
Received April 19, 2021, accepted May 18, 2021, date of publication May 26, 2021, date of current version June 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3083936

Extended Spectra-Based Grid Map Merging With
Unilateral Observations for Multi-Robot SLAM
HEONCHEOL LEE 1, (Member, IEEE), AND SEUNGHWAN LEE2, (Member, IEEE)
1Department of IT Convergence Engineering, School of Electronic Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
2School of Electronic Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea

Corresponding author: Heoncheol Lee (hclee@kumoh.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grant through the Korea Government (MSIT ) under
Grant 2019R1G1A1100597, and in part by the Theater Defense Research Center through Defense Acquisition Program Administration
under Grant UD200043CD.

ABSTRACT This paper deals with the problem of grid map merging in multi-robot SLAM (simultane-
ous positioning and mapping) where the initial relative pose between robots is unknown. When robots
encounter each other, it is easy to obtain a map transformation between robots for grid map merging if
bilateral observation measurements are available between robots. However, since the bilateral observation
measurements are obtained by encounters between robots, theymay limit the availability of usingmulti-robot
systems. To overcome the limitation, spectra-based map merging can be applied without any observation
measurements between robots. However, it requires sufficient overlapping areas between indivisual maps of
robots, which can also limit the availability of usingmulti-robot systems. In this paper, therefore, to overcome
both limitations, an extension of spectra-based map merging using not bilateral but unilateral observation
measurements. The proposed method was tested with datasets obtained from real experiments with mobile
robots equipped with a sensor fusion system which can obtain unilateral observation measurements to other
robots. Experimental results showed that the proposed map merging method works successfully without any
bilateral observation measurements.

INDEX TERMS Spectra-based map merging, unilateral observations, multi-robot systems.

I. INTRODUCTION
Multi-robot systems (MRS) have gained a great popularity
where they can simultaneously perform two or more tasks
in a shorter time than a single robot system. One of the
important considerations to implement the MRS is to provide
accurate information on the surrounding environment such as
a collective feature map and a collective grid map. Generally
a collective grid map can provide the shapes and positions
of structures and obstacles well. If the collective grid map
is not given, each robot firstly needs to create a grid map
of its surrounding environments [1] before it conducts its
own mission. Then, a collective grid maps can be obtained
by accurately merging the individual grid maps. From the
merged grid map, robots can share the information about
areas the robot has not navigated, and thus efficient path
planning can be utilized in subsequent missions.

A. GRID MAP MERGING
The map merging problem can be easily solved if the relative
position and orientation between robots are given from a
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global positioning system (GPS) or a motion capture system
at the start or during operation. However, if they are not given,
robots have to find a map transformation between them to
build a collective map. If relative initial poses are known,
the map transformation can be easily obtained since the robot
poses can be represented in a common coordinate system at
the start. However, even if they are unknown, a collective map
should be obtained by map merging methods which can be
divided into direct map merging methods and indirect map
merging methods. Direct map merging methods is to find a
map transformation by using observation measurements from
an internal onboard sensor system or an external structural
sensor system. Indirect map merging methods is to find a
map transformation by autonomously finding and matching
the overlapping areas between individual grid maps.

B. RELATED WORKS
The direct map merging method utilizes bilateral observa-
tion measurements and common visual objects. In bilat-
eral observation-based map merging methods [2], [8], map
merging is conducted by observing the relative distances
and angles between the robots at a predetermined point
(rendezvous) or by accident. However, predetermined or
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FIGURE 1. The overall structure of the proposed method. Unilateral observation measurements are used to augment grid maps and
reduce the search space of the components of a map transformation matrix (MTM) for map merging. Then, the spectra-based map
merging algorithm is conducted to estimate the MTM within the reduced search space. Finally, the more accurate MTM is obtained by
the sampling-based optimization method within the more reduced search space with a margin vector caused by inevitable structural
errors in the sensor fusion system.

accidental encounter conditions reduce the efficiency of
the operation of the multi-robot system. In addition, since
the accuracy of map merging depends on direct bilateral
observation measurements, highly accurate sensors and data
processing techniques are required, which increases the
cost of configuring the multi-robot systems. In common
object-based map merging methods [3], [9], map merging is
conducted by recognizing common objects that are known
to each other between robots and their relative locations and
directions. However, since they need to predetermine the
number, type and location of common objects, they are not
practical in unknown environments.

