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ABSTRACT Clustering algorithms have become one of the most critical research areas in multiple domains,
especially data mining. However, with the massive growth of big data applications in the cloud world, these
applications face many challenges and difficulties. Since Big Data refers to an enormous amount of data,
most traditional clustering algorithms come with high computational costs. Hence, the research question is
how to handle this volume of data and get accurate results at a critical time. Despite ongoing research work
to develop different algorithms to facilitate complex clustering processes, there are still many difficulties
that arise while dealing with a large volume of data. In this paper, we review the most relevant clustering
algorithms in a categorized manner, provide a comparison of clustering methods for large-scale data and
explain the overall challenges based on clustering type. The key idea of the paper is to highlight the main
advantages and disadvantages of clustering algorithms for dealingwith big data in a scalable approach behind
the different other features.

INDEX TERMS Clustering, unsupervised learning, traditional clustering, parallel clustering, stream clus-
tering, high dimensional data, big data, large-scale.

I. INTRODUCTION
Clustering, or cluster analysis or data segmentation [1], com-
monly defined as the grouping of similar objects into classes
called clusters [2] or defined more specifically as an unsu-
pervised learning approach to classification of patterns into
groups (clusters) based upon similarity, where a pattern is a
representation of features or attributes of an object [3]. Clus-
tering methods are unsupervised because we do not know the
classification parameters, characteristics of data, or even the
number of cluster groups versus the classification methods.
Therefore, the clustering-based techniques try to estimate and
learn these parameters from the given data. Usually, there
is two way to perform this process: an offline method for
a given saved batch of data, and an online for coming data
sequentially. The offline methods resulting in better accuracy
but not valid for very massive or real-time data.

A. BACKGROUND
Today, clustering is considered one of the vital data-mining
tools for analyzing data. There are large standard application
fields in which clustering is one of its tools, such as the
following:
• Social network analysis
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• Collaborative filtering
• Data summarizing
• Multimedia data analysis
• Customer segmentation
• Biological data analysis

These different applications produce different data typeswith
other characteristics. The most common types of these data
are numerical data, categorical data, text data, multimedia
data, time-series data, discrete sequences, network data, and
uncertain data (Figure 1). Each of these data types requires a
special pre-processing or processing before applying any data
mining technique.

FIGURE 1. Different data types in cluster analysis.

With increase data in size and speed, handling of big
data has become inevitable. There are many definitions of
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Big Data, and one of them is the amount of data just beyond
technology’s capability to store, manage, and process effi-
ciently [4]. Big data are seen as vast, complex, and growing
from multiple or autonomous resources. As a result of the
fast improvement of communication, data storage methods,
and the high ability to collect data, big data became rapidly
growing in all fields and domains such as science, engineer-
ing, physical, biological, and biomedical sciences [5]. Also,
many new applications can quickly generate vast amounts
of data during a short time; for example, social networks
provide incredible opportunities for social connections and
an enormous volume of data [6].

In the same direction, Data streams refer to a massive
amount of data generated at very high speed, such as network
traffic, web click streams, and sensor networks [7]. Hence,
Datastream mining has become a hot research topic because
of introducing advanced technologies and applications that
regularly generate data streams.

Although big data and streaming data add big challenges,
the data type significantly impacts the clustering problem.
As a result, the kind of data plays the primary role in choos-
ing techniques used for the clustering analysis. Accordingly,
there are wide ranges of clustering techniques’ models that
have different clustering methodology. Figure 2 shows the
general clustering techniques classified based on its meth-
ods from various studies. Because of the significant growth
of data occupies many future challenges and often require
specialized techniques [8].

The algorithm scalability is the ability of the algorithm
to handle a growing amount of input by adding additional
resources to the system [9]. In this case, the system can
be scaled up or down based on the work size. Nowadays,
the scaling the resources has become an essential factor as
a result of the cost of adding resources to the system, which
is why research has tended towards developing ways to deal
with scalable systems, especially in cases of big data and
what means real-time versus cost. According to scalability
definition, we classify the techniques in this review into two
types: traditional and scalable techniques. The traditional
techniques consist of clustering algorithms without regard to
the system’s scalability. In contrast, the scalable techniques
consist of the clustering algorithms utilizing the system’s
scalability.

Due to the limitations of the traditional clustering algo-
rithms either in output speed or in processing data, researches
investigated in two directions to face these challenges. The
first direction is by trying to improve traditional algorithms
to working with large data size and the other orientation
by proposed new methodology based on the benefit of new
technology such as parallel computing, cloud computing, and
map-reduce.

