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ABSTRACT In this paper, a robust central difference Kalman filter is proposed to address the process
uncertainty and non-Gaussian measurement noise induced by the vehicle’s severe maneuver and abnormal
measurements in MEMS-SINS/GNSS integrated navigation system. Compared with the state-of-the-art
noise distribution based robust filter, in the proposed filter, the process uncertainty and measurement
uncertainty are simultaneously suppressed based on a new constructed cost function, which is independent of
noise distribution and more insensitive to the non-Gaussian noise. To be specific, the statistical linearization
approach is first presented to derive a linear-like regression model. Then, by resorting to the innovation
orthogonal theory and Cholesky triangular decomposition, the fading factor of cost function is adaptively
and robustly determined in the process of iteration, where the filtering performance and the stability of the
algorithm under the condition of process uncertainty are extremely enhanced. Furthermore, the correntropy
using the mixture of two Gaussian functions as the kernel function is incorporated into the cost function
to prevent the non-Gaussian measurement noise. Our extensive simulation and car-mounted experiment
demonstrate that the proposed filter can achieve higher estimation accuracy and better robustness as
compared with the related state-of-the-art methods.

INDEX TERMS MEMS-SINS/GNSS integrated navigation, robust central difference Kalman filter, mixture
correntropy.

I. INTRODUCTION
MEMS-SINS/GNSS integration navigation system has been
attracting significant attentions due to its widespread
applications such as attitude determination and vehicle
location [1]–[6]. The objective of MEMS-SINS/GNSS inte-
gration navigation is to measure the position, velocity and
attitude of the carrier to satisfy the accuracy requirement.
In the past few decades, Kalman filter has been the most
widely used estimation strategy for the data fusion ofMEMS-
SINS and GNSS. One main concern of the standard Kalman
filter is that they require the linear Gaussian system and
depend heavily on exact prior knowledge of the system
noise statistic characteristics [7]. However, these assumptions
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are not possible to satisfy in practical application. On one
hand, the linear system does not really exist in real appli-
cations since the error model of the low-cost MEMS-SINS
is essentially nonlinear [8]. On the other hand, due to the
vehicle’s severe maneuver and abnormal measurements in
MEMS-SINS/GNSS integrated navigation system, the pro-
cess uncertainty and non-Gaussian measurement noises are
produced [9]–[11]. As a result, considerable estimation error
or even filter divergence may be induced in the conventional
KF-based MEMS-SINS/GNSS integration system. There-
fore, it is necessary to design an effective filter to better solve
the nonlinear and uncertainty filtering problem, which is the
main focus of our work.

A large number of adaptive and robust filtering tech-
niques have been devoted to counter the uncertain effects
of the uncertainties and non-Gaussian. The adaptive
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filtering techniques mainly include covariance match-
ing technique, multiple model adaptive estimation tech-
nique and covariance scaling technique. The heart of the
covariance-matching method is to make the residuals con-
sistent with their theoretical covariance [12]. However, it is
hard to guarantee the estimated process and measurement
noise covariance convergence to the right values. Further-
more, most covariance-matching algorithms approximate
the covariance of residual using a moving window method.
A large window size would provide reliable covariance
measurement, but it is only suitable for the slow chang-
ing system [13]. The multiple model adaptive estimation
technique handles the model uncertainty by running a bank
of Kalman filters with different stochastic model simul-
taneously [14]. However, it is unsuitable for system with
unknown dynamic since this method is under the assump-
tion that one of the stochastic models is correct [15]. The
covariance scaling technique deals with the process uncer-
tainty by applying a scale factor to the predicted covari-
ance to correct the predicted error covariance [16], [17].
However, it has been proven that the determination of the
scale factor is unstable for the application of GNSS and
MEMS-SINS integration [18]. The robust filtering tech-
niques mainly include the Huber’s M-estimation filtering
technique, the student’s t-based filtering technique and the
particle filtering technique. Huber’s M-estimation filtering
solves the robust non-Gaussian filtering problem by mini-
mizing a combined l2 and l2 norm [19], [20]. The residual
is bounded by utilizing the robust Huber objective function.
However, it is difficult to determine the true tuning factor of
the Huber cost function, which may degrade the filtering per-
formance of Huber’s M-estimation filter [20]–[22]. To cope
with the heavy-tailed non-Gaussian noise, many student’s
t-based Kalman filters have been proposed by modeling
the heavy-tailed non-Gaussian measurement noise and the
posterior probability density function(PDF) as student’s t dis-
tribution to obtain a closed form solution [23]–[26]. However,
the major disadvantage of the student’s t-based Kalman filters
is that they are derived under the assumption that the student’s
t PDFs of process and measurement noises have the same
degrees of freedom(dof) parameter, which is seldom met in
practical applications, resulting in a limited estimated accu-
racy [25]. The particle filtering deals with the non-Gaussian
filtering problem by representing the required posterior den-
sity function by a set of random samples with associated
weights [27]–[30]. However, the particle filter suffers from
substantial computational complexity in high-dimensional
problems such as MEMS-SINS/GNSS integrated navigation
system since the number of the particle increase exponentially
with the dimension of the state, which is not feasible for
real-time implementation [31].