The indirect map merging method utilizes an algo-
rithm that matches the visual descriptors, geometric struc-
tures and mathematical features of individual maps. In the
descriptor-based map merging methods [1], [10], [11], map
merging is conducted by recognizing common objects that
are known to each other between robots and their rela-
tive locations and directions. However, since it requires to
extract the visual descriptor relatively high computational
cost, it may burden real-time performance. Although several
works have used visual features online, they still have the
potential to become a bottleneck for real-time performance.
In scan matching-based map merging methods [12], [13],
map merging is conducted by finding and matching the
overlapping areas using scan matching algorithms. However,
since a sufficient amount of overlapping area is required,
the efficiency of operation of a multi-robot system may
be deteriorated. In the overlap-based map merging meth-
ods [5], [14], [17], map merging is conducted by finding
and matching the overlapping areas using additional fea-

tures extracted by mathematical transform methods such as
Hough transformation [15] and Radon transformation [16].
TSD (truncated signed distances) grid-based map merging
algorithm [17] has been developed to perform multi-agent
TSD-SLAM. Their algorithm was tested in real rescue sys-
tems with smart helmets equipped with IMU (inertial mea-
surement unit) and LIDAR (light detection and ranging)
sensors. These indirect map merging techniques have used
to overcome the practical constraint such as unknown or
partially-known initial poses among robots. However, they
generally have an inevitable problem, which is that there is
a local minimum value in the search space in the matching
algorithm.

C. OVERVIEW
Through the related works and our previous works [5], [6],
we have learned that it is difficult to find an accurate MTM
by solely using indirect map merging methods due to the
inevitable problem of local minima. On the contrary, we have
also learned that it is difficult to find an accurate MTM
without indirect map merging methods due to the inevitable
sensor errors and too large search spaces [4], [7]. Therefore,
in this work, we have focused a combinational approach to
use not only an indirect map merging method but also a direct
map merging method to take their advantages. The core idea
of this paper is to use a unilateral observation system as shown
in Fig. 1 instead of a bilateral observation system to alleviate
conditions in predetermined or accidental encounters that
can reduce the efficiency of multi-robot system operation.
In addition, the resulting ambiguity in the relative poses
between robots is solved by the spectra-based map merging
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algorithm within the search space reduced by the unilateral
observation measurements. Finally, a sampling-based opti-
mization algorithm is used to find the more accurate MTM
within the more reduced search space with a margin vector
caused by inevitable structural errors in the sensor fusion
system. Consequently, the risk of local minima could be suc-
cessfully avoided and the map merging could be accurately
conducted.

The remainder of this paper is organized as follows.
Section 2 describes the formulations of map merging in
multi-robot systems including the definition of the map trans-
formation matrix and the configuration of a general bilateral
observation system. Section 3 presents the proposed method
including the unilateral observation system, grid map aug-
mentation, spectra-based map merging with the augmented
grid maps, and sampling-based optimization. In Section 4,
the evaluation results of the proposed method are described.
Finally, Section 5 gives conclusions.

II. PROBLEM FORMULATION
A. MAP TRANSFORMATION MATRIX (MTM)
The map transformation between robots for map merging
can be obtained in various ways as described in the previous
section. In our previous works and related works, a two
dimensional grid mapM is assumed as a matrix with nr rows
and nc columns for convenient implementation of map merg-
ing algorithms. In other words, a grid map can be regarded
as a nr × nc binary image. Every grid contains map infor-
mation on the location represented by the grid in the global
coordinate system. Although the map merging problem can
be regarded as an image matching problem, there is several
differences. The most big difference is that individual maps
produced from the same areas can be even different since the
individual maps of different robots varies according to the
robot trajectories.

For easy computation of map transformation, a dual form
ofMis defined as a matrix with three rows and Nocc columns,
which is denoted by Md . Nocc is the number of occu-
pied grids in M. The first and second rows of Md repre-
sent x-coordinate and y-coordinate of the occupied grids,
respectively. The last row of Md is filled with 1 so that
the computation with a map transformation matrix (MTM)
is performed conveniently. Given two grid maps, M1 and
M2, the MTM T which translates 1x in the direction
of x-coordinate and 1y in the direction of y-coordinate,
and rotates 1θ in a counter-clockwise is defined as
follows:

T(1x ,1y,1θ ) =

 cos1θ − sin1θ 1x
sin1θ cos1θ 1y

0 0 1

 (1)

whereM′d2 = TM2. Here,M′d2 is a newmap rotated and trans-
lated from Md

2 , which is represented in the same coordinate
system withM1.

FIGURE 2. The geometry of a bilateral observation system when two
robots encounter each other. The relative angle, θ , between the two robot
frames {R1} and {R2} is represented as a function of the two orientation
measurements 1θ2 and 2θ1. Based on θ , the rotation angle 1θ between
two individual maps with the two global frames {G1} and {G2} can be
estimated as a function of the two robot orientation angles φ1 and φ2.
Finally, all the grids in M1 and M2 are commonly expressed with respect
to {G1}.

