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ABSTRACT Starting from the car suspension system, the nonlinear characteristics of a class of two-degree-
of-freedom oscillators with strong nonlinearity under a periodic excitation are discussed by the switching
theory of flow in discontinuous dynamical systems. Based on the discontinuous forces and different motions
of the two masses, the phase plane of each mass is composed of stick domain, nonstick domain (or free
domain) and separation boundary in absolute and relative coordinates, respectively. The swithching criteria
between the stick and nonstick motions and the conditions of grazing motion in two different regions are
developed via the G-functions and switching control laws. The mapping dynamics theory is used to give
the four-dimensional transformation set and four-dimensional mapping, and the conditions for periodic
motions are explored. In addition, the stick motions, two kinds of grazing motions, periodic motions for this
system and a comparison of the velocities, accelerations (or forces responses) of the two masses under the
two conditions of control force are simulated numerically. The results show that the stability and comfort
of the vehicle can be improved by adjusting the control force, which is generated by the control unit of
system or exerted by the external excitation. For further investigating the influence of system parameters on
dynamical behaviors, the stick and grazing bifurcation scenarios varying with driving frequency or amplitude
are also developed, which can provide useful information for parameter selection of vibration systems with
clearance and the optimal design of vehicle suspension systems. This paper also has important reference
value for practical applications in other industries or machinery with elastic impacts.

INDEX TERMS Discontinuous dynamical system, strong nonlinearity, switchability, stick motion, grazing
motion, periodic motion.

I. INTRODUCTION
Vehicle vibration is an important factor that affects the ride
comfort, stability and life of automobile parts, and serious
car vibration can also affect the speed of the car and generate
noise. Therefore, it is very necessary to investigate vehicle
vibration and control it at the lowest level. The vibration
resulted from the interaction between vehicle and road sur-
face can be reduced by suspension system, thus an effective
suspension system is essential to handling safety, reliability
and other performance of vehicles. At present, themechanism
of the suspension system has been comprehensively analyzed
in linear systems, but the nonlinear researches are still very
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poor. In fact, the nonlinear factors of vehicle suspension
system have prominent influence on the stability of vehi-
cles, see [1]–[3]. A lot of researches have been done on car
suspension system, see [4]–[14]. However, many suspension
systems may be affected by clearance or damping between
components, which makes such systems produce strongly
nonlinear, discontinuous and even more complex dynamic
behaviors, so it more difficult for us to study the dynamical
characteristics of this kind of oscillator. Consequently, it is
a significant work to study the dynamical behaviors of such
discontinuous dynamical systems.

As we all known, discontinuous dynamical systems caused
by friction, impact and other factors extensively exist in
mechanical engineering. For decades, numerous researches
on piecewise linear dynamical systems have been carried
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out. As early as in 1930, Hartog [15] considered a simple
mechanical model subjected to the friction force and gave the
numerical results to demonstrate the validity of periodic solu-
tion of this system. After that, an investigation on the analytic
solution of a support-excited system subjected to friction was
carried out via Fourier series, see [16]. Masri [17] made an
experimental investigation on impact damping via a SDOF
(single-degree-of-freedom)model in 1967. In 1982 and 1983,
Thompson and Ghaffari [18], [19] did extensive numeri-
cal work on the resonance of impact oscillators. Moreover,
a bilinear impact oscillator with an elastic constraint on the
right side was discussed by using analytical methods, and
a simple harmonic oscillator with a rigid constraint and a
harmonic excitation was considered, which can be referred
in [20], [21], respectively. With the development of science,
technology and society, more andmore scholars have become
interested in the study of friction and impact oscillators.
In 1964 and 1988, Filippov used the theory of differential
inclusion and convex functions to discuss a kind of differ-
ential equation with discontinuous right-hand sides, and pre-
sented comprehensive discussion of this kind of differential
equation, which can be referred in [22], [23]. In addition,
further investigation of Filippov systems is available in [24].
In 2008, Bernardo et al. [25] described a qualitative theory
for non-smooth systems and provided a method to study the
bifurcation behavior of such systems. Since 1996, there have
been a lot of discussions with respect to the characteristics of
the non-smooth mechanical model, see [26]–[30]. The above
investigations provide a lot of meaningful information and a
good foundation for the analysis of discontinuous dynamics
systems.

