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ABSTRACT The multi-energy system is a promising energy-efficient technology to supply electric and
thermal energy to end-users simultaneously, which can realize the energy cascade utilization. However, it is
challenging to optimize the operation of multi-energy systems due to their inherent structural complexity,
as well as the highly coupled nature of multiple energy flows and the uncertainty of renewable energy
generation. This paper proposed a collaborative demand-controlled operation strategy for a multi-energy
system, which consists of an upper-level model and a lower-level model. In the upper-level model,
a robust linear optimization method is adopted to optimize the system operation in a day-ahead stage. In the
lower-level model, a stochastic rolling optimization method is applied to achieve a dynamic adjustment to
cope with the fluctuation in both renewable electricity generation and electric load. The multiple energy
demand-controlled strategy is also applied in the optimal operation strategy to achieve load shifting and to
create flexibility in energy demand despite the ‘‘source-load’’ imbalance power fluctuation. A case study
is carried out and simulation results verify the effectiveness and correctness of the proposed model of the
coordinated operation framework.

INDEX TERMS Multi-energy system, robust linear optimization, indoor temperature control, demand
response, optimal operation.

I. INTRODUCTION
A multi-energy system is getting increasing attention for it
can provide an effective way to supply electric and ther-
mal energy to end-users simultaneously to realize overall
energy cascading utilization [1]–[3]. A multi-energy system
usually consists of distributed generation units such as wind
turbines (WT), photovoltaic (PV) panels, and a combined
cooling, heat and power plant. However, due to the highly
multi-energy coupling features and renewable power uncer-
tainties, the electric and thermal demand of end-users may not
be matched by the multi-energy system.Moreover, the imbal-
ance between distributed generation (DG) and load demand
can cause energy to be wasted and further lower the efficiency
of energy use. There has been a surge in the need for research
on how to optimize the operation of a multi-energy system.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ravindra Singh.

With the high penetration of renewable energy integrated
into multi-energy systems, the basic operation strategies,
i.e., following electric load and following thermal load tend to
reduce the overall performance of the system while meeting
the multiple energy balance of supply-side and demand-side.
Thus, many researchers have conducted numerous studies on
the optimal operation strategy of multi-energy systems and
many effective operation strategies are proposed to improve
the comprehensive performance of the multi-energy system.
The particle swarm optimization approach was used to opti-
mize the multi-energy flows to achieve an optimal opera-
tion strategy that can not only increase renewable energy
generation rate but also improves energy supply reliabil-
ity effectively [4], [5]. By optimizing the electric cooling
ratio, an operating parameter, through different heuristic algo-
rithms, better matching performance between the DG side
and multi-energy demand side could be achieved [6], [7].

Electric energy storage and thermal energy storage were
also used in a multi-energy system to deal with the mismatch
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between electric and thermal demands. A specific improved
following the hybrid electric–thermal load was proposed
to further improve the primary energy utilization rate [8].
Energy flow modeling in the energy hub of the micro energy
grid was proposed and a day-ahead dynamic optimal dis-
patch model was given to solve the economic dispatch prob-
lem. Multiple energy storage systems and demand response
schemes were incorporated in the optimization model,
further enabling the system to achieve lower daily operating
costs [9], [10]. Based on the fair cost allocation using Shapley
values, a cooperative scheduling framework incorporating
electric and thermal demand response programs was pro-
posed for multi-energy hubs. Characteristics of integrated
energy demand response mechanisms on the impact of flexi-
ble energy demand had been investigated to further reduce the
total operation cost [11]. Multiple energy demand response
mechanisms based on elasticity coefficients were proposed
to transfers the user load demand, without changing the total
energy consumption, thus achieving better economic, ener-
getic, and degree of matching performance in a multi-energy
system [12]. However, those above-mentioned energy dis-
patch models all neglect the uncertainties of DG power out-
puts and the multi-energy demand of end-users, which cannot
guarantee the reliable operation of the multi-energy system
in practice.