B. BILATERAL OBSERVATION SYSTEM
When the relative initial poses between robots are unknown,
it is difficult to obtain the MTM at the start or during oper-
ation. If the individual maps overlap each other enough,
various indirect map merging techniques can easily find the
global minimum. However, since it is not guaranteed to over-
lap each other enough in a real environment, the indirect map
merging technique always risks a local minimum. Therefore,
the map merging needs to be conducted by combining more
than two methods in order to utilize the respective advantages
of the direct map merging method and the indirect map merg-
ing method. In this work, we focused on the advantage of the
direct map merging method to reduce the search space in the
indirect map merging method. Among direct map merging
methods, we have excluded the common object-based map
merging methods because they requires many predetermined
factors such as the number, type and location of common
objects, they are not being considered.

As a direct map merging method, bilateral observation-
based map merging techniques require also the inevitable
condition on predetermined or accidental encounters degen-
erates the efficiency of operating multi-robot systems.
Figure 2 describes the general geometric coordinate system
of a two-robot system which uses bilateral observation-based
map merging methods [2], [8]. Note that the inefficiecy of
using bilateral observation measurements is caused by the
closely correlated geometric parameters at the encounters
between robots. Let the robot 1 and robot 2 denote as R1 and
R2, respectively. Then, two robots’ frames can be denoted by
{R1} and {R2}. G1PRi is the position of the Ri’s frame in the
global frame {Gi}, where i = 1,2. The position of the Rj’s
frame in the Ri’s frame is denoted by RiPRj , where j= 1,2. φi
is the orientation of Ri in the global frame {Gi}. iθj is the angle
between the Ri’s orientation and the position vector of Rj in
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FIGURE 3. Unilateral observation system configuration for cooperative robot mapping. (a) Each robot in multi-robot systems has a sensor fusion
system with a laser scanner and a monocular camera to recognize other robots. (b) Robot 1 was observed by Robot 2, and the unilateral
measurement from Robot 2 to Robot 1 was obtained by sensor fusion. (c) Robot 2 was observed by Robot 3, and the unilateral measurement from
Robot 3 to Robot 2 was obtained by sensor fusion. The map merging process is conducted based on not bilateral observation measurements
between robots but these unilateral observation measurements.

the Ri’s frame. θ is the angle between the Ri’s orientation and
the Rj’s orientation.
The derivation processes of the formulas to calculate

the rotation angle and translation amounts are described
in [2], [8]. Consequently, the rotation angle 1θ which is one
of the components of theMTM can be respectively calculated
as follows:

1θ = φ1 − φ2 + θ (2)

where θ =1 θ2 −
2 θ1 − π . The translation amounts 1x and

1y of {G2} in {G1} can be respectively calculated as follows:[
1x
1y

]
=
G1 PG2 =

G1 PR1 + C(φ1)R1PR2 − C(1θ )G2PR2

(3)

where C(φ) is the rotation matrix with a rotation angle φ.
Because geometric parameters are closely correlated, the per-
formance of map merging methods can be degraded if only
one is inaccurate due to sensor error or missing due to
stringent conditions of the encounter. Therefore, this delicate
but fragile technique needs to be extended in the context
of robustness with a different observation system and an
indirect map merging method. Therefore, this paper proposes
an extension of spectra-based map merging with unilateral
observation measurements instead of bilateral observation
measurements.

III. PROPOSED METHOD
The proposed method is an extension of the spectra-based
map merging (SMM) which uses unilateral observation mea-
surements to improve the availability of multi-robot systems
while maintaining the accuracy of map merging. The pro-
posed method consists of four sequential parts as shown
in Fig. 1. Firstly, when a robot Ri perceives another robot Rj
visually, Ri estimates the relative position of Rj in the Ri’s
coordinate system by fusing the visual and range data,
regardless of the corresponding perception from Rj. Then,
the individual grid maps are augmented using the unilat-
eral observation measurements to probabilistically reflect the

perceived relative robot positions. Next, a MTM between
Ri and Rj is obtained by the SMM within the reduced
search space by the unilateral observation measurements.
Finally, the more accurate MTM between Ri and Rj is
obtained by a sampling-based optimizationmethodwithin the
more reduced search space with a margin vector caused by
inevitable structural errors in the sensor fusion system.