To address the above issues, in this paper we propose a
new criterion called adaptive maximum mixture correntropy
criterion(AMMCC), and develop a AMMCC–based adap-
tive robust filtering algorithm for MEMS-SINS/GNSS inte-
grated navigation system dynamic state estimation. Note that

in [32], [33], we have provided some preliminary results of
our robust CKF to deal with both process uncertainty and
non-Gaussian noise. However, the proposed RCKF is only
suitable for the linear dynamic system. Additionally, the gen-
eralized maximum correntropy exhibits worse performance
in strong non-Gaussian environment. This paper bridges the
gap by providing the corresponding solutions. At first, the sta-
tistical linearization method is firstly used to convert the
traditional nonlinear central difference Kalman filter into
an equivalent linear-like regression form. Then, the criteria
for bounding the state estimation error caused by process
uncertainty and non-Gaussian noise is constructed. Subse-
quently, a new robust central difference Kalman filter based
on the proposed criteria is formulated. Moreover, an adaptive
strategy is proposed to automatically tune the fading factor
responding to the changeable condition. Finally, simulations
and car-mounted test are conducted to demonstrate the effec-
tiveness and robustness of the proposed method. In general,
our main contributions are summarized as follows:

1) The statistical linearization method is presented to con-
vert the traditional nonlinear central difference Kalman filter
into an equivalent linear-like regression form, allowing the
robust estimation with maximum mixture correntropy in an
efficient way.

2) A novel criterion combining the weighted least square
and maximum mixture correntropy is proposed to reveal the
effect of stochastic uncertainties and non-Gaussian noise on
the filter design.

3) Based on the innovation orthogonal theory andCholesky
triangular decomposition, an adaptive and robust expression
of the fading factor is derived in the light of the proposed
RCDKF algorithm, yielding a better filtering performance
against time-varing process noise.

The remainder of this paper is organized as follows.
Section II briefly reviews the maximum correntropy criterion
and the main structure of central difference Kalman filter.
In section III, the proposed robust central difference Kalman
filter approach is introduced in detail. In section IV, sim-
ulations and experiments for the MEMS-SINS/GNSS inte-
gration navigation system are studied to demonstrate the
effectiveness of the proposed method. Finally, conclusions
are drawn in section V.

II. PRELIMINARIES
A. MIXTURE CORRENTROPY
Correntropy is a local similarity measure between two ran-
dom variables defined in kernel space [34]–[36]. Given two
scalar random variables X and Y, their correntropy is defined
by:

V (X ,Y) = E [κ (X ,Y)] =
∫
κ (x, y) dFXY (x, y) (1)

where E [·] denotes the expectation operator, FXY (x, y)
is the joint probability density function of X and Y, κ (x, y) is
theMercer’s type positive definite kernel function. Generally,
the Gaussian kernel function is selected as the most widely
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used kernel in correntropy, which is given by:

κ (x, y) = Gσ (x − y) = exp

(
−
‖x − y‖2

2σ 2

)
(2)

where σ > 0 denotes the kernel bandwidth of correntropy.
Given N samples {xi, yi}Ni=1 of the random variables X and
Y, the correntropy between X and Y is always estimated by
using the sample estimator with N data points as follow:

V̂ (X ,Y) =
1
N

N∑
i=1

Gσ (xi − yi) (3)

The properties of correntropy and the advantages of its
associated maximum correntropy criterion can be referred
to [37]–[39]. However, it should be noted that the correntropy
is sensitive to the Gaussian kernel bandwidth, resulting in
a single kernel parameter may suffer performance degrada-
tion in the traditional maximum correntropy criterion based
Kalman filter. Hence, to further improve the robust perfor-
mance, in this paper we introduce the concept of mixture cor-
rentropy, which uses the mixture of two Gaussian functions
as the kernel function, i.e.,

M (X ,Y ) = E
[
αGσ1 (e)+ (1− α)Gσ2 (e)

]
(4)

where σ1 and σ2 are respectively the kernel bandwidths of the
Gaussian kernel functions Gσ1 (·) and Gσ2 (·), 0 ≤ α ≤ 1 is
the mixture coefficient. It should be noted that the mixture
correntropy will reduce to the correntropy with single kernel
function. In addition, it has been proven that the mixture
correntropy with a proper coefficient can outperform the
original correntropy in robust filtering.

B. CENTRAL DIFFERENCE KALMAN FILTER
The central difference Kalman filter can achieve the most
high estimation accuracy among all the sigma-point Kalman
filters by using sterling interpolation formula. Therefore,
the central difference Kalman filter is chosen as the repre-
sentation of the nonlinear filtering methods to address the
state estimation of integration navigation system in this paper.
Consider the non-linear discrete-time dynamic system with
addictive noise as follows:{

xk = f (xk−1)+ wk−1

zk = h (xk)+ vk
(5)

where k is the discrete time index, xk ∈ Rn×1 is the
n-dimensional system state at time step k, zk ∈ Rn×1 is the
m-dimensional measurement vector at discrete time k; f (·)
and h (·) are respectively the nonlinear dynamic model and
measurement model. wk−1 and vk are assumed to be process
and measurement Gaussian noise sequences with zero means
and variances Qk−1 and Rk−1, respectively.
Generally, the central difference Kalman filter mainly con-

tains the following three steps: initialization, prediction and
update.