Nowadays the uncertainties in the energy supply-side
and demand-side pose a significant challenge to the stable
and reliable operation of the multi-energy system. Several
approaches can be used to address those impacts, like stochas-
tic optimization [13], [14], chance-constrained stochastic
optimization [15], [16], fuzzy optimization [17], and robust
optimization [18]. Zhang et al. [19] proposed a bi-stage
stochastic model to optimize both facility capacity allocation
and the electric cooling ratio as well to improve the integrated
performance under several uncertainties in energy supply and
demand sides. Onishi et al. [20] proposed a stochastic model
to optimize the design and operation of a trigeneration system
considering the uncertainties of multi-energy demand and the
long-term energy prices. Sedighizadeh et al. [21] proposed
a stochastic multi-objective model to obtain optimal energy
management of a multi-energy system with the integration of
plug-in hybrid electric vehicles and electric/thermal energy
storages. Zhang et al. [22] proposed a two-stage robust
optimization to coordinate the multiple energy flows in a
multi-energy microgrid under multiple uncertainties, and the
optimization model is solved by the column and constraint
generation algorithm. The optimal operation strategy of a
multi-energy microgrid in grid-connected mode and islanded
mode could be achieved to promote energy utilization and
operating robustness [23].

The traditional demand response or integrated energy
demand response is an effective approach to guide the cus-
tomers in the demand-side to consume energy rationally and
wisely, by which the end-users can participate in the pro-
cess of system optimization and control [24], [25]. Many
researchers usually coordinate the electric and thermal load

to be interruptible and curtailable loads in the multi-energy
system to improve the operating profit or net operating cost.
However, load shifting or load curtailment may hamper end-
user’s benefits. Moreover, the classification of electrical and
thermal loads into interruptible and non-interruptible loads is
very limited in practical applications.

Through the above-mentioned literature, many scholars
have researched coping with uncertainties on the energy
demand side and energy consumption side in multi-energy
systems, as well as on integrated energy demand response
programs. However, few studies have been conducted to com-
bine both of them well for the optimization of system opera-
tion at multiple time scales. Therefore, this paper proposes a
collaborative operation strategy to coordinate multiple energy
demands during day-ahead and intra-day scheduling. Differ-
ent optimization strategies are proposed to cope with differ-
ent degrees of supply-side and demand-side uncertainty in
different scheduling periods. This paper makes the following
contributions:

• A collaborative operation strategy incorporating mul-
tiple energy forms, time scales, uncertainties, and
demand response programs is proposed in this paper.
The proposed operation strategy has high engineering
practicality.

• Acollaborative operation strategy comprises a two-stage
model. The robust linear optimization is applied in
the upper model of the day-ahead scheduling and the
stochastic rolling optimization is used in the lower
model of the intra-day scheduling. Various uncertainties
handling and multiple energy demand-controlled pro-
grams are jointly combined into the proposed operation
framework.

• The management of multiple energy demand-controlled
in the day-ahead scheduling and intra-day scheduling
can effectively realize loads shifting and create flexi-
bility in thermal demand despite fluctuation in energy
supply-side and demand-side.

The rest of the paper is organized as follows: Section 2
introduces the description of a multi-energy system;
Section 3 introduces a two-stage collaborative operation
strategy and a multiple energy demand-controlled strat-
egy; Section 4 and Section 4 present the case studies and
conclusion respectively.

II. DESCRIPTION OF MULTI-ENERGY SYSTEM
A typical framework of a multi-energy system is illustrated
in Figure 1. The input ports of system are usually connected
to the main grid, natural gas, and different distributed gener-
ation units like wind turbines, gas turbines and photovoltaic
modules and etc.

The output ports of the multi-energy system can provide
electricity, cooling energy, and heating energy simultane-
ously. Depending on the price of electricity or natural gas,
the status of the device, and the weather data, the energy
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FIGURE 1. A framework of a multi-energy system.

management strategies and dispatch schemes need to bemod-
ified to better provide various energy to the end-users.