A. UNILATERAL OBSERVATION SYSTEM
Each robot in the multi-robot system is equipped with a
vision sensor, a laser scanner and a laptop computer as shown
in Fig. 3(a). The detection of the robot was performed by a
support vector machine-based classification method with a
histogram of oriented gradient (HoG) features. Each robot’s
sides and back are surrounded by a paper board with prede-
termined tags attached to it for easy detection by visual sen-
sors. The examples of the unilateral observation system-based
detection are shown in Fig. 3(b) and Fig. 3(c), which shows
that the front and back sides of a robot could be successfully
detected. Once Rj is detected, the relative angle to Rj in the
frame of Ri is roughly provided by counting the pixel distance
from the center of the image. Then, the relative angle and
distance fromRi toRj are updated by selecting themean of the
salient points on the direction of the roughly provided relative
angle in the laser scanner data. This process was conducted
with an assumption that the detected robot was located in
uncluttered areas. The assumptionmay be relaxed by combin-
ing more complex image processing to detect another robot
more accurately and direct depth information with a stereo
camera. Finally, the relative position RiPRj is obtained by
converting the relative angle and distance into the Cartesian
coordinate system {Ri}.
In the unilateral observation systems, two problems are

addressed to apply the equations (2) and (3) to accurate map
merging. The first problem of the unilateral observation sys-
tem is the absence of 2θ1 in Fig. 2, which is critical to calculate
not only the relative rotation angle1θ but also the translation
amounts 1x and 1y. The second problem of the unilateral
observation system is the accuracy of R1PR2 . Because we did
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FIGURE 4. The concept of augmenting the occupancy grids. X -axis and
Y -axis indicate Cartesian coordinates, and L-axis indicates the
augmentation level. Each original occupied grid is augmented along to the
multivariate Gaussian distribution with the mean and covariance of the
robot position by a unilateral observation measurement. li , lj , and lk are
the augmented levels, and the closer grid to the robot position gets the
more augmented level. This augmentation is applied to both grid maps.

not use any rendezvous points, R1 observes accidently R2,
which means that R2 moves to its own goal and does not wait
until R1 obtains more accurate range measurements. Thus,
R1PR2 may be inaccurate. In bilateral observation systems,
the errors in R1PR2 can be compensated by R2PR1 . However,
in the unilateral observation systems, the relative distance
measurements depends on only R1PR2 .

B. AUGMENTATION OF GRID MAPS
To solve the two problems of the unilateral observation sys-
tem, the occupied grid is augmented so that the area around
the observed robot can be distinguished from other areas. The
following is one stackup notifying that the observed robot,
R2, is currently being observed by R1 even though it cannot
observe R1. The concept of occupying grid expansion can
be seen in Fig. 4. The occupied grid of R1 is augmented
with the mean and covariance of the relative R2 positions by
unilateral observational measurements. The occupied grid of
R2 is augmented with the mean and covariance of its own
position when notified that it is being observed by another
robot.

The original grid maps of R1 and R2 at the frame 615 are
respectively shown in Fig. 5, and the original grid maps of
R2 and R3 at the frame 513 are respectively shown in Fig. 7.
The augmentation value at the location of the n-th occu-
pied grid, mi,n = [xi,n, yi,n], in Mi is determined along to
the multivariate Gaussian distribution with the mean x̂i and
covariance6aug of the robot position estimated by a unilateral
observation measurement as follows:

Aug(mi,n) =
Iaug

2π |6aug|
1/2

× exp
(
−
1
2
(mi,n − x̂i)T6−1aug(mi,n − x̂i)

)
(4)

FIGURE 5. Original grid maps of R1 and R2 at the frame 615. The
occupied grids in M1 and M2 are represented by blue and green colors,
respectively. The red circles in each map are x̂1 and x̂2 for the
augmentation, respectively. (a) R1’s dual grid map. (b) R2’s deal grid map.

where Iaug is the augmentation intensity, which is empirically
determined. Then, the augmented map Ma

i for the locations
[x, y] ∈Mi is defined as follows:

Ma
i (x, y) =

{
Aug([x, y]), ifMi(x, y) is occupied
0, otherwise

(5)

In Fig. 5 and Fig. 7, the red circles in each map are x̂i for
the grid map augmentation. x̂i in the observed robot map is
identical to its own position, and x̂i in the observing robot
map can be obtained by the vector sum of its own position and
the unilateral observation measurement. Therefore, x̂i in both
maps of the observed robot and observing robot indicates a
similar position, which means that the augmentation patterns
are also similar. This similarity is helpful for matching grid
maps because it can reduce the search space of a MTM. The
visualization of the augmented grid maps is shown in Fig. 6
and Fig. 8, which shows that the grids around x̂i were more
augmented.