1) INITIALIZATION

x̂0 = E [x0]

Px0 = E
[(
x0 − x̂0

) (
x0 − x̂0

)T ] (6)

2) PREDICTION
For k = 2, · · ·∞

(1) Calculate the sigma-points for time-update:

χk−1 =
[
x̂k−1, x̂k−1 + h

√
Pxk−1 , x̂k−1 − h

√
Pxk−1

]
(7)

(2) Evaluate the propagated sigma-points through the state
equation:

X∗i,k|k−1 = f
(
χ i,k−1

)
, i = 1, 2, 3 . . . 2n+ 1 (8)

(3)Determine the weights:

w(m)
i =

{(
h2 − n

)
/h2, i = 1

1/2h2, i = 2, · · · , 2n+ 1
(9)

w(c1)
i =

1
4h2

, w(c2)
i =

h2 − 1
4h4

(i = 2, · · · , 2n+ 1) (10)

where h is the scalar central difference step size. Generally,
h =
√
3 is optimally selected.

(4) Estimate the prior state and evaluate the corresponding
error covariance matrix

x̂k|k−1 =
2n+1∑
i=1

ωmi X
∗

i,k|k−1 (11)

Pk|k−1 =
n∑
i=1

[
wc1i

(
X∗i,k|k−1 − X∗i+n,k|k−1

)2
+wc2i

(
X∗i,k|k−1 + X∗i+n,k|k−1 − 2X∗0,k|k−1

)2]
+Qk−1 (12)

Update:
(1) Update the sigma-points for measurement-update:

χk|k−1=
[
x̂k|k−1, x̂k|k−1+h

√
Pxk|k−1 , x̂k|k−1 − h

√
Pxk|k−1

]
(13)

(2) Evaluate the propagated sigma-points through the mea-
surement equation

Zi,k|k−1 = h
(
χ i,k|k−1

)
(14)

(3) Estimate the priori measurement

ẑk|k−1 =
2n+1∑
i=1

ωmi Zi,k|k−1 (15)

(4) Estimate the covariancematrix, cross covariancematrix
and compute the Kalman gain

Pzz,k|k−1 =
n∑
i=1

[
wc1i

(
Z∗i,k|k−1 − Z∗i+n,k|k−1

)2
+wc2i

(
Z∗i,k|k−1 + Z∗i+n,k|k−1 − 2Z∗0,k|k−1

)2]
+Rk (16)
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Pxz,k|k−1 =
√
wc1i Pk|k−1

[
Z1:n,k|k−1 − Zn+1:2n,k|k−1

]
(17)

Kk = Pxz,k|k−1/Pzz,k|k−1 (18)

(5) Estimate the posterior state and the corresponding error
covariance matrix

x̂k|k = x̂k|k−1 +Kk
(
zk − ẑk|k−1

)
(19)

Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k (20)

III. THE PROPOSED ROBUST CENTRAL DIFFERENCE
KALMAN FILTER
In this section, the statistical linearization method is firstly
used to convert the traditional nonlinear central difference
Kalman filter into an equivalent linear-like regression form.
Then, the criteria for bounding the state estimation error
caused by process uncertainty and non-Gaussian noise is
constructed. Finally, by utilizing the criteria, the main steps
to develop the new robust central difference Kalman filter are
presented in detail.

A. DERIVATION OF THE LINEAR-LIKE REGRESSION FORM
OF THE CENTRAL DIFFERENCE KALMAN FILTER
Consider the nonlinear measurement equation in (5),
we apply a statistic linearization around x̂k|k−1 yielding:

zk = ẑk|k−1 + H̃k
(
x̂k − x̂k|k−1

)
+ ηk + vk (21)

where H̃k =
(
Pxz,k|k−1

)T P−1k|k−1 is the measurement slope
matrix, ηk is the statistical linearization error term which is
used to compensate the high order Taylor-series expansion
error. The covariance matrix of ηk is calculated as:

R̂k=E
[
ηkη

T
k

]
=Pzz,k|k−1 −

(
Pxz,k|k−1

)T P−1k|k−1Pxz,k|k−1
(22)

Then the linear regression form of (21) can be constructed
as follows:

z̃k = H̃kxk + ξk (23)

where z̃k = zk − ẑk|k−1 + H̃k x̂k|k−1, ξk = ηk + vk ,
the corresponding error covariance matrixWk is obtained as:

Wk = E
[
ξkξ

T
k

]
=

∑
k
= BkBTk (24)

where
∑

k = E
[(
ηk + vk

) (
ηk + vk

)T ]
= Rk + R̂k , Bk

can be obtained by the Cholesky decomposition of Wk . Left
multiplying both sides of (23) by B−1k , the statistical linear
regression model can be transformed to

Dk = g (xk)+ ξ k (25)

where Dk = B−1k z̃k , g (xk) = B−1k H̃kxk and εk = B−1k ξ k .

B. CRITERIA FOR PROCESS UNCERTAINTY AND
NON-GAUSSIAN NOISE
The process uncertainty and non-Gaussian noise inevitably
degrade the performance of the traditional central difference
Kalman filter significantly. In order to solve the problem,
motivated by the cost function of weighted least square
(WLS), we propose in this work to use the residual orthogonal
principle basedWLSmethod to deal with process uncertainty
and the mixture correntropy to handle the non-Gaussian mea-
surement noise, and then establish the new criteria named
AMMCC as follows:

JL (xk) =
∥∥xk − x̂k|k−1

∥∥2
(λkpk|k−1)

−1 +

m∑
i=1

ρMIX−CC
(
ek,i
)
(26)

where ‖x‖2A = xTAx is the quadratic form with
respect to A. x̂k|k−1 denotes the prediction of state
xk at time step k , and Pk|k−1 denote the correspond-
ing error covariance. λk is the fading factor, which is
used to strengthen the robustness of the proposed fil-
ter against the process uncertainty. ρMIX−CC

