-RRKPCA method
guaranties a good localization with less average convergence
time for fault location compared to conventional RBC-KPCA
method.

B. APPLICATION TO TENNESSEE EASTMAN PROCESS
(TEP)
To show the efficiency of the developed approach
RBC-RRKPCA compared to RBC-KPCA [13] and
RBC-RKPCA [42] methods, it is obligatory to test them on
data of a strongly non-linear process. The Eastman chemical
company created the TEP, which has been generally used to
evaluate several fault diagnosis process. The TEP contains
of five units, as presented in Figure 7a product extractor, a
reactor, a liquid vapor separator, a condenser, and a com-
pressor. TEP is largely detailed in the literature [7]. TEP
is a nonlinear chemical reactor used to conduct chemical
reactions. This process produces two main chemicals G and
H and a by-product F from four reagents A, C, D, and E. The
chemical reactions that the reactor produces are:

A(g)+ C(g)+ D(g) → G(liq)

A(g)+ C(g)+ E(g) → H (liq)

A(g)+ E(g) → F(liq)

3D(g) → 2F(liq) (38)

The TEP process contains in total 53 variables. These
variables are subdivided into 12 manipulated variables and
41 measured variables. The 41 measured variables include
22 measured variables continuously and 19 measured vari-
ables in sampled. In this work, the observation vector contains
the 22 measured variables in a continuous manner and 11
manipulated variables. Table 3 presents the measured and
manipulated variables in the TEP process.

TABLE 3. Measured and manipulated variables that are monitored in
the TEP.

The observation vector comprises 33 measured and manip-
ulated variables, which can be defined as follow:

x = [XMEAS(1) . . .XMEAS(22) XMV (1) . . .XMV (11)]T

(39)

The TEP process presents several types of process faults,
such as disturbances (bias faults), random variations, valve
blockage, and unknown conditions. In this study, three types
of TEP faults are analyzed: IDV (4), IDV (6), IDV (11), and
IDV (14). These defects are indicated with their descriptions
in the Table6and may affect one or more process variables;
they have been introduced from observation 224.

A training set consists of 500 observations from the nor-
mal data that was used to build the KPCA, RKPCA [43]
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FIGURE 7. Diagram of the tennessee eastman process.

TABLE 4. Process faults for tennessee eastman process.

and RRKPCA reference models. Gaussian kernel function
was used for linearization of data and the best value of the
kernel parameter σ is selected using the Tabu-search algo-
rithm [15], [44], [41]. The value of the kernel parameter is
selected σ = 7.6 which guarantees less FAR, good GDR and
smaller computing time. The reduced number of observations
determined by the RKPCA [43] and the RRKPCA [38] meth-
ods is equal to 150 and 200 respectively.

Fig. 8 to Fig. 11 show the detection and the local-
ization results of the different selected faults. The sub-
figures in the first column (8(a), 9(a), 10(a), and 11(a))
present the evolution of the SPE index using RBC-KPCA,
RBC-RKPCA, and RBC-RRKPCA methods. As shown in
the mentioned subfigures, the faults are correctly detected
with the RBC-KPCA method, but with high false alarm rate

in case of 95% confidence limit. However, when using our
proposed method, the false alarm rate is decreased and lower
than the RBC-KPCA method. The subfigures in the second
column (8 (b), 9 (b), 10 (b), and 11 (b)) show the average
RBC values using the RBC-RRKPCAmethod, calculated for
each variable, for all the defect samples and for the directions
of the four analyzed faults.

The first faulty scenario is a step change on the cooling
water inlet temperature of the reactor IDV (4). Based on
process knowledge, it is obvious that variation in the reactor
cooling water will affect reactor temperature XMEAS (9) and
the reactor cooling water temperature XMEAS (21). In this
abnormal condition, the true root causes of the change in the
reactor cooling water inlet temperature is the reactor cooling
water flowXMV (10). Fig. 8b shows that the average value of
RBCs for the monitoring variable XMV (10), direction 32 is
the largest relative to the other variables, which means that it
is the defective variable.

The second faulty scenario is IDV (6), which presents
a sudden loss of flow in A feed. Because of this, feed A
produces various changes that affect several variables such
as A feed (stream 1), the total Feed (Stream 4), the reactor
feed rate, and the reactor pressure. From the diagnosis results
shown in Fig. 9b, we observe that the measured variable
XMEAS (1) and the monitored variable XMV (3) have a
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FIGURE 8. Fault detection and localization for Fault IDV (4).

FIGURE 9. Fault detection and localization for Fault IDV (6).

largest contribution in this faulty condition. However, the
variable XMV (3) (direction 25) has the highest contribution,
with indicate that the monitored variable (A feed flow) is in
faulty state.

In fault IDV (11) the reactor cooling water inlet temper-
ature experiences a random variation, which increases the
temperature in the reactor; the cause of this change is the
increase in cooling water flow XMV (10). As Fig. 10(b)
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FIGURE 10. Fault detection and localization for Fault IDV (11).

FIGURE 11. Fault detection and localization for Fault IDV (14).

shows, we can observe that the change in the cooling water
flow is reflected in the diagnosis results, where the variable
XMV (10) direction 32 has the highest average RBC values
among all individual variables.

The fault IDV (14) presents the blockage of the reactor
cooling water valve, this blockage influences both the reactor

temperature (direction 9) and the reactor cooling water tem-
perature (direction 21). As a result, this change causes an
increment in the cooling water flow (direction 32) to regulate
the reactor temperature. The blockage of the reactor cooling
water valve is reflected in the diagnosis results, which can
be seen in Fig. 11(b). The average RBCs for the reactor
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temperature, the reactor cooling water flow, and the reactor
cooling water temperature (directions: 9,32 and 21) are the
largest relative to the values of the other variables. However,
the average RBC value in the stored direction of IDV (14)
(direction 21) is the largest value, indicating this value as the
defective variable.

Table 5 represents the performance metric results for
a comparison with the three methods of fault diagnosis.
As shown in Table 5, our developed technique can signifi-
cantly reduce the false alarm rate, the calculation time, and
guaranties a good localization with less average convergence
time for fault location.

TABLE 5. Fault diagnostic performances for RBC-KPCA, RBC-RKPCA and
RBC-RRKPCA methods.

V. CONCLUSION
In this paper, the RRKPCA method based on RBC is devel-
oped. A remarkable case study of both the air quality mon-
itoring network and the TEP system is provided to illustrate
the method and to test its effectiveness. Results show that the
proposed method can capture the inherent properties of each
fault type and can improve the performance of RBC-KPCA.

Process-fault diagnosis is the method for guaranteeing the
safety operation of a system in which fault detection and
localization is a very important task. In other words, once
a fault occurs, it should be quickly detected and located.
However, the conventional RBC-KPCA method needs an
important time for fault detection and localization due to
the important size of the kernel matrix; therefore, it results

in a high computing time to detect faults and a high false
alarm rate. Meanwhile, the obtained results showed that the
application of the RBC-RRKPCA method makes it possible
to reduce the false alarm rate and the mean time of conver-
gence, thus ensuring the rapid detection and localization of
the defects. In other words, the proposed method can give us
a good compromise between the different performances of
fault detection and localization.

It should be noted that the proposed method cannot give
the root cause of the fault once the fault has occurred, and it
is unable to locate faults correctly in the case of fast dynamic
systems, because the RRKPCA model is static.

Future work will be oriented toward locating the faults of
dynamic nonlinear systems and integrating other methods in
order to determine the root cause of the fault.
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