C. SPECTRA-BASED MAP MERGING WITH UNILATERAL
OBSERVATION
The spectra-based map merging (SMM) [14] is an approach
to utilizing the spectral information to solve the problem of
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FIGURE 6. Augmented grid maps of R1 and R2 at the frame 615. The dual
grid maps are augmented along to the multivariate Gaussian distribution
by a unilateral observation measurement. (a) R1’s augmented grid map.
(b) R2’s augmented grid map.

FIGURE 7. Original grid maps of R2 and R3 at the frame 513. The
occupancy grid maps are represented by dual grid maps for easy
computation of map transformation. The occupied grids in M2 and M3
are represented by blue and green colors, respectively. (a) R2’s dual grid
map. (b) R3’s dual grid map.

map merging. The key idea of the SMM is to consider the
mapmerging problem as the binary imagematching problem.
Firstly, the rotation angle between maps, 1θ , is estimated

FIGURE 8. Augmented grid maps of R2 and R3 at the frame 513. The dual
grid maps are augmented along to the multivariate Gaussian distribution
by a unilateral observation measurement. (a) R2’s augmented grid map.
(b) R3’s augmented grid map.

using the Hough spectrum [15] which is generated from the
Hough transform, x cos θ + y sin θ = ρ, where θ is the angle
between x-axis and the normal from the line to the origin, and
ρ is the distance between the line and the origin. Then, x and y
displacements, 1x and 1y, are estimated using X -spectrum
and Y -spectrum, respectively.

Differently from the original SMM, in this work, the search
space for the amount of transformation can be greatly reduced
from [a1, a2] and [b1, b2] to [1x,min − σ,1x,max + σ ] and
[1y,min − σ,1y,max + σ ] by unilateral observation measure-
ments. In the equation (3), even though 1θ is uknown due to
the absence of 2θ1, the minimum and the maximum results of
applying the rotation matrix with1θ can be calculated using
the bounds of trigonometric functions as follows:

−‖
G2PR2‖ ≤ C(1θ )G2PR2 ≤ ‖

G2PR2‖ (6)

where ‖ · ‖ represents the absolute-value of a vector.
Then, the minimum and the maximum results of the trans-

lational amounts1x and1y can be estimated respectively as
follows:[

1x,min
1y,min

]
=

G1PR1 + C(φ1)R1PR2 − ‖
G2PR2‖ (7)[

1x,max
1y,max

]
=

G1PR1 + C(φ1)R1PR2 + ‖
G2PR2‖ (8)

Therefore, the reduced search space for 1x and 1y is
respectively determined with the consideration of the errors
in the unilateral observation measurements as follows:

1x,min − σ ≤ 1x ≤ 1x,max + σ (9)

1y,min − σ ≤ 1y ≤ 1y,max + σ (10)

where σ is a margin value reflecting the range error in the
laser scanner. And the search space for 1θ is maintained as
−π ≤ 1θ ≤ π because the rotation angle 1θ cannot be
obtained without 2θ1.

Let M and MH be an augmented grid map and the
result of Hough transform which is a matrix with nρ rows
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FIGURE 9. The Hough spectra and cross-correlation of the two individual
augmented grid maps. The rotation angle between two individual maps is
estimated by taking the angle corresponding to the maximum of the
cross-correlation.

and nθ columns, respectively. Its associated Hough spectrum
for 1 ≤ j ≤ nθ is defined as the following unidimensional
signal:

HSM(j) =
nρ∑
i=1

MH (i, j)2 (11)

The signal has sampling period with 2π/nθ and indicates
how frequently lines are detected along θ . Given Hough spec-
tra, HSM1 and HSM2 , circular cross correlation is computed
to determine similarities along θ as follows:

CCM1 M2 (k) =
nθ∑
i=1

HSM1 (i)HSM2 (i+ k) (12)

The Hough spectra and cross-correlation of the two indi-
vidual augmented grid maps are shown in Fig. 9. The SMM
can estimate the rotation angle between two individual maps
by taking the angle corresponding to the maximum of the
cross-correlation: 1θ = argmax

k
CCM1M2 (k). The search

space for the rotation is as follows: 1 ≤ k ≤ nθ which is
same as the original SMM.