Multiple devices are required to achieve multiple energy
conversion processes, including electric chillers, absorption
chillers, heating exchangers, heat recovery systems, and ther-
mal storage. As shown in Fig. 1, the electric demand of the
end-users can be satisfied by the main grid and different
distributed generations. The cooling demand can be provided
by the electric chillers and absorption chillers. The heat-
ing demand can be provided by the gas-fired boilers, heat
recovery systems, and thermal storage.

III. A TWO-STAGE COLLABORATIVE OPERATION
STRATEGY OF A MULTI-ENERGY SYSTEM
In order to obtain an intra-day scheduling plan for a
multi-energy system under consideration of multiple uncer-
tainties, the collaborative scheduling optimization framework
proposed in this paper contains both upper- and lower-level
optimization models. The upper-level optimization model is
a robust day-ahead scheduling plan; the lower-level optimiza-
tion model is an intra-day rolling scheduling plan considering
uncertainties at shorter time scales.

A. DAY-AHEAD ROBUST LINEAR SCHEDULING
1) ELECTRIC DEMAND-CONTROLLED STRATEGY
By setting proper real-time tariffs to enable the electric
load shifting is also known as an electric demand-controlled
strategy. The price-based demand response has been widely
applied, and in this paper, a real time pricing model is devel-
oped to implement the demand response program [9]. The
response model is shown as follows:

γt = E0,t/Eav
pRTP,t = γt · pref
pmin
RTP ≤ pRTP,t ≤ p

max
RTP

(1)

EEL,t = E0,t + εE0,t
(
pRTP,t − pref

)
/pref (2)

where E0,t and Eav are the initial electricity demand at
time t and average value of electric load in a day respectively;
pmin
RTP and p

max
RTP are the lower and upper limits of the real time

pricing. ε is the elasticity coefficient and according to the
reference [16], the elasticity coefficient is set to be −0.3.

2) SCK-TYPE ROBUST LINEAR OPTIMIZATION
The typical robust linear optimization model is given as:

min cTx
s.t. Ax ≤ b

l ≤ x ≤ u
(3)

where x,u, l ∈ Rn are the decision variable vector of the
optimizationmodel and their upper and lower budgets respec-
tively; c ∈ Rn is the vector of coefficients of the objective
function of the optimization model. A ∈ Rmn, b ∈ Rm

are the constraint coefficient matrix and coefficient vector
of the model, respectively. Assume that the random variables
between any 2 inequality constraints are independent of each
other and only the coefficient matrix A contains the random
variable elements aij (aij ∈

[
aLik , a

U
ik

]
, E(aij) ∈ āij).

Introducing the robust index 0i(0i ≤ |Ji|), which denotes
the uncertainty measure of the ith inequality constraint. Ji
denotes the set of random variables in the ith row of A, and
|Ji| denotes the number of sets. The relationship between the
ai and 0i for ith row containing random variables in A can be
expressed as:

<i(0i)

=


ai|aik ∈

[
āik−βik

(
āik − aLik

)
, āik+βik

(
aUik − āik

)]
,

0 ≤ βik ≤ 1,
∑
k∈Ji

βik ≤ 0i


i = 1, 2, · · · ,m, ∀k ∈ Ji (4)

where βik denotes the weighting factor of the element aik .
By introducing new decision variables zi and pik , the typical
robust linear model with uncertain variables can be trans-
formed into an SCK-type robust linear model [26], as shown
in the following:

min cTx

s.t.
n∑
j=1

āij + 0izi +
∑
k∈Ji

pik ≤ bi, i = 1, · · · ,m

zi + pik ≥
(
āik − aLik

)
· xk , i = 1, · · · ,m, ∀k ∈ Ji

zi + pik≥−
(
aUik − āik

)
· xk , i = 1, · · · ,m, ∀k ∈ Ji

zi ≥ 0, pik ≥ 0, i = 1, · · · ,m, ∀k ∈ Ji
l ≤ x ≤ u

(5)