In engineering practice, the impact and friction between
machine parts are very common and unavoidable, which
makes the dynamical behaviors of oscillator be very compli-
cated in discontinuous dynamical systems. In 1964, Yeh [31]
gave an exact solution for steady forced vibration of a
2-DOF (two-degree-of-freedom) oscillator subjected to vis-
cous dampers and friction. Zbiciak and Kozyra [32] investi-
gated a dynamic problem in viscoelastic and fractional-elastic
rheological models with an unilateral constraint in 2015.
From 1990 to 2001, the non-smooth dynamical behaviors
on beam-mass, thin-walled and elastic structures were exten-
sively investigated by Balachandran et al., see [33]–[36]. In
2004, a comprehensive approach for the design and control
of mechanical systems with clearance joints was proposed,
which can be applied to the prediction of the dynamical
behaviors of such mechanical systems, see [37] for details.
There are also numerous researches on multibody systems in
bioengineering, for example, the work on the biomechanical
spine in [38], and artificial hip implants in [39]. In various
engineering applications, one of the most important problems
of the modeling in the vibration impact system is how to
select an appropriate impact model. [40] gave hard versus
soft impacts in oscillatory systems modeling. Some applica-
tions of soft impact models in engineering were presented
in [41]–[44], and some applications of hard impact models

can be seen [45], [46]. Moreover, [47]–[55] considered the
characteristics of the discontinuous systems subjected to
impulsive, Boolean control and so on.

However, there is little research on how the motion state
switches at the separated boundary in the multi-degree-of-
freedom oscillator. Recently, in order to study the problem
of flow switching on separation boundary, Luo [56], [57]
developed a systematic theory of flow switchability on sepa-
ration boundary and gave the detailed introduction about this
theory. This general theory was applied to study the switching
criteria of flows for a discontinuous system in [58]. In the
same year, Luo and Chen [59] analyzed and predicted the
grazing and periodic motions of a plastic impact oscillator. In
2007, the onset and vanishing criteria of different motions in
a simplified brake model were considered by Luo and Thapa,
see [60]. More systematic theory on the switching control
law can be seen in Luo [61]–[63]. For instance, in 2014,
O’Connor and Luo [64] considered the switching criteria
of motion for a friction model combined with impact. In
2018, Fan et al. [65] studied the passable conditions on the
separation boundary of an oscillator subjected to friction
force. In the same year, Sun and Fu [66] studied the dis-
continuous dynamical behaviors of a SDOF oscillator. Based
on this general theory, many investigations on this kind of
system with friction and impact have been done, and specific
examples can be found in [67]–[75].

Activated by a simplified system for the active suspension
system of vehicles, the aim of the work described in this
paper is to investigate the dynamics of a class of 2-DOF
oscillators with strong nonlinearity under a periodic excita-
tion by the flow switching theory in discontinuous dynamical
systems, which can describe the dynamic behavior of lots
of mechanical components, for instance rotating members of
robots and vibration dampers and so on. [1]–[13] highlighted
the different technological processes used for suspension sys-
tem control or focused on the method of optimal design for
passive, semi-active and active vehicle suspension systems,
for example sliding mode control, constrained multiobjective
evolutionary search, fuzzy control and genetic algorithm etc.
In above these discontinuous dynamical systems, the motion
switchability, stick and grazing motions were paid little atten-
tion, therefore the discussions on the dynamical complexity
of such systems were not enough. For such discontinuous
dynamic system derived from the active suspension system’s
model of vehicles, all possible motions are considered and the
formulation of switching conditions of motion is presented
using recent switching theory of flow, and at the same time
the numerical simulation for several typical motions and
stick and grazing bifurcation scenarios varying with driving
frequency or amplitude are further given.

In this paper, the physical model of an active suspension
system of vehicles will be introduced first. Owing to the
clearance existing in the system, the phase plane of this
system is partitioned into stick domains, nonstick domains (or
free domains) by separation boundaries in absolute and rela-
tive frames, respectively. Furthermore, the switching criteria
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between the stick and nonstick motions and the condi-
tions of grazing motion in two different regions can be
presented based on the G-functions at discontinuous bound-
aries. By employing the mapping dynamics theory, the
four-dimensional transformation set and four-dimensional
mapping are given and the conditions for periodic motions
are developed. Combined with the criteria of occurrence for
all kinds of motions, the stick motions, two kinds of graz-
ing motions and periodic motions for this system are simu-
lated numerically. Finally, the comparison of the velocities
and accelerations (or forces responses) for the two masses
under the two conditions of control force, and the stick
and grazing bifurcation scenarios varying with driving fre-
quency or amplitude are further carried out to better demon-
strate the dynamical behaviors in such system.