If an augmented grid map M is considered as a binary
image with r rows and c columns, X -spectrum for 1 ≤ j ≤ c
and Y -spectrum for 1 ≤ i ≤ r are respectively defined as the
following signals:

XSM(j) =
r∑
i=1

M(i, j) (13)

YSM(i) =
c∑
j=1

M(i, j) (14)

Given the optimal rotation, 1θ , we can obtain M̃2 =

T(0, 0,1θ )M2. Similarly with CCM1M2 , circular cross cor-
relations are respectively computed to determine X and Y
displacements as follows:

CXM1M̃2
(τ ) =

+∞∑
j=−∞

XSM1 (j+ τ )XSMθ
2
(j) (15)

FIGURE 10. The X and Y spectra and cross-correlation of two augmented
grid maps. The best X and Y translations between them are estimated by
taking the amounts corresponding to the maximum of cross-correlations
within the reduced search space by unilateral observation measurements.

CYM1M̃2
(ν) =

+∞∑
i=−∞

YSM1 (i+ ν)YSMθ
2
(i) (16)

The X and Y spectra and cross-correlation of the two
individual augmented grid maps are shown in Fig. 10.
The SMM can estimate the X and Y translation amounts
between two individual maps by taking the amounts corre-
sponding to the maximum of the cross-correlations: 1x =

argmax
τ

CXM1M̃2
(τ ), and 1y = argmax

ν
CYM1M̃2

(ν). The

search space for translations is as follows:1x,min− σ ≤ τ ≤

1x,max + σ and 1y,min − σ ≤ ν ≤ 1y,max + σ . Differently
from the original SMM, since the search space was reduced
by the unilateral observation measurements, the risk of local
minima was reduced. However, the map merging result by
the SMM may be inaccurate due to the lack of overlapping
areas between the spectral information of augmented grid
maps. So, the MTM used for map merging needs to be
optimized. In the context of optimization, the search space
is significantly reduced by the result of the SMM where 1θ ,
1x and 1y as shown in Fig. 11.

D. SAMPLING-BASED OPTIMIZATION
Since the SMM can find the MTM solely, one may not need
more methods. However, the MTM obtained by the SMM
may be inaccurate due to the inaccuracy of the individual
maps caused by inevitable errors in sensors and the perfor-
mance limitations of the matching algorithm. Therefore, it is
necessary to apply an optimization method to obtain a more
precise MTM. The objective function between two individual
augmented grid maps Maug

1 and Maug
2 for a candidate MTM

tc is as follows:

0(Maug
1 ,Maug

2 , tc)

=

xmax∑
x=xmin

ymax∑
y=ymin

Maug
1 (x, y) ·

[
T(tc)M

aug
2 (x, y)

]
(17)
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where xmin and xmax are the minimum and maximum of the
allowable x-coordinate of Maug

1 and Maug
2 . ymin and ymax are

the minimum and maximum of the allowable y-coordinate of
Maug

1 andMaug
2 . Because this objective function is nonlinear,

it is difficult to apply the conventional optimization method
which provides a closed form for the optimal configuration
to the optimization problem. Instead, sampling-based opti-
mization methods can be applied to the optimization prob-
lem. However, they needs to be simple as much as possible
to reduce the overall amount of computation required for
map merging. In this paper, two sampling-based optimiza-
tion methods are considered such as MCO (Monte-Carlo
Optimization) [18] and PSO (Particle Swarm Optimiza-
tion) [19]. Generally, the MCO and PSO require much com-
putation time due to the iterative property, which becomes
worse if the search space is wide. However, since the space
space was significantly reduced by the results of the SMM
with the unilateral observation measurements, the number
of iterations required for convergence is quite reduced,
which means that the computation time was significantly
reduced.

1) MONTE-CARLO OPTIMIZATION
The MCO [18] is one of the sampling-based optimization
algorithms that rely on repeated random sampling to obtain
an optimal configuration in a given search space. The MCO
has beenwidely used in a variety of scientific and engineering
fields despite its large computational load. This is because it is
simple to implement and shows good performance despite its
complex and nonlinear constraints and its objective function.
The processes of the MCO are as follows. First, the whole
given search space is initialized, and the process of sam-
pling the candidate configurations for the MTM is conducted
around the MTM obtained by the SMM. Next, the range
constraints for the sampled configuration are updated with
considering the different sizes of maps. Then, the objective
value matrix is iteratively updated based on the objective
function for every sampled configuration. Finally, if theMCO
reaches the predetermined number of samples, the configura-
tion indicating the maximum in the objective value matrix is
selected as the optimal configuration.