3) DAY-AHEAD LINEAR ROBUST SCHEDULING MODEL
a: OBJECTIVE FUNCTION

min CU

= CNG + Cgrid + CM

= pNG
∑
t∈T

FGB,t+FPGU,t
σLHV

+

∑
t∈T

cbuygrid,tP
buy
grid,tτ−c

sell
grid,tP

sell
grid,tτ

+

∑
t∈T

cGTPGT,tτ+cWTPWT,tτ+cPVPPV,tτ (6)
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where CU is the daily operation cost which includes natural
gas purchased costCNG, electric energy transaction costCgrid
and maintenance cost CM; σLHV and pNG are the low heat
value and purchase price of natural gas respectively; cGT, cWT
and cPV are the maintenance cost per unit capacity of gas
turbine, WT and PV respectively.

b: CONSTRAINTS
In the day-ahead scheduling stage, the constraints mainly
include multi-energy balance constraints, energy purchase
constraints, equipment operation constraints and price-based
demand response constraints.

Constraints on multi-energy balance are as follows:
PGT,t + PPV,t + PWT,t + Pgrid,t = PEC,t + PEL,t
QCE,t = QEC,t + QAC,t

QHRS,t + QGB,t − QTSC,t + QTSD,t

= QRC,t + QRH,t + Qwaste,t

(7)

where PGT,t , PPV,t and PWT,t are the power output of gas
turbines, PV and WT at time t respectively; Pgrid,t , PEC,t and
PEL,t are the electric power exchanging from grid, electric
power consumed by electric chillers and electric power load
at time t respectively. QCE,t is cooling load; QEC,t and QAC,t
are the cooling energy output power of electric chillers and
absorption chillers at time t respectively; QHRS,t and QGB,t
are the thermal energy recovered from the gas turbine and
provided from the gas-fired boiler at time t respectively;
QTSC,t and QTSD,t are the heat charging and discharging of
the thermal storage at time t respectively; QRC,t and QRH,t
are the total thermal energy recovered for cooling and heating
at time t respectively.
Constraints on equipment operation are as follows:

0 ≤ PGT,t ≤ uGT,tPmax
GT

−rGTPmax
GT ≤ PGT,t − PGT,t−1 ≤ rGTP

max
GT

0 ≤ PPV,t ≤ Pmax
PV

0 ≤ PWT,t ≤ Pmax
WT

0 ≤ QGB,t ≤ Qmax
GB

0 ≤ QEC,t ≤ Qmax
EC

0 ≤ QAC,t ≤ Qmax
AC

0 ≤ QHE,t ≤ Qmax
HE

(8)



QTS,t = ηTSQTS,t−1 + ηTSCQTSC,t − QTSD,t/ηTSD

αTSC,t + αTSD,t ≤ 1
0 ≤ QTSC,t ≤ αTSC,tQmax

TSC,t

0 ≤ QTSD,t ≤ αTSD,tQmax
TSD

Qmin
TS ≤ QTS,t ≤ Qmax

TS

QTS,0 = QTS,24

(9)

where Pmax
GT ,P

max
PV , Pmax

WT , Q
max
GB , Qmax

EC , Qmax
AC and Qmax

HE are
the nominal capacity of the corresponding energy equip-
ment in the multi-energy system. rGT is the ramping rate of
the gas turbine. QTS,t represents the thermal energy storage
state at time t; QTSC,t and QTSD,t are the heat charging and

discharging of the thermal storage at time t respectively;
Qmax
TS and Qmin

TS represent the minimal and maximal limits
of the thermal energy storage state; uGT,t , αTSC,t and αTSD,t
are binary operation variables of the gas turbine and thermal
energy storage.
Constraints on energy interaction are as follows:{

−Pmax
grid ≤ Pgrid,t ≤ P

max
grid

0 ≤ FNG,t ≤ Fmax
NG

(10)

where Pmax
grid and Fmax

NG are the upper limits of electricity
exchange and purchase of natural gas.
Constraints on random variables are as follows:

PWT,t = P̄WT,t + P̂WT,t

P̂LWT,t ≤ P̂WT,t ≤ P̂UWT,t

PPV,t = P̄PV,t + P̂PV,t
P̂LPV,t ≤ P̂PV,t ≤ P̂

U
PV,t

(11)

where P̄WT,t and P̄PV,t are the predicted power output of
WT and PV at time t respectively; P̂WT,t and P̂PV,t are the
fluctuating value of WT and PV power output at time t
respectively; P̂UWT,t , P̂

U
PV,t , P̂

L
WT,t and P̂LPV,t are the upper

and lower limits of the fluctuation value of the corresponding
output power.