(
ek,i
)
=(

1− α
exp

(
−e2k,i/2σ

2
1

)
√
2πσ1

− (1− α)
exp

(
−e2k,i/2σ

2
2

)
√
2πσ2

)
, ek,i =

Dk,i − g
(
xk,i

)
, ek,i is the i-th element of ek , and m is the

dimension of Dk .
Then, under the new cost function defined above, the linear

regress problem in (25) can be solved robustly by minimizing
the following function:

x̂k = argmin
xk

(∥∥xk − x̂k|k−1
∥∥2
(λkpk|k−1)

−1

+

m∑
i=1

ρMIX−CC
(
ek,i
))

(27)

C. ROBUST CENTRAL DIFFERENCE KALMAN FILTER
In order to suppress the adverse effects of process uncer-
tainty and non-Gaussian noise, in this part, a robust central
difference Kalman filter (RCDKF) is designed based on the
aforementioned criterion.

The optimal solution of (27) can be found by differencing
the cost function with respected to xk as:(
λkPk|k−1

)−1 (xk − x̂k|k−1
)

−

m∑
i=1

(
αψ1

(
ek,i
) ∂ek,i
∂xk
+ (1− α)ψ2

(
ek,i
) ∂ek,i
∂xk

)
= 0

(28)

where ψ1
(
ek,i
)
= −

Gσ1(ek,i)·ek,i
σ 21

, ψ2
(
ek,i
)
= −

Gσ2(ek,i)·ek,i
σ 22

,

thus we can simplify equation (28) as follows:(
λkPk|k−1

)−1 (xk − x̂k|k−1
)

+

m∑
i=1

(
α
Gσ1

(
ek,i
)

σ 2
1

+ (1− α)
Gσ2

(
ek,i
)

σ 2
2

)
ek,i∂ek,i
∂xk

= 0

(29)
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Defining the functionCk,i = α
Gσ1(ek,i)

σ 21
+ (1− α)

Gσ2(ek,i)
σ 22

and dialog matrix Ck = diag
[
Ck,i

]
i = 1, · · · ,m, we can

rewrite equation (29) as follows:(
λkPk|k−1

)−1 (xk − x̂k|k−1
)
+ Ckek

∂ek
∂xk
= 0 (30)

Substituting ek = Dk − g (xk) = B−1k
(
z̃k − H̃kxk

)
into (30), it can be obtained as follows:(
λkPk|k−1

)−1 (xk − x̂k|k−1
)

−HT
k B
−T
k CkB−1k

(
z̃k − H̃kxk

)
= 0 (31)

Let P̄k|k−1 = λkPk|k−1, R̄k = BkC−1k BTk and x̂k|k = xk ,
we have:

P̄−1k|k−1
(
x̂k|k − x̂k|k−1

)
= HT

k R̄
−1
k

(
z̃k − H̃k x̂k|k

)
(32)

Equation (32) can be organized as follows:(
P̄−1k|k−1 + H̃T

k R̄
−1
k H̃k

)
x̂k|k

= P̄−1k|k−1x̂k|k−1 + H̃T
k R̄
−1
k zk

−H̃T
k R̄
−1
k H̃k x̂k|k−1 + H̃T

k R̄
−1
k H̃k x̂k|k−1 (33)(

P̄−1k|k−1 + H̃T
k R̄
−1
k H̃k

)
x̂k|k

=

(
P̄−1k|k−1 + H̃T

k R̄
−1
k H̃k

)
x̂k|k−1

+H̃T
k R̄
−1
k

(
z̃k − H̃k x̂k|k−1

)
(34)

Left multiplying both sides of (34) by(
P̄−1k|k−1 + H̃T

k R̄
−1
k H̃k

)−1
, it can be obtained as follows:

x̂k|k = x̂k|k−1 +Kk

(
z̃k − H̃k x̂k|k−1

)
= x̂k|k−1 +Kk

(
zk − z̃k|k−1

)
(35)

Kk =

(
P̄−1k|k−1 + H̃T

k R̄
−1
k H̃k

)−1
H̃T
k R̄
−1
k (36)

Meanwhile, the corresponding posterior covariance matrix
can be updated by:

P̄k|k =
(
I−KkH̃k

)
P̄k|k−1

(
I−KkH̃k

)T
+Kk R̄kKT

k

=

(
I−KkH̃k

)
P̄k|k−1 (37)

Remark 1: It should be noted that the proposed RCDKF
has a similar structure as that of the traditional Kalman filter.
In the proposed RCDKF, we use the weighted least square
and robust statistical linearization regression basedmaximum
mixture correntropy to obtain the prior and posterior esti-
mates of the state and covariance matrix. Taking advantage
of AMMCC, the proposed RCDKF can extensively increase
the robustness to the process uncertainty and non-Gaussian
noise at a lower computation cost with acceptable estimation
performance as compared with the existing noise distribution
based robust filtering algorithms.

D. PARAMETER DETERMINATION OF THE
PROPOSED RCDKF
For practical integration navigation system, the process
covariance matrix is heavily depending on the actual oper-
ating conditions of the system and changing from time to
time. Therefore, in order to further enhance the robustness of
the proposed method and accommodate the changeable noise
environment, the fading factor λk for the one-step prediction
error covariance matrix should be estimated dynamically at
each time instant.