In the proposed method, the search space for the amount
of transformation can be greatly reduced by the SMM with
unilateral observation measurements as shown in the Fig. 11.
The reduced search space for 1θ , 1x and 1y is respectively
determined with the consideration of the errors in the unilat-
eral observation measurements as follows:

1θ − σθ ≤ 1x ≤ 1θ + σθ (18)

1x − σx ≤ 1x ≤ 1x + σx (19)

1y − σy ≤ 1y ≤ 1y + σy (20)

where 1θ ,1xand1y are the components of the MTM
obtained by the SMM. σθ , σxandσy are margin values reflect-
ing the orientation and range errors in the laser scanner,
which depends on the quality of scan data. Even though the

FIGURE 11. Reduced search space by the SMM results for the
sampling-based optimization. The original search space where [0◦180◦],
[1x,min − σ,1x,max + σ ] and [1y,min − σ,1y,max + σ ] was reduced as
[1θ − σθ ,1θ + σθ ], [1x − σx ,1x + σx ] and [1y − σy ,1y + σy ]. The
reduction was caused by the SMM result where 1θ , 1x and 1y .

search space was significantly reduced by the SMM with
the unilateral observation measurements as shown in Fig. 11,
other sampling-based optimization methods such as PSO had
to be considered in order to reduce the computation time as
much as possible.

2) PARTICLE SWARM OPTIMIZATION
PSO [19] is a sampling-based optimization algorithm based
on cluster intelligence that solves an optimization problem by
repeatedly moving particles representing a candidate solution
to find an optimal solution for a given quality measurement.
PSO has been widely used in various engineering fields
because it can be implemented simply and has excellent
performance even though the constraints and corresponding
target functions are complex and nonlinear. The principle of
particle movement in PSO is as follows. First, each particle is
attracted by its target. Second, each particle has a memory of
its own history. Third, all particles share velocity and position.
Finally, each particle converges to the object as the iteration
progresses. Based on these four principles, the particle cluster
can find the optimal solution at the end of the iteration. The
target function formapmatching is nonlinear, so PSO can be a
good solution for map merging. Besides, since the objective
function is calculated with the augmented grid maps Maug

1
and Maug

2 , it is expected to be converged faster. Moreover,
since the search space for the amount of transformation was
greatly reduced by the SMMwith unilateral observation mea-
surements as shown in the Fig. 11, the computation time
for convergence was also significantly reduced. The reduced
search space for the PSO was identical to that for the MCO
in the previous subsection.

For every iteration with Np particles, the velocity vj(t) and
position pj(t) of each particle are respectively updated as
follows:

vj(t + 1) = ω
[
vj(t)+ κτ (psb − pj(t))+ κτ (pj,pb − pj(t))

]
(21)

pj(t + 1) = pj(t)+ vj(t + 1) (22)
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where pj(t) = [pj,x , pj,y, pj,θ ] where j = 1, · · · ,Np. ω < 1 is
a constriction factor which acts like friction, and κ ∼ [0, 1]
is a random vector with uniform distribution, and τ ' 2 is
a control factor for relative attraction to psb and pj,pb. The
personal best position pj,pb indicates the best position of pj
so far with the maximum similarity betweenMaug

1 andMaug
2 .

The swarm best position psb indicates the position of the best
particle throughout the whole particles and iterations. The
objective function between Maug

1 and Maug
2 to measure the

quality of each particle for map merging is defined in the
equation (17). After the PSO is converged, the MTM T is
determined as T = psb at the final iteration.

IV. EXPERIMENTS
A. OVERALL RESULTS
To test and evaluate the proposed method, experiments using
three robots were performed in an indoor environment.
Each robot is equipped with a camera, laser scanner, and
laptop computer as shown. 3(a). Each robot produced its
own individual map in its own coordinate system using the
previous SLAM (simultaneous localization and mapping)
framework [2]. When the robot accidentally observes another
robot, as shown in Fig. 3(b) and Fig. 3(c), the proposed
method is performed using the unilateral observation mea-
surements, the SMM and a sampling-based optimization
method in order to obtain individual augmented grid maps
and merge them as shown. 12. The augmentation levels
were normalized. As expected, the grids around encounter
positions between robots were highly augmented along the
multivariate Gaussian distribution with the equation (4) and
(5), which was useful to acquire an accurate MTM.

B. EVALUATION RESULTS
A performance index to measure how the individual grid
maps are well aligned was defined to evaluate the accuracy
in the merged grid map as follows [7]:

0(M1,Mtr
2 ) =

agr(M1,Mtr
2 )

Noverlap
. (23)

where agr(·) is the number of the agreed grids inM1 andMtr
2

which is the transformed M2 by T. Noverlap is the number
of grids in the real overlapping areas, which was acquired
offline.

The accuracy of the proposed method may be affected
by the intensity Ia and the covariance 6a which are the
augmentation parameters. Therefore, the performance index
according to the intensity Ia and the covariance 6a were
investigated, while the number of particles for the PSO was
fixed at 200 as shown in Fig. 13. While Ia did not affect
the performance index, 6a had a significant influence on the
performance index. Therefore, 6a has to be adjusted with
considering the environments. In our experiments,6a needed
to be selected by more than 105 for mergingM1 andM2 and
74 for mergingM2 andM3, respectively.