4) LINEARIZATION TRANSFORMATION
For the inequality constraint with random variables in the
mathematical model, a robust equivalent linear transforma-
tion of (11) is conducted according to the linear optimization
theory [26]. Taking the uncertain variable as PV power gen-
eration as an example, the robust equivalent linear transfor-
mation is conducted concerning the transformation (5), and
the results are as follows:

P̄PV,t − Pmax
PV + 0zPV,t +

∑
t∈T

pPV,t ≤ 0

zPV,t + pPV,t ≥ P̂UPV,t
zPV,t + pPV,t ≥ P̂LPV,t
zPV,t ≥ 0, pPV,t ≥ 0

(12)

where zPV,t and pPV,t are the newly introduced decision vari-
ables in the robust equivalent linear transformation process.

B. INTRA-DAY ROLLING STOCHASTIC SCHEDULING
1) THERMAL DEMAND-CONTROLLED STRATEGY
By setting an appropriate indoor temperature value in the
comfort temperature range can realize the thermal demand-
controlled strategy.
In this paper, only the temperature-dependent thermal

loads are taken into consideration. To be specific, these
cooling and heating loads of the buildings are dependent on
the indoor temperature set value and outdoor temperature.
As there is a certain range of the thermal comfort temperature,
the thermal loads are flexible in a corresponding range [13].
The differential equation of heat balance of the building
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envelope can be shown as:

pHE − pCE = ρVC
dTin,t
dt
− (kwallSwall + kwinSwin)

×
(
Tout,t − Tin,t

)
− GkcSwin (13)

where pHE and pCE are the heating and cooling energy
injected into the building respectively; and these two vari-
ables cannot exist at the same time. Tout,t and Tin,t are
the outdoor and indoor temperature at time t . ρ, V and
C are the air density, air specific heat capacity and air
volume, respectively; kwall and kwin are shading coefficient
of the wall and the window of the building, respectively;
Swall and Swin are wall and window area, respectively; G is
the solar radiation.

To discretize the above equation, the cooling energy and
heating energy demand can be calculated as:

QCE,t =


(kwallSwall + kwinSwin)

(
Tout,t − Tin,t

)
+GtkcSwin

− ρVC
(
Tin,t − Tin,t−1

)/
τ Tout,t > Tmax

in

0 Tout,t ≤ Tmin
in

(14)

QHE,t =


ρVC

(
Tin,t − Tin,t−1

)/
τ − GtkcSwin

− (kwallSwall+kwinSwin)
(
Tout,t − Tin,t

)
Tout,t ≤ Tmin

in

0 Tout,t > Tmax
in

(15)

where Tmin
in and Tmax

in are the minimum and maximum indoor
temperature. The constraint of the changing rate limit of the
indoor temperature can be shown as:

rmin
in ≤ Tin,t − Tin,t−1 ≤ r

max
in (16)

2) STOCHASTIC UNCERTAINTY OF DG AND ELECTRIC LOADS
Renewable energy output and electric energy demand fore-
casts generally become more accurate as the forecast time
scale is reduced. In intraday scheduling stage, the normal
distribution is applied to model the intraday prediction errors
of PV and WT outputs and electric load.

f (ξWT) =
1

σWT
√
2π

e−(ξWT−µWT)
2/2σ 2WT

f (ξPV) =
1

σPV
√
2π

e−ξ
2
PV

/
2σ 2PV

f (ξEL) =
1

σEL
√
2π

e−ξ
2
EL

/
2σ 2EL

(17)

where ξWT, ξPV and ξEL denote the intraday power deviations
of PV outputs, WT outputs and electric load respectively;
µWT, σWT, σPV and σEL represent the corresponding distribu-
tion coefficients. Themethod of Latin Hypercube Sampling is
applied to generate the initial scenarios of PV output,WT out-
put and electric load. Moreover, the method of simultaneous
backward reduction is used to realize the process of scenarios
reduction.