B. CURRENT ISSUES
The significant challenges for data miners and data ana-
lyzers come from using the best method to extract useful

information from the large dimensional and increasing
dataset [10]. Nowadays, Big Data is an exciting area for
scientific research. It is becoming a common data source for
many business applications, which require a range of data
mining operations [11]. However, there are difficulties in
applying data mining techniques to big-data because of the
new challenges with big data [12]. The scalability, complex-
ity, and the presence of mixed data are the main challenges
of big data analysis, and clustering appeared due to [13].
So, parallelism is introduced by many clustering algorithms
because it is useful for applying the ‘divide and conquer’
strategy in algorithms to reduce the time complexity related
to big data [14]. It identified that the main challenges while
clustering extensive data fall in the following points:

1) Clusters usually have non-uniform shapes,
2) Lack of knowledge and ability to either determine the

number of input parameters or choose the better values
of it, and

3) Scalability and the incredible size of extensive data.
On the other hand, one of the most critical aspects of

the data mining problem is how similarity is defined and
measured. The similarity measures affect the clustering and
classification of information concerning the type of data.
Clustering techniques for categorical data are very different
from those for numerical data in terms of the definition of
the similarity measure. It is also rare to find the boundaries
of clusters and avoid their overlap, which adds a constraint to
researchers when choosing the optimal similarity measure is
applied to a wide range of data types.

Focus on scalable clustering techniques (Figure 3); the
algorithms classified according to how to deal with the data
either as a batch or real-time streaming. In streaming cluster-
ing techniques, most of the algorithms were coming from the
traditional methods with some modification to working with
the stream data. Unlike big data techniques, most approaches
are based on new algorithms. They classified into two strate-
gies based on the number of machine algorithm can dealing
during the process (single or multiple machines).

C. CONTRIBUTIONS
In this paper, we focus on the issues and challenges of scalable
clustering techniques implemented to face big data or stream-
ing data. The basic contribution of this paper as follows:
• Present a general overview of different clustering algo-
rithm based on the clustering techniques.

• Reviews the different clustering algorithms and main
features according to general features and categorizing
them based on new scalability methods.

• Present features comparison between studies algorithms
based on clustering techniques.

II. TRADITIONAL CLUSTERING TECHNIQUES
In this part, we review the traditional clustering techniques.
Algorithms that are not dealing with system scalability
or data size as a metric in clustering processing will be
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FIGURE 2. Clustering algorithms/techniques model-based classification.

FIGURE 3. Scalable clustering techniques.

covered under the traditional term. The traditional method
does not depend on processing the volume of data in terms
of distribution methods on devices or division to deal with
extensive data.

A. HIERARCHICAL CLUSTERING
In a hierarchical clustering algorithm, cluster data grouped
with a sequence of nested partitions, either from separate
clusters to a cluster, including all individuals or vice versa.
The former is known as agglomerative, and the latter is
called divisive. Agglomerative methods: use the ‘bottom-up’
approach; they begin with each object as a separate cluster
and merge them into successively larger clusters. Divisive
methods: on the other hand, use the ‘top-down’ approach;
they begin with the whole set of objects in one cluster
and proceed to divide it into successively smaller clusters.
Figure 4 demonstrates the difference between the two
approaches in process direction. In practice, agglomerative
techniques are commonly used, while divisive techniques
are limited due to their prohibitive computational burden.
The output of hierarchical clustering is usually represented
as a dendrogram or voroni diagram in visualizing big data
(such as figure 5), which clearly describes the proximity
among data objects and their clusters and provides good
visualization. Although the classical hierarchical cluster-
ing methods are conceptually easy to understand, they suf-
fer the disadvantages of high computational complexity.
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FIGURE 4. Hierarchical clustering technique

FIGURE 5. Voronoi diagram

This high computational burden limits its application in
large-scale data sets [15]. Many algorithms fall in this cat-
egory such as Chameleon [16], ROCK [17], LIMBO [18],
F-Tree [19], MTMDP [20], and MGR [21].

B. PARTITION-BASED CLUSTERING
In the partitioning-based algorithms, all clusters data is recur-
sively divided into some partitions until the partition criterion
reaches a specified value, and here each partition represents a
cluster. K-means [22], and K-medoids [23] are most famous
algorithms based on partitioning. K-means iterative update
the centre of the cluster until coverage data. Some versions of
K-means has been proposed in the way to improve time com-
plexity as [24]. Other algorithm’s fall in this category, such as
PAM [25], CLARA [26], CLARANS [27], COOLCAT [28]
and Squeezer [29].