FIGURE 12. Merged augmented map. The two individual augmented grid
maps were successfully merged with respect to a common coordinate
system. The grids around encounter positions between robots were highly
augmented, which was useful to acquire an accurate MTM. (a) Map
merging result of Maug

1 and Maug
2 (b) Map merging result of Maug

2
and Maug

3 .

FIGURE 13. Performance indices according to the intensity and
covariance for the augmentation. The performance index did not depend
on the intensity but was affected by the covariance. (a) The case of
merging M1 and M2 (b) The case of merging M2 and M3.

Because the proposed method utilizes the PSO as a
sampling-based optimization method, the performance index
and calculation time may be affected by the number of
samples in the PSO. Therefore, the performance index and
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FIGURE 14. Performance indices and computation times according to the
number of particles in the PSO. The performance index and the
computation time increase as the number of particles increases. (a) The
case of merging M1 and M2 (b) The case of merging M2 and M3.

calculation time according to the number of samples Ns were
investigated, while Ia and 6a were fixed at 100 and 105,
respectively. As shown in Fig. 14, the performance index and
calculation time increase as the number of particles increases.
All values in the figure were averaged over 10 trials. As a
result, we found that the proper number of particles satisfying
both the case of mergingM1 andM2 and the case of merging
M2 and M3 is more than 400. These results may be varying
according to the quality and size of individual grid maps and
the accuracy of unilateral observation measurements. A cer-
tain fact is that the more the number of particles, the better
the accuracy of map merging. Therefore, if the robot system
has sufficient processing power, it is recommended to use
a sufficient number of particles for the accuracy of map
merging.

C. COMPARISONS
To compare the accuracy of the proposed map merging
method with other map merging methods, we applied the
existing five map merging methods to merging the same
individual maps. They were the method to use only the
SMM, mean squared error (MSE) based image registration
method, Harris corner detector (HCD) [20] basedmapmatch-
ing, Shi-Tomasi corner detector (STCD) [21] based map

FIGURE 15. Map merging results of M1 and M2 with the proposed
method and other methods. (a) Proposed. (b) SMM only (c) MSE (d) HCD
(e) STCD (f) SURF.

FIGURE 16. Map merging results of M2 and M3 with the proposed
method and other methods. (a) Proposed. (b) SMM only (c) MSE (d) HCD
(e) STCD (f) SURF.

matching, and speeded up robust features (SURF) [22] based
map matching methods. The visual feature-based map merg-
ing methods such as MSE, HCD, STCD, and SURF were
conducted as follows. First, the visual features were extracted
from individual grid map images. Next, the RANSAC (Ran-
dom sample consensus) algorithm was conducted to find the
best map transformation while overcoming outliers in the
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FIGURE 17. Comparison results with other map merging methods. The
proposed method was more accurate than other map merging methods.
(a) The case of merging M1 and M2 (b) The case of merging M2 and M3.

pairs of visual features. Finally, an individual grid map was
transformed into the other individual grid map.

The graphical comparison of map merging results were
shown in Fig. 15 and Fig. 16. The accuracy of map merg-
ing was quantitatively measured as the performance index
defined in equation (14) after map merging. The comparison
result is shown in Fig. 17. Obviously, the proposedmapmerg-
ing technique showed a higher performance index than other
mapmerging techniques. However, even though the proposed
method sometimes converges rapidly, the computation time
was longer than other methods due to the iterative process of
PSO. In future work, the proposed method will be accelerated
using a field-programmable gate array (FPGA) based parallel
computing method [23].

V. CONCLUSION
This paper proposed a unilateral observation-based map
merging method for cooperative mapping in multi-robot sys-
tems. The proposed method can maintain the efficiency of
multi-robot system operation by utilizing unilateral obser-
vation instead of unilateral observation. The risk of local
minima in the conventional map matching method was
avoided by unilateral observation-based map augmentation
which can reduce the search space for relative poses among
robots. To improve the accuracy of the MTM obtained

by the unilateral observation-based map matching method,
a sampling-based optimization method was applied and
showed better accuracy. The proposed technique was tested
by datasets acquired from real experiments using threemobile
robots equipped with a sensor fusion system. The evalua-
tion results showed that the proposed method works well
with appropriate augmentation parameters and the enough
number of particles. The comparison results showed that the
proposed method can find a more accurate MTM than other
methods.
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