3) INTRA-DAY ROLLING STOCHASTIC SCHEDULING MODEL
a: OBJECTIVE FUNCTION

min CL
= CNG + Cgrid + CM + Cpen

= pNG
Nr∑
t=tr

FGB,t + FPGU,t
σLHV

+

Nr∑
t=tr

cbuygrid,tP
buy
grid,tτ − c

sell
grid,tP

sell
grid,tτ

+

Nr∑
t=tr

cGTPGT,tτ + cWTPWT,tτ + cPVPPV,tτ

+

Nr∑
t=tr

cpen
∣∣Tin,t − Tset∣∣ (18)

where tr is the starting period of rolling optimization and Nr
is the total number of periods in a rolling cycle. Cpen is the
comfortable temperature penalty fee.

b: CONSTRAINTS
In the intraday rolling scheduling stage, considering the
strong inertia of the thermal load, all equipment give response
within 1 hour. The constraints include formula (7)-(10),
(14)-(17).

4) MODEL SOLVING
Both day-ahead and intraday optimal scheduling model are
mixed integer linear programming (MILP) problems, which
can be formulated in Matlab and solved by a commercial
solver Gorubi. The flow chart of model solving is shown
in Fig. 2.

FIGURE 2. Flow chart of model solving.

IV. CASE STUDY
A. SYSTEM DESCRIPTION
To verify the effectiveness of the proposed collabora-
tive interaction strategy, a multi-energy system is given
in Beijing, China to provide different types of energy to a
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residential zone. Table 6 (in Appendix A) shows the tech-
nical parameters of the multi-energy system and Table 7
(in Appendix A) shows the energy price of the multi-energy
system. Table 8 (in Appendix A) shows the technical param-
eters of the residential zone. Figure 5 (in Appendix B) shows
the interval predictions of PV power outputs, WT power out-
puts, electric loads and the outdoor temperature in a typical
clear-sky day in autumn.

B. RESULTS AND AYALYSIS
1) ANALYSIS OF DAY-AHEAD SCHEDULING RESULTS
The day-ahead scheduling results can be obtained by solving
the upper-level optimization model. The computation time to
solve the upper-level model using the solver Gurobi is very
short, only 2.3 seconds.

The energy supply and demand schedule results are shown
in Fig. 3 and we can clearly find that with this robust
linear optimization method in the first stage scheduling,
the multi-energy system can fully achieve the balance of
multiple energy sources while meeting the multiple energy
demands on the user side. A detailed analysis of the multiple
energy flowing is carried out, based on energy prices.

In Fig. 3(a), due to the low partial load rate of the gas
turbine and the low cost of purchasing electricity from the
grid, the electrical load of the end-users area is met by the
electricity generated by the WT together with the electric-
ity transmitted from the upper grid during the time period
22:00 to 7:00. As the cost of purchasing electricity from the
upper grid rises, the proportion of electricity generated by gas
turbines is higher than the amount of electricity purchased
from the upper grid during the 8:00 to 21:00 time period.

During this time period, the distributed generating units
also supply electricity to end users. In Fig. 3(b), during the
period from 8:00 to 18:00, absorption chillers and electric
chillers work during this time period to provide cold energy
to end users because the outdoor temperature is above the
upper limit of human comfort temperature range. In Fig. 3(c),
the heat load for room heating exists during the timeperiod
19:00 to 7:00. During the time period 19:00 to 24:00, the heat
load is mainly provided by the residual heat recovered by the
gas turbine together with the gas-fired boilers. Since the gas
turbine stops working during the 1:00-7:00 time period, the
gas-fired boiler and the thermal storage tank provide the heat
demand of the end-users at the same time.