As we all know, the residual sequence should remain
orthogonal at different times for the proposed RCDKF.
Thereby, the fading factor λk can be determined by solving
the following optimization problem:

E
([
xk − x̂k

] [
xk − x̂k

]T)
= min (38)

E
(
εkε

T
k+j

)
= min j = 1, 2..... (39)

The sufficient condition of E
[
εk+jε

T
k

]
= 0 is as follows:

P̄k|k−1H̃T
k −KkVk ≡ 0 (40)

where Vk =

(
z̃k − H̃kxk|k−1

) (
z̃k − H̃kxk|k−1

)T
denotes

the residual error sequence covariance matrix. Substitut-
ing (36) into (40), it can be obtained as follows:

P̄k|k−1H̃T
k − P̄k|k−1H̃T

k

(
H̃k P̄k|k−1H̃T

k + Rk

)−1
Vk ≡ 0

(41)

The sufficient condition for the establishment of (41) is as
follows:

H̃k P̄k|k−1H̃T
k = Vk − Rk (42)

Substituting P̄k|k−1 = λkPk|k−1 into (42), it can be
obtained as follows:

H̃k
(
λkPk|k−1

)
H̃T
k = Vk − Rk (43)

Substituting (12) into (43), it can be organized as follows:

H̃k (λkPk−1) H̃T
k = Vk − Rk − H̃kQk−1H̃T

k (44)

where

Pk−1 =
n∑
i=1

[
wc1i

(
X∗i,k|k−1 − X∗i+n,k|k−1

)2
+wc2i

(
X∗i,k|k−1 + X∗i+n,k|k−1 − 2X∗0,k|k−1

)2]
.

In order to make different date channel have different
fading rate, the multiple fading factor is used to change the
working way of single fading factor matrix, thus the equa-
tion (44) can be rewritten as follows:

H̃k

(
1kPk−11T

k

)
H̃T
k = Vk − Rk − H̃kQk−1H̃T

k (45)

where 1k is obtained by the Cholesky decomposition as
follows:

λk = 1k1
T
k (46)
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where 1k = diag
{√

λ1k ,

√
λ2k , · · ·

√
λnk

}
σk , σk =

diag {σ11, σ22, · · · σnn} is a constant coefficients aiming at
each state variable predetermined by priori information.

Calculating the trace on both sides of (45), we can obtain

tr
[
H̃k

(
1kPk−11T

k

)
H̃T
k

]
= tr

[
Vk − Rk − H̃kQk−1H̃T

k

]
(47)

According to the property of matrix trace tr [M1M2] =
tr [M2M1], equation (47) can be organized as follows:

tr
[(
1kPk−11T

k

)
H̃T
k H̃k

]
= tr

[
Vk − Rk − H̃kQk−1H̃T

k

]
(48)

Considering that the fading factor should be greater than 1,
thus the multiple fading factor can be obtained as follows:

1k = max

(
1,

√
tr (Nk)
tr (Mk)

σk

)
(49)

Nk = Vk − Rk − H̃kQk−1H̃T
k (50)

Mk =

(
σkPk−1σ Tk

)
H̃T
k H̃k (51)

Remark 2: Based on the innovation orthogonal theory,
a novel adaptive fading factor is designed. As compared
with the existing fading factor, the main advantage is that
the Cholesky triangular decomposition is used to avoid the
destruction of symmetry and divergence introduced by λk .
By employing the proposed fading factor, the covariance
matrices of process noise can be adjust dynamically with the
actual working conditions of the integrated navigation sys-
tem, which further enhance the robustness and stability of the
proposed method, and a much better estimation performance
can be achieved.

E. SUMMARY OF THE PROPOSED ALGORITHM
The implementation pseudocode for the proposed RCDKF
algorithm is presented as Alogrithm 1. The implementation
procedure of the proposed RCDKF is displayed in Figure 1.

IV. PERFORMANCE EVALUATION AND ANALYSIS
In order to evaluate the performance of the proposed
RCDKF, this section will provide the quantitative perfor-
mance in detail by simulations and car-mounted field tests for
MEMS-SINS/GNSS integrated navigation.

A. FILTERING MODEL OF MEMS-SINS/GNSS
The SINS body frame is denoted by b-frame (Front-Up-
Right), the local level navigation frame is denoted by n-frame
(North-Up-East), the earth frame is denoted by e-frame, and
the inertial frame is denoted by i-frame. The state vector for
the low-cost tightly coupled MEMS-SINS/GNSS is selected
as:

x =
[
φn δvn δpn bg bf δ bg δbf δbr δdr

]T (52)

where ψn, δvn, δpn are respectively the attitude error,
velocity error and position error expressed in the n-frame.

Algorithm 1 One Time Step of the Proposed RCDKF

Initialization: x̂0|0, P̄0|0, σ1, σ2
Time Update:
1. Compute the predicted state vector x̂k|k−1 and the corre-
sponding error covariance matrix Pk|k−1 using (7) - (12);
2. CalculateBk by applying Cholesky decompositionRk =

BkBTk ;
3. Calculate ek,i using ek,i = Dk,i − g

(
xk,i

)
, where

Dk = B−1k z̃k , g (xk) = B−1k H̃kxk ;
4. Calculate Ck using Ck = diag

[
Ck,i

]
i = 1, · · · ,m,

where
Ck,i = α

Gσ1(ek,i)
σ 21

+ (1− α)
Gσ2(ek,i)

σ 22

5. Calculate R̄k using R̄k = BkC−1k BTk ;
6. Calculate the multiple fading factor1k using (49)-(51);
7. P̄k|k−1 = 1kPk|k−11T

k
Measurement Update:

8. Kk =
P̄k|k−1H̃T

k

R̄k+H̃k P̄k|k−1H̃T
k

x̂k|k = x̂k|k−1 +Kk

(
z̃k − H̃k x̂k|k−1

)
P̄k|k =

(
I−KkH̃k

)
P̄k|k−1

(
I−KkH̃k

)T
+Kk R̄kKT

k

=

(
I−KkH̃k

)
P̄k|k−1

Output: x̂k|k , P̄k|k

FIGURE 1. The implementation procedure of RCDKF.

bg and bf represent the static biases of tri-axis gyroscope and
accelerometer resolving in the b-frame, respectively. δbg and
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δbf are respectively the dynamic biases of tri-axis gyroscope
and accelerometer expressed in the b-frame. The nonlinear
system error equation of SINS can be formulated as:

ϕ̇n = Cw

[(
I− Cp

n
)
wnin + δw

n
in − Cp

bδw
b
ib

]
δv̇n =

(
I− Cn

p

)
Cp
bf
b
ib + Cp

bδf
b
ib + δv

n

×
(
2wnie + w

n
en
)
+ vn ×

(
2δwnie + δw

n
en
)

δλ̇ =
δVE

RN + h
secL + δL

VE secL
RN + h

tanL

δL̇ =
δVN

RN + h
δḣ = δVU
ḃg = 0
ḃf = 0

δḃg = −
1
τg
δbg + ηg

δḃf = −
1
τf
δbf + ηf

(53)

where Cw denotes the transformation matrix from angle
rate to Euler angle, Cp

n the attitude rotation matrix from
n-frame(ideal navigation frame) to p-frame(actual navigation
frame), Cp

b the attitude rotation matrix from the body frame
to actual navigation frame,wbib the angle rate measured by the
gyroscopes in the body frame, f bib the specific force measured
by the accelerometer in the body frame, wcba the rotation
velocity of a-frame with respected to b-frame expressed in c-
frame. VE ,VN ,VU are respectively the velocity component
in east, north and up direction. L, λ, h denote the latitude,
longitude, and height above the earth surface, respectively.
RN is the normal radius. τg and τf are respectively the corre-
lation time of 1st-order Markovian process for gyroscope and
accelerometer. ηg and ηf are the zero-mean Gaussian white
noise process.

It should be noted that the bias of the GNSS receiver clock
δbr and its drift δdr has been modeled and included as state
in (52) for theMEMS-SINS/GNSS tightly coupled integrated
navigation. They are modeled by random walk as follows:{

δḃr = δdr + wbr

δḋr = wdr
(54)

where wbr and wdr are respectively the white noise for the
clock bias and clock drift. The corresponding nonlinear mea-
surement equation of MEMS-SINS/GNSS tightly coupled
integrated can be refer to [40] as follows.

zt =
[
δzρ
δzρ̇

]
=

[
ρSINS − ρGNSS
ρ̇SINS − ρ̇GNSS

]
= h (xk)+ ωk−1

where ρSINS and ρGNSS are respectively the pseudo-range
measurement obtained from SINS and GNSS, ρ̇SINS and
ρ̇GNSS are respectively the pseudo-range rate obtained from
SINS and GNSS. h (xk) can be calculated according to [40].

FIGURE 2. True trajectory of the vehicle.

TABLE 1. Description of vehicle motion.

B. SIMULATION RESULT
In order to verify the performance of the proposed RCDKF,
the simulation and analysis with different methods are pre-
sented based on the tightly coupledMEMS-SINS/GNSS inte-
grated navigation with process uncertainty and non-Gaussian
measurement noise. The process model and measurement
of tightly coupled MEMS-SINS/GNSS are formulated as
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FIGURE 3. True and estimated trajectories of the vehicle.

follows:

xk = f (xk−1)+ vk−1
zk = h (xk)+ ωk−1

where f (·) and h (·) are respectively the nonlinear dynamic
model function and measurement function. In the tightly
coupled MEMS-SINS/GNSS, f (·) can be obtained from
equation (53)-(54) and the observation vector is obtained
according to [40]. vk−1 and ωk−1 are respectively the zero
mean non-Gaussian process and measurement noise, and the
process uncertainty and non-Gaussian measurement noise are
generated according to [23]:

vk ∼

{
N (0,Qk) , w.p. 0.8
N (0, 100Qk) , w.p. 0.2

(55)

wk ∼

{
N (0,Rk) , w.p. 0.8
N (0, 100Rk) , w.p. 0.2

(56)

where N (µ,6) denotes the Gaussian distribution with mean
µ and covariance matrix 6, Qk and Rk are the nominal
covariance matrixes from the Gaussian distribution, Equa-
tion (55) and (56) imply that vk and wk are most frequently
drawn from a Gaussian distribution with nominal covariance
matrix Qk and Rk , and twenty percent of process and mea-
surement noise are generated from the Gaussian distribution
with severely increased covariance.

FIGURE 4. Estimated velocity RMSEs of different filters.

In our simulation, the vehicle has done a series of maneu-
vers according to Table 1. The total simulation time is 488.6s.
The true trajectory of the vehicle is shown in Figure 2.

The update frequency of GNSS and MEMS-SINS are
respectively 10Hz and 1KHz. The constant drift of gyro-
scope and accelerometer are respectively 12deg/h and 10mg.
The random drift of gyroscope and accelerometer are
respectively 0.3deg/sqrt(h) and 0.3m/s2/sqrt(Hz). The ini-
tial position is PosN0 =

[
38.014◦ 836m 112.445◦

]T ,
initial velocity is VelN0 =

[
25m/s 0 0

]T and initial
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FIGURE 5. Estimated position RMSEs of different filters.

attitude is q0 = [ 1 0 0 0 ]T . The constant drift of
gyroscope and accelerometer are respectively set as
εb =

[
12◦/h 12◦/h 12◦/h

]T , ∇b = [ 10mg 10mg 10mg
]T .