II. DESCRIPTION OF PROBLEM
Based on the car suspension system, a 2-DOF mechanical
model with strong nonlinearity under a periodic excitation
is considered in this paper, and the two masses m(1), m(2)

and a base in physical model stand for the wheel, car body
and the ground, respectively. As sketched in Fig. 1, there are
three components connected by two vertical linear springs of
suspension stiffness coefficients ki and two dampers of sus-
pension damping coefficients ci (i = 1, 2); and a combined
device consisting of a spring of stiffness coefficient k3 and a
damper of damping coefficients c3 is fixed on the mass m(1).
The distance between the mass m(2) and the combined device
is e when they are in their respective equilibrium positions.
X is the road profile function acting on the base, which is
set as a simple harmonic function in this paper, i.e., X (t) =
A sin�t , where A and � are the excitation amplitude and
frequency, respectively. As a consequence, if the road profile
is assumed to be harmonic, the horizontal speed v of the car is
constant and the wavelength is l, then we have the frequency
� = 2πv

l . This car suspension model is limited to discuss the
dynamical behavior in the vertical direction only. The origins
of coordinates for the two masses m(1), m(2) and the base are
set as their respective equilibrium positions. x(α) andX denote
the vertical displacement of the masses m(α) (α = 1, 2) and
the base, respectively. In this model, the control force (i.e.,
desired actuator force) f (t) between body mass and wheel
mass, which depends on acceleration and velocity of car body
and the deflection speed of car body relative to wheel, can
be created by a unit (for example, a fuzzy logic controller in
[12]). The vehicle is assumed tomovewith a constant forward
speed v to model the road input, then the vertical velocity
can be taken as a white noise process which is approximately
true for most of real roadways. The base is affected by a road
profile function X (t), thus the equation of motion of the base
reads

X (t)=A sin�t, Ẋ (t)=A� cos�t, Ẍ (t)=−A�2 sin�t,

(1)

where Ẋ = dX/dt .

FIGURE 1. Physical model.

For this system, due to the limited clearance between the
masses m(α) (α = 1, 2), the motion states of each mass
can be divided into two categories: nonstick motion (or free
motion) and stick motion. If the mass m(2) does not reach
to the combined device, or the third linear spring is not
compressed ( i.e. , x(1) − x(2) 6 e), this motion is called
nonstick motion (or free motion). If the mass m(2) reaches to
the combined device and the third linear spring is compressed
( i.e. , x(1) − x(2) > e), then the two masses move together
under the effect of the third linear spring and damper, this
motion is called stick motion.

When the mass m(2) moves freely, its behavior is only
affected by the second linear spring and damper and the
control force. In other words, when both the two masses are
moving freely, they are not affected by the force of the third
linear spring and damper. According to the above analysis,
the equations for the massesm(1) andm(2) during the nonstick
motion can be given by using Newton’s second law, i.e.,
m(1)ẍ(1)+k2(x(1)−x(2))+c2(ẋ(1)−ẋ(2))=−k1(x(1)−X )

−c1(ẋ(1)−Ẋ )−f (t),
m(2)ẍ(2)+k2(x(2)−x(1))+c2(ẋ(2)−ẋ(1))= f (t),

(2)

where ẍ(α) and ẋ(α) stand for the acceleration and velocity of
the mass m(α) (α ∈ {1, 2}), respectively.
When the mass m(2) reaches to the combined device and

moves together with it, the behaviors of two massesm(α)(α =
1, 2) are affected by the third linear spring and damper. There-
fore, the equations for the masses m(α) (α = 1, 2) during the
stick motion are written as
m(1)ẍ(1)+k2(x(1)−x(2))+c2(ẋ(1)−ẋ(2))+k3(x(1)−x(2) − e)
+c3(ẋ(1)−ẋ(2))=− k1(x(1)−X )−c1(ẋ(1)−Ẋ )− f (t),

m(2)ẍ(2)+k2(x(2)−x(1))+c2(ẋ(2)−ẋ(1))−k3(x(1)−x(2)−e)
−c3(ẋ(1)−ẋ(2))= f (t).