C. DENSITY-BASED CLUSTERING
The density clustering aims to discover the shapes of the
clusters. In this type, the data are numerical so that they can
be grouped based on dimensional distances. Initially, data
divided into three types of points: core, boundary, and noise
points. The point considered a core point if it has a least
m points within distance n, the point considered a border
if it has at least on core within range; otherwise, the point
marked as noise. The algorithms work by grouping these
points to form a density of the clusters. Algorithms fall in this
category such as CACTUS [30], CLOPE [31], DBDC [32],
and EBK-modes [33].

FIGURE 6. Density-based clustering technique

D. PROBABILISTIC AND GENERATIVE CLUSTERING
In the model-based algorithms, data is clustering based on
various strategies such as statistical methods and concep-
tual methods. There are two common ways of model-based
algorithms: the neural network approach, and the analytical
approach. The neural network approaches are supervised
techniques; However, Kohonen’s SOM is the model used
for clustering [34]. Algorithms fall in this category, such as
SVC [35] and Ensemble [36].

E. GRID-BASED CLUSTERING
Grid-based clustering algorithms have shown great interest
in their advantages of discovering clusters with different
shapes and sizes. Mainly, There are two methods in this type:
Fix-up and the adaptive grid partition method. The idea of
a fix-up grid partition method is to divide each dimension
of the data space into equal lengths, and then they crossed
rectangular cells of the same size. Since the points in the
same network belong to a group, they are treated as a single
object. All groupings run on these grid cells. While the idea
of the adaptive grid partition method is to divide data space
into non-crossed grid cells of different sizes according to
the data distribution feature, the total number of grid cells
is significantly reduced compared to those fix-up partition
methods. Still, the determination of spitting points required
massive computation power [37]. Some algorithms, such as
CLIQUE [38], STING [39], WaveCluster [40], and DEN-
CLUE [41], used the fix-up grid method, while some other
used the adaptive grid partition method such as OptiGrid [42]
and MAFIA [43].

III. SCALABLE CLUSTERING TECHNIQUES
We explore some of scalable clustering techniques. Usually,
two different methods developed to handle big data; first,
techniques focus on reducing the size of the data either ver-
tically or horizontally (Figure 7), while the other methods
focus on speeding the execution depend on multi-physical
processors. With this technique, big data can be cut into
smaller pieces to processing on different devices simultane-
ously. The multi-machine clustering algorithm classified into
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FIGURE 7. Reduction methods vs data scale

FIGURE 8. Sampling-based clustering technique

two categories according to the technique used to runmultiple
processes, either map-reduce or parallel, and distribution.
Commonly, thesemethods solve the clustering time challenge
of big data. The [44] presented a more details survey on
parallel clustering algorithms according to the platform of
big data. In common, the scalable clustering algorithm is
designed to fit the specific scaled platform. While the [45]
presented a more details survey on stream clustering algo-
rithms compared with traditional algorithms. In this section,
we review scaling algorithms based on techniques rather
than the architecture of the platform across streaming and
non-streaming algorithms.

A. SAMPLING-BASED
This method is one of the first ways to try to overcome data
volume and operation speed problems; the primary goal is
based on clustering data samples and rather than clustering
the entire data set (Figure 8). After processing, the results
of the clustering are generalized to the whole data set [12].
These methods are one of the ideas that contributed to accel-
erating techniques by minimizing the data size and thus

FIGURE 9. Map-reduced based clustering technique

FIGURE 10. Parallel clustering techniques

time and complexity. In contrast, these techniques added
time and complexity in pre-processing data required for sam-
pling operations. Moreover, the clustering subset of data not
give the same accuracy compared to the entire data. Algo-
rithms fall in this category, such as BIRCH [46], CURE [47],
and CLARANS [27].

B. REDUCTION AND PROJECTION-BASED
The high dimensionality of data adds additional challenges
to most clustering algorithms, such as the existence of noises
features or sparse data [48]. While sampling-based tech-
niques reduce the data size vertically, they are not considered
the best solution to a high-dimensional data set in cases. Sim-
ilarly, the projection-basedmethods try to reduce the data size
horizontally. The current approaches use procedures like fea-
ture selection, feature extraction, approximation, and random
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TABLE 1. Advantages and limitations of based on general clustering Type.

reduction. These techniques are also required pre-processing
data as sampling-based. The feature selection lowers the
dimension space by filtering the data attributes based on data
dependency, While the feature extraction is constructing new
advantage features. Algorithms fall in this category, such as
Ensemble [48], Colibri [49], and RP [50].

C. SUBSPACE CLUSTERING
Subspace clustering is a technique that searches for clusters
in different subspaces. The basic idea is to discover clus-
ters using a subset of dimensions. Generally, two types of
subspace clustering based on the search strategy; bottom-up
and top-down. The bottom-up start by finding clustering
in lower dimension and iterative merging them to process
higher dimension spaces. Top-down start by find clusters in
full dimension then evaluates the subspace of each cluster.
Generally, Subspace clustering solves the problem of the

TABLE 2. Advantages and limitations of based on general scalable
techniques.

FIGURE 11. Percentage of studied algorithms grouped by clustering type

high dimensional dataset faces most grid-based approaches.
Algorithms fall in this category, such as SSSC [51],
TNNLS [52] and StructAE [53]

D. MAP-REDUCED BASED
As a single processor with one memory cannot handle exten-
sive data at an adequate speed, it emphasizes the need for
algorithms that run on multiple devices. The Map-Reduce
framework (as displayed in Figure 9) dropped many concerns
necessary to run algorithms on multiple devices such as
network connection, data distribution, and load balancing.
These advantages allow many researchers to easily applied
and improved their algorithms in parallel processing sys-
tems. There is a set of proposed research that re-apply
or re-implement a better clustering technique using map-
reducer, such as the research in [54]. They presented an
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FIGURE 12. Scalable vs. non-scalable techniques of studied algorithms

integrated approach for CURE clustering using the
map-reduce method. Other algorithms fall in this category
such as DisCo [55], PKMeans [56], BoW [57], wkPCM [58],
and KIM [59].

E. PARALLEL AND DISTRIBUTED-BASED
The data-driven path identification approach (DDPI) [60] is
a concurrent algorithm representation of k-means with neural
network batch training. Instead of implementing a distributed
system, the author presented a data-parallel interface to per-
mit the parallel implementation of the k-means algorithm
using a neural network; but, it adds a supervised step. The
three-parallelization steps of the algorithm are partitioning
and distribution data then, computing using distributed data,
and lastly, assembling local computational results. The con-
current structure provided a way to reduce the computational
demand of neural techniques. The Density based distributed
clustering (DBDC) [32] used the distributed techniques to
speed up the clustering process on large scale data and based
on density partitioning clustering technique (Figure 10). Dis-
tributed clustering in this algorithm is operating at two differ-
ent levels (local and global). At the local level, DBDC uses
an independent algorithm for clustering, which carried out
the process on partitioned data. On the global level, it uses a
density algorithm clustering called DBSCAN to generate the
results in the main site. The DBSCAN is used for all kinds of
metric data spaces only. While meeting real-time constraints
in clustering data streams using parallelization in the cloud,
the Cloud DIKW [61] introduced a cloud framework using
integrated parallel batch and stream processing.

Moreover, clustering social media data streams are used
as a tested application domain. Recently, the [62] presented
a parallel implementation of a multi-objective feature selec-
tion. The algorithm makes possible use of high dimensional
datasets when there are much more features than data items.
The feature selection is most helpful in classification.

IV. EVALUATIONS
A. RESULTS AND DISCUSSION
In this paper, we surveyed 101 algorithms in various clus-
tering type, which includes most of the relevant clustering

algorithms. We collected a large number of algorithms in
different types to figure out the common themes of cluster-
ing type (such as scalability, complexity, data type) without
focusing on the special considerations for each algorithm
(such as application area, and data processing. The main
criteria of paper selection was as the following: The main
paper is proposed a clustering algorithm, and the algorithm
is comparable with competitors in the same clustering area.

Figure 11 shows the percentage of each clustering method
in the studied algorithms. The partition-based method had
the most significant proportion, with 25% of all algorithms.
20% of the study algorithms applied an expandable method.
Figure 12 shows the percentage of scalable processes that are
not scalable. Projection-based algorithms were the highest
research trend due to the ease with which this method applied
against other scalable technologies.

Table 3 shows the clustering algorithm comparison clas-
sified according to their type and arranged chronologi-
cally within each class. The data are collected, directed
from algorithms’ reference, and validated from other sur-
veys [14], [63]–[72]. We evaluated the techniques based on
the following:

1) Data Size: which determines the ability of the algo-
rithm to operate using very large or limited data size

2) High Dimensions: It determines the strength of the
algorithm work with large dimensions of data.

3) Streaming: This defines the way the algorithm uses
data, either Batch or stream way.

4) Spatial Data Processing: Algorithm’s ability to deal-
ing with complex and vital data types such as spatial.

5) Different data types: to determines whether the algo-
rithm can work on more than one type of data at the
same time.

6) Handling Noise: Algorithm’s ability to overcome the
outliers.

7) Arbitrary Shape: The cluster shape output.
8) Scalable: determine if the algorithm includes any of the

four scalable methods, which are sampling, projection,
parallel, and Map-Reduced.

9) Complexity: The time complexity of algorithms which
classify the complexity of the algorithm into three
classes; first, if the algorithm complexity is linear or
semi-linear, then complexity class is low; if it is below
quadratic, then complexity class is Middle, and if it is
quadratic or above then the complexity is high.

10) No of Parameters: The number of Parameters the
algorithm needs to operate

11) Data Type: The type of data that is suitable for a
specific algorithm.

B. SUMMARY
Figure 13 presents a summary of the characteristic of the
studied algorithms listed in Table 3. The percentage in table
represents the average of feature in each algorithm’s category.
From this statistic, the following observed:
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TABLE 3. Classification and characteristic of clustering algorithms.
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TABLE 3. (Continued.) Classification and characteristic of clustering algorithms.

FIGURE 13. Percentage of surveyed algorithms with corresponding features.

• Often the grid-based algorithms can handle exten-
sive, high-dimensional data and then density-based
algorithms. To manage the stream data, we find

most of the algorithms depend on density, grid-based,
then partitioning-based, while the hierarchical and
model-based among the least researched here.
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• Most of the algorithms have high complexity implemen-
tation, except grid-based and density-based algorithms;
most of their application is between medium and low
complexity.

• Partitioning and model-based researches are usually
based on numeric data types, and this limits its use
in many fields. When datatype is a complex structure,
the grid-based methods are more distinct.

In Table 1, we summary most of the advantages and limita-
tions based on the clustering type. While in Table 2, summary
most of the pros and restrictions based on a scalable model.

V. CONCLUSION
In this paper, we survey the literature to analyze and evalu-
ate traditional and scalable clustering algorithms on big and
large-scale datasets. First, we studying the different types of
clustering and summarized the characteristics of the algo-
rithms studies based on the algorithm’s characteristics, scal-
ability, handling noise, data type, and complexity. Second,
we compare the general characteristics of the clustering types.
Finally, we summarized the strengths and weaknesses of each
variety of clustering methods and scalable techniques. The
main results obtained from the selected studies are:
• The new scalable techniques are decreases due to the
new direction of research toward implementing algo-
rithms on the cloud-based infrastructure rather than
developing new practical methods.

• The most commonly used method for scalable tech-
niques in the studies was the partitioning-based algo-
rithms then hierarchical-based algorithms.

• The density-based and grid-based algorithms found to
be the most common techniques to handle large data
size with noise in the literature. However, it observed
that very few studies use mixed datatype datasets for
evaluating the effectiveness of algorithm results.

• Grid-based algorithms were the fastest techniques to
handle high dimensionality data.

• The most commonly used method for handling stream
data in the studies was density-based algorithms.

We conclude that large size, high dimensional, speed, noise,
shapes, and values integrated to form critical challenges in the
data mining and analysis field. Hence, these challenges real-
ized using scalable techniques such as cloud and parallelism.
Since there is a wide range of scalable techniques used,
the choice and implementation of the best model add addi-
tional challenges. The assessment study will give researchers
the way to choose the appropriate techniques for choosing or
developing a scalable clustering algorithm according to the
considerations mentioned earlier.

FUTURE WORK
The large dimensional size of the data, the speed of data
processing, data noise, data complexity, are integrated to form
critical challenges in the field of data mining and analysis.
Hence, these challenges realized using scalable techniques
such as cloud and parallelism to handling data challenges.

However, there is a wide range of scalable techniques across
the current methods are used. The choice and implementation
of the best model add additional challenges to researchers.
Besides data problems designing new intelligent techniques
for auto-adaptive based on data type, then auto partitioning
data, distributing toward multiple methods, and collecting or
sorting results at the same time is considered an open point to
research.
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