In this simulation, the initial state vector and the asso-
ciated covariance are set as x̂0|0 = 023×1 and P0|0 =

diag([0.005rad, 0.015rad, 0.005rad, 0.1m/s, 0.1m/s, 0.1m/s,
1m,3m,1m, 0.2deg/s, 0.2deg/s, 0.2deg/s, 16mg, 16mg,
16mg, 0.0018deg/s, 0.0018deg/s, 0.0018deg/s, 0.1mg, 0.1mg,
0.1mg, 10m, 0.1m/s])2, respectively. The initial value of
the nominal process noise covariance matrix and mea-
surement noise covariance matrix are respectively set as

FIGURE 6. Estimated attitude RMSEs of different filters.

Qk = diag ([0.3deg/sqrt(h), 0.3deg/sqrt(h), 0.3deg/sqrt(h),
0.3m/s2/sqrt(Hz), 0.3m/s2/sqrt(Hz), 0.3m/s2/sqrt(Hz),
0.3deg/sqrt(h), 0.3deg/sqrt(h), 0.3deg/sqrt(h), 0.3m/s2/
sqrt(Hz), 0.3 m/s2/sqrt(Hz), 0.3m/s2/sqrt(Hz)], 1m/s, 1m/s2)2

and Rk = [IM×M∗(2.5m)20M×M; 0M×MIM×M ∗(1m/s2)2](M
is the number of visible satellite). To validate the supe-
riority of our proposed RCDKF, the performance of the
following methods is compared, including the existing cen-
tral difference Kalman fitler (CDKF)[41], fading central
difference Kalman filter(FCDKF), Huber’s M-estimation
filter(HMF) [20], robust Student’s t based nonlinear filter
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FIGURE 7. ARMSEs of the three-dimension velocity and position.

FIGURE 8. The car-mounted experimental platform used in this
experiment.

(RSTNF) [24] and Gaussian sum filter(GSF) [42]. In the
HMF, the turning parameter is set as: γ = 1.5,N = 10.
In the RSTNF, the dof parameter, turning parameter and the
iteration number are chosen as: v = 5, τ = 5 and N = 10.
The filtering algorithms are all coded with MATLAB and
the simulations are run on a computer with intel core
i5-3320 CPU at 2.60GHz, 4Gb memory.

To compare the filtering performance of the proposed
methods and existing methods, the RMSEs and the aver-
aged RMSEs (ARMSE) of attitude, velocity and position
with respect to time for the MEMS-SINS/GNSS integrated
navigation system are chosen as performance metrics in this

FIGURE 9. The test trajectory in the car-mounted experiment.

simulation, which are respectively formulated as

RMSE =

√√√√ 1
M

M∑
s=1

(
xsk − x̂

s
k

)2 (57)

ARMSE =

√√√√ 1
MT

T∑
k=1

M∑
s=1

(
xsk − x̂

s
k

)2 (58)

where xsk and x̂sk denote the true and the estimated value of
attitude, velocity and position at time k of the sthMonte Carlo
run, respectively. M denotes the number of Monte Carlo run.
T represents the total simulation samples.

In the tightly-couple MEMS-SINS/GNSS integrated nav-
igation, the true and estimated trajectories of the vehicle
obtained from the five algorithms in a single step run are
shown in Figure 3. The RMSEs of velocity, position and atti-
tude obtained from the five existing filters and the proposed
filter are shown in Figure 4-6. It is clear from Figure 3 that the
trajectory computed by the proposed robust central difference
Kalman filter is more consistent with the real trajectory com-
pared with the other five algorithms. It can be also seen that
that the proposed filter has smaller RMSEs of velocity and
position than the existing CDKF, FCDKF, HMF, RSTNF and
GSF, which indicates that the proposed method has a higher
navigation position accuracy under the condition of process
uncertainty and non-Gaussian. Meanwhile, the implementa-
tion time of the CDKF, FCDKF, HMF, RSTNF, GSF and
the proposed filter for a single step run are respectively
0.432ms, 0.456ms, 0.439ms, 0.468ms, 0.735 and 0.452ms,
which proves that the proposed method under the tradi-
tional Kalman filter framework has a better computational
efficiency. Therefore, taking both the estimation accuracy
and computational efficiency into account, we can conclude
that the proposed RCDKF can achieve better performance
with the compromised computational cost when compared
with the existing state-of-art methods.

The mixture coefficient of mix-correntropy may affect the
performance of our proposed RCDKF, so the simulations
with different mixture coefficient were conducted. The mix-
ture coefficient varies from 0 to 0.5, and the interval of
the increased step is 0.1. The corresponding ARMSE of the
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FIGURE 10. The raw output of IMU.

FIGURE 11. The velocity output of GNSS.

three-dimension velocity, position and attitude are respec-
tively displayed in Figure 7. From the figures, we can see
that a good performance can be achieved when the mixture
coefficient is selected as α = 0.3.

C. CAR-MOUNTED FIELD TEST FOR TIGHTLY COUPLED
MEMS-SINS/GNSS INTEGRATION NAVIGATION
1) EXPERIMENT SETUP AND DESCRIPTION
To verify the effectiveness of the proposed RCDKF,
a car-mounted field test using our self-made miniature

FIGURE 12. The practical and reference measurement of Y-axis
accelerometer in the experiment.

FIGURE 13. The distribution of north velocity error.

MEMS-SINS/GNSS integration navigation system was con-
ducted. In the experimental test, a high precision car-mounted
experimental platform consisting of a LCI-1 tactical grade
IMU (inertial measurement unite), a Propak satellite receiver,
and two GPS antennas is constructed as shown in Figure 8.
The benchmark of attitude, velocity and position for our
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FIGURE 14. Velocity error and position error from different filters.

self-madeMEMS-SINS/GNSS integration navigation system
is provided by the car-mounted experimental platform. For
the car-mounted experimental platform, the attitude accuracy
is 0.01◦, the velocity accuracy is 0.05m/s and the position
accuracy is 0.1m. The sensors specification of our self-made
MEMS-SINS/GNSS integration navigation system is listed
in Table 2. The experiment lasted for a period of approxi-
mately 500s. The test trajectory is shown in Figure 9. In the
experimental test, the car moves along a dump road and
the GPS always works abnormally due to the occlusion of
trees and buildings. The raw output of IMU and velocity
output of GNSS are respectively displayed in Figure 10 and
Figure 11. The practical and reference measurement of Y-axis
accelerometer and the distribution of north velocity error
in the experiment are respectively shown in Figure 12 and
Figure 13. It can be clearly seen from Figure 12-13 that the
process noise exist notable uncertainty and the measurement
noise has heavy-tails, which cannot satisfy the Gaussian
distribution. Therefore, we use the car-mounted experiment
under this condition to verify the performance of the proposed
filter against process uncertainty and non-Gaussian measure-
ment noise.

TABLE 2. Sensors specifications of our self-made MEMS-SINS/GNSS
integration navigation system.

2) PERFORMANCE COMPARISON WITH DIFFERENT ROBUST
FILTERING ALGORITHMS
In this section, the proposed RCDKF is compared with the
central difference Kalman fitler (CDKF)[41], fading cen-
tral difference Kalman filter(FCDKF), Huber’s M-estimation
filter(HMF) [20], robust Student’s t based nonlinear fil-
ter (RSTNF) [24] and Gaussian sum filter(GSF)[42] in the
car-mounted experiment to evaluate the overall performance
for MEMS-SINS/GNSS integration navigation system. The
parameter configuration of the proposed filter and existing
filters are set as follows: In the HMF, the turning parameter
is set as: γ = 1.5,N = 10. In the RSTNF, the dof parameter,
turning parameter and the iteration number are chosen as:
v = 0.2, τ = 5 and N = 5. In our proposed robust central
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FIGURE 15. Attitude error from different filters.

difference Kalman filter, the mixture coefficient and kernel
size are respectively set as: α = 0.3, σ1 = 10 and σ2 = 10.
The other parameters are the same as those in the simulation
part.

The velocity, position and attitude error results obtained
from the different algorithms are shown in Figure 14-15,
and the corresponding RMSEs are listed in Table 3. We can
clearly see that the performance of the existing five robust fil-
ters is superior to their non-robust counterpart (CDKF).This
is because that the fusion algorithm based on traditional

TABLE 3. RMSEs of velocity and position from different algorithms.

Gaussian filtering are not suitable for the nonlinear system
with uncertain noise. It is notable that HMF outperforms
CDKF, which indicates that Huber’s M-estimation is effec-
tive for the non-Gaussian measurement noise. Meanwhile,
the FCDKF with the multiple-channel adaptive fading factor
exist smaller velocity and position RMSE than CDKF but
large velocity and position RMSE than the proposed RCDKF,
which demonstrates that the proposed RCDKF with only
the fading factor can effectively deal with the time-varing
process noise. In contrast, the GSF and RSTNF using the
multiple-model and student’s t method can better suppress
both of the process uncertainty and non-Gaussian measure-
ment noise, and can achieve better performance than HMF
and FCDKF. We can also see that our proposed RCDKF
is superior to GSF and RSTNF, which coincides with the
fact that our proposed adaptive mixture correntropy tech-
nology is more effective than the multiple-model filtering
and student’s t-based Kalman filtering technology. Therefore,
the experimental results indicate that the proposed robust
central difference Kalman filter can simultaneously handle
the process uncertainty and non-Gaussian measurement noise
and achieve better performance than the existing robust fil-
ters under the condition of vehicle’s severe maneuver and
abnormal measurements in MEMS-SINS/GNSS integrated
navigation system.

V. CONCLUSION
In this paper, a new robust central difference Kalman filter
for the MEMS-SINS/GNSS integration navigation system is
proposed, which exhibit strong robustness against the process
uncertainty and measurement noise induced by the vehicle’s
severe maneuver and abnormal measurements of the velocity
and position from GNSS. In the proposed robust central
difference Kalman filter, the statistical linearization method
is firstly used to convert the traditional nonlinear central dif-
ference Kalman filter into an equivalent linear-like regression
form. Then, the criteria for bounding the state estimation
error caused by process uncertainty and non-Gaussian noise
is constructed. Subsequently, a new robust central difference
Kalman filter based on the proposed criteria is formulated.
Moreover, an adaptive strategy is proposed to automatically
tune the fading factor responding to the changeable condition.
Simulations and car-mounted experiments indicate that the
proposed new robust central difference Kalman filter can
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achieve high estimation accuracy and better robustness than
the existing state-of-art methods against the process uncer-
tainty and non-Gaussian measurement noise.
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