(3)

For simplicity of notation, we give the following symbols

A(α) =
k2
m(α) , B(α)=

c2
m(α) , C

(α)
=

k3
m(α) , D

(α)
=

c3
m(α) ,

E (α)
=

f (t)
m(α) , η

(1)
=

k1
m(1) , ξ

(1)
=

c1
m(1) , (4)
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FIGURE 2. Absolute domains and boundaries without stick: (a) mass m(1) and
(b) mass m(2).

where α = 1, 2. Therefore, the equations of nonstick motion
for this mechanical model are
ẍ(1)+A(1)(x(1)−x(2))+B(1)(ẋ(1)−ẋ(2))=−η(1)(x(1)−X )

−ξ (1)(ẋ(1)−Ẋ )−E (1),

ẍ(2)+A(2)(x(2)−x(1))+B(2)(ẋ(2)−ẋ(1))=E (2),

(5)

and the equations of stick motion for this mechanical model
are
ẍ(1)+A(1)(x(1)−x(2))+B(1)(ẋ(1)−ẋ(2))+C (1)(x(1)−x(2)−e)
+D(1)(ẋ(1)−ẋ(2))=−η(1)(x(1)−X )−ξ (1)(ẋ(1)−Ẋ ),

−E (1)ẍ(2)+A(2)(x(2)−x(1))+B(2)(ẋ(2)−ẋ(1))
−C (1)(x(1)−x(2)−e)−D(1)(ẋ(1)−ẋ(2))=E (2).

(6)

III. DOMAINS AND BOUNDARIES
Based on the above discussion, the force acting on the mass
m(α) (α ∈ {1, 2}) is discontinuous, and the phase plane
is composed of two different domains including nonstick
domain and stick domain and a discontinuous boundary for
each mass. In order to better study the motions in different
domains and transformation mechanism of motion at dis-
continuous boundaries for each mass, the division of the
phase space in absolute and relative frames will be given
in the following two subsections, respectively. Hereinafter,
the origins of coordinates for each mass and the base are set
as their respective equilibrium positions.

A. DOMAINS AND BOUNDARIES IN ABSOLUTE
COORDINATES
Consider the nonstick motions for the massesm(α) (α = 1, 2)
first. The corresponding named regions �(α)

1 (α = 1, 2) are{
�

(1)
1 =

{
(x(1), ẋ(1))|x(1)∈(−∞, x(2)+e), ẋ(1)∈(−∞,+∞)

}
,

�
(2)
1 =

{
(x(2), ẋ(2))|x(2)∈(x(1)−e, +∞), ẋ(2)∈(−∞,+∞)

}
,

(7)

and the separation boundaries ∂�(1)
1(+∞) and ∂�(2)

1(−∞) are
introduced as

∂�
(1)
1(+∞)=

{
(x(1), ẋ(1)) | ϕ(1)1(+∞)≡x

(1)
−x(2)−e=0,

ẋ(1) ∈ (−∞,+∞)
}
,

∂�
(2)
1(−∞)=

{
(x(2), ẋ(2)) | ϕ(2)1(−∞)≡x

(2)
−x(1)+e=0,

ẋ(2) ∈ (−∞,+∞)
}
,

(8)

where the subscripts±∞ stand for the permanent boundaries,
herein assume that the mass m(2) cannot reach the combined
device. The above absolute domains �(α)

1 (α = 1, 2) and the
separation boundaries ∂�(1)

1(+∞) and ∂�
(2)
1(−∞) are sketched

in Fig. 2. With the assumption that the massm(2) cannot move
together with the combined device, the separation boundaries
are permanent impassable boundaries. The shaded regions
denote the nonstick (or free) motion domains�(α)

1 (α = 1, 2)
for the masses m(α) (α = 1, 2), and the red dashed curves
stand for the separation boundaries ∂�(1)

1(+∞) and ∂�
(2)
1(−∞).

For this 2-DOF mechanical model, the stick motion for the
massm(2) touching with the combined device can occur under
appropriate conditions. For this case, the phase plane can be
divided into new domains by boundaries. The absolute stick
domains �(α)

0 and the nonstick domains �(α)
1 (α = 1, 2) for

the masses m(α) (α = 1, 2) are expressed by
�

(1)
0 =

{
(x(1), ẋ(1))|x(1)∈(x(2)cr+e, +∞), ẋ(1)∈(−∞,+∞)

}
,

�
(2)
0 =

{
(x(2), ẋ(2))|x(2)∈(−∞, x(1)cr−e), ẋ

(2)
∈(−∞,+∞)

}
,

�
(1)
1 =

{
(x(1), ẋ(1))|x(1)∈(−∞, x(2)cr+e), ẋ

(1)
∈(−∞,+∞)

}
,

�
(2)
1 =

{
(x(2), ẋ(2))|x(2)∈(x(1)cr−e, +∞), ẋ(2)∈(−∞,+∞)