2) ANALYSIS OF INTRA-DAY ROLLING
STOCHASTIC SCHEDULING RESULTS
The intra-day rolling scheduling results can be obtained by
solving the lower-level optimization model. The computation
time to solve the lower -level model using the commercial
solver Gurobi is also fast, taking only 4.3 seconds.

The energy supply and demand scheduling results of
the intraday rolling schedule are shown in Fig. 4 and
we can clearly find that in the second stage scheduling,
the multi-energy system can fully achieve the balance of

FIGURE 3. Results of energy supply and demand scheduling in the
day-ahead stage.

multiple energy sources while meeting the multiple energy
demands on the user side. However, there are differences in
the specific details of the day-ahead and intraday scheduling
plans, which are caused by the fact that the intra-day forecast
is more accurate than the day-ahead forecast.

Moreover, the control of flexible thermal load which can
further cope with the uncertainty of intra-day scenic power
generation while satisfying the end-user’s body temperature
comfort range, allows the system to operate under the most
economical way. In Fig. 4(b), taking into account energy
prices and indoor temperature setting value, the total cold
energy demand of end-users in the intra-day dispatch plan is
lower from 8:00 to 16:00 than the total cold energy demand in
the day-ahead dispatch plan. However, from 17:00 to 19:00,
the total amount of cold energy demanded by end-users in the
intraday scheduling plan is higher. In Fig. 4(c), the amount
of thermal energy used to heat the rooms in the intra-day
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TABLE 1. The operation cost in different scheduling stages.

FIGURE 4. Results of energy supply and demand scheduling in the
intra-day rolling stage.

scheduling plan was lower than the amount in the day-ahead
scheduling in every period, except at the moment 23:00,
in which the total thermal demand increased by 107 kWh.

Furthermore, the results of operation cost and its item
cost of the multi-energy system in two different scheduling
stage are shown in Tab. 1. It is clearly found that all costs
in the intra-day rolling optimization stage are lower than

those in the day-ahead scheduling plan. This is due to the
decreased uncertainty in the source-load imbalance power
predicted during the day. In addition, the flexible heating
and cooling loads are managed in the rolling stage, and the
entire multi-energy system is dynamically optimized without
impairing end-user temperature comfort and while satisfying
multiple energy balances.

3) MUTIPLE ENERGY DEMAND-CONTROLLED ANALYSIS
Noting that electric energy demand-controlled for flexible
electric loads in day-ahead scheduling stage and thermal
energy demand-controlled for flexible thermal loads in intra-
day rolling scheduling stage play a vital role in optimal oper-
ation of the multi-energy system. Three scenarios are carried
out to analyze the positive effects of those two strategies of
flexible electric and thermal loads. The detailed scenarios
classifications are shown in table 2.

TABLE 2. The scenarios classification.

The simulation results for the three scenarios are shown
in Tab. 3. Two indicators, primary energy consumption and
carbon emissions, are also included in these analyses. As can
be seen from Tab. 3, when the flexible electrical load and the
flexible thermal load are not controlled, the total operating
cost increases by 1.8% and 3.2%, respectively. The manage-
ment of flexible electrical and thermal loads in day-ahead
stage and intra-day stage offers strong potential for more
economical, environmental and optimal operation of the
multi-energy system. This is because in day-ahead stage,
the partial load in peak periods can be shifted by the manage-
ment of flexible electric loads. Moreover, the management
of flexible thermal loads is essentially the incorporation of
virtual energy storage technology into the intra-day rolling
stage. Consequently, a proper control of the flexible loads in
different scheduling stage can effectively relieve the energy
supply pressure and can reduce primary energy consumption
as well as reduce carbon emissions.

4) COMPARISON OF EFFECTIVENESS OF
DIFFERENT OPTIMIZATION METHODS
This section compares the effectiveness of the proposed
optimization method with the existing optimization method
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TABLE 3. The operation cost with different robustness factors.

for day-ahead economic scheduling and intra-day economic
scheduling.

In the first stage optimization model, the proposed robust
linear optimization (Method A) and other two methods: the
typical robust optimization (Method B) and the stochas-
tic optimization (Method C). When using method A and
method B, the robustness factor is set to be 1. When using
method C, 1000 scenarios were simulated by using the Latin
Hypercube Sampling method for WT and PV output and
electric load, respectively. These scenarios are then reduced
to 5 typical scenarios using the k-means clustering approach.

The comparison results are shown in Table 4. Consider-
ing the same robustness factor, the operation costs after the
optimization using Method A and Method B are very similar
and both are roughly $100 higher than the operation cost
optimized by method C. This is due to the conservative nature
of robust optimization. However, it is obvious that with the
proposed robust linear optimization model, the computation
time of the optimization process is significantly lower than
that of Method B and Method C. The results of operation
cost and the computation time verify the proposed method
has significant robustness to achieve the balance of multiple
energy sources, as well as the advantage of computational
speed in a model for the day-ahead scheduling.

TABLE 4. Comparison results in first-stage model.

In the second stage optimization model, the proposed
rolling stochastic optimization (Method D) and other two
methods: rolling optimization (Method E) and stochas-
tic optimization (Method F). When using method D and
method E, the control time window is set to 1 hour. When
using method D and method F, the optimization process uses
the same set of typical scenarios.

The comparison results are shown in Table 5.
Comparing the three methods, the proposed method in this
paper can ensure that the system has the lowest operation
cost under multiple uncertainties considering shorter time
scales in a day. It also proves that the control of flexible
electric and thermal loads can effectively improve the overall
energy efficiency and reduce operating costs. In terms of
temperature comfort rate, the proposed method can maintain
system stability without harming end-user comfort benefits.

However, the proposed approach is not as fast as Method E
and Method F in terms of computational speed, but this
computational time is affordable. The results of operation
cost, temperature comfort rate and computation time can
verify the proposed rolling stochastic optimization method
can guarantee the stable operation of the system without
impairing the indoor temperature comfort of the end-users
as well as guaranteeing the economy of the system.

TABLE 5. Comparison results in second-stage model.

V. CONCLUSION
A novel optimal operation strategy is proposed for
a multi-energy system based on the multiple energy
demand-controlled solution for flexible electric and thermal
loads in different time scales. The robust linear optimization
method is applied in the day-ahead scheduling stage and the
rolling stochastic approach is used in the intra-day scheduling
stage. Several case studies are carried out to prove the effec-
tiveness and advantages of the proposed method and several
meaningful conclusions can be drawn as follows:
• The proposed collaborative operation strategy can
achieve a coordinated operation of a multi-energy sys-
tem in both day-ahead and intra-day stages as well as
ensuring a balance between supply and demand ofmulti-
ple energy sources with the consideration of the multiple
uncertainties of wind power, solar power and electric
loads;

• The multiple energy demand-controlled solution for
flexible electric and thermal loads can realize the load
shifting in the day-ahead scheduling stage and create
flexibility in energy demand to cope with the fluctua-
tions in renewable power output and electric load in the
intra-day scheduling stage;

• With the proposed model in this paper, not only the
stable and reliable operation of the multi-energy system
can be effectively achieved, but also the three indexes
of economy, energy and environment can be improved
during the operation process. Moreover, the proposed
strategy is easy to implement and it has high engineering
practicality.
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APPENDIX A
Appendix A shows three tables of technical parameters of
multi-energy system, energy price inmulti-energy system and
technical parameters of residential zone.

TABLE 6. Technical parameters of multi-energy system.

TABLE 7. Energy price in multi-energy system.

TABLE 8. Technical parameters of residential zone.

APPENDIX B
Appendix B shows the figures of day-ahead interval
prediction profiles.

FIGURE 5. Day-ahead interval prediction profiles: (a) PV; (b) WT;
(c) electric load; (d) outdoor temperature.
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