}
,

(9)

where x(α)cr are the critical displacements of the masses
m(α)(α = 1, 2) for appearance or vanishing of the stick
motion with x(1)cr − x(2)cr = e. The corresponding absolute
displacement boundaries are defined as
∂�

(1)
01 =

{
(x(1), ẋ(1)) | ϕ(1)01≡x

(1)
−x(2)cr −e=0, ẋ

(1)<ẋ(2)cr
}
,

∂�
(2)
01 =

{
(x(2), ẋ(2)) | ϕ(2)01≡x

(2)
−x(1)cr +e=0, ẋ

(2)>ẋ(1)cr
}
,

∂�
(1)
10 =

{
(x(1), ẋ(1)) | ϕ(1)10≡x

(1)
−x(2)cr −e=0, ẋ

(1)>ẋ(2)cr
}
,

∂�
(2)
10 =

{
(x(2), ẋ(2)) | ϕ(2)10≡x

(2)
−x(1)cr +e=0, ẋ

(2)<ẋ(1)cr
}
,

(10)
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FIGURE 3. Absolute domains and boundaries with stick: (a) mass m(1) and (b) mass m(2).

where the ẋ(α)cr denote the critical velocity of the masses m(α)

(α = 1, 2) for the appearance and vanishing of the stick
motion. The above domains�(α)

0 ,�(α)
1 and boundaries ∂�(α)

10 ,
∂�

(α)
01 (α = 1, 2) are plotted in Fig. 3. The blue domain

�
(α)
0 and shaded region �(α)

1 (α ∈ {1, 2}) stand for the
domains of stick motion and nonstick motion for the mass
m(α) (α ∈ {1, 2}), respectively. The boundaries ∂�(α)

10 , ∂�
(α)
01

(α ∈ {1, 2}) represented by the red dashed curves denote
the displacement boundaries when the stick motion of the
object appears or disappears, and the black arrows indicate
the direction in which the domain flows pass through the
corresponding boundary in Fig. 3. For this 2-DOF oscillator
with strong nonlinearity under a periodic excitation, herein
we define the vectors of the flow and the corresponding vector
field as

x(α)λ , (x(α)λ , ẋ(α)λ ),F(α)
λ , (ẋ(α)λ ,F (α)

λ )T, λ=0, 1 and α=1, 2,

(11)

where the superscript α stands for the mass m(α) (α ∈ {1, 2}),
and λ = 0 and λ = 1 represent the stick motion in domain
�

(α)
0 and nonstick motion in domain �(α)

1 (α ∈ {1, 2}),
respectively. Then the equations of motion in absolute frame
for the mass m(α) can be rewritten as

ẋ(α)λ = F(α)
λ (x(α)λ , x(α)λ , t), λ = 0, 1, (12)

where α 6= α ∈ {1, 2}; and
F (1)
1 (x(1)λ , x

(2)
λ , t)=−A

(1)(x(1)λ −x
(2)
λ )−B(1)(ẋ(1)λ −ẋ

(2)
λ )

− η(1)(x(1)λ −X )−ξ
(1)(ẋ(1)λ −Ẋ )−E

(1),

F (2)
1 (x(2)λ , x

(1)
λ , t)=−A

(2)(x(2)λ −x
(1)
λ )

−B(2)(ẋ(2)λ −ẋ
(1)
λ )+ E (2)

(13)

for the nonstick motion (λ = 1); and

F (1)
0 (x(1)λ , x

(2)
λ , t)

=−A(1)(x(1)λ −x
(2)
λ )−B(1)(ẋ(1)λ −ẋ

(2)
λ )

−C (1)(x(1)λ −x
(2)
λ −e)−D

(1)(ẋ(1)λ −ẋ
(2)
λ )

−η(1)(x(1)λ − X )− ξ
(1)(ẋ(1)λ − Ẋ )− E

(1),

F (2)
0 (x(2)λ , x

(1)
λ , t)

=−A(2)(x(2)λ −x
(1)
λ )−B(2)(ẋ(2)λ −ẋ

(1)
λ )

+C (1)(x(1)λ −x
(2)
λ −e)+D

(1)(ẋ(1)λ −ẋ
(2)
λ ) + E (2)

(14)

for the stick motion (λ = 0).

B. DOMAINS AND BOUNDARIES IN RELATIVE
COORDINATES
In absolute coordinates, all the boundaries in phase plane
are varying with time, and the appearance and vanishing
of stick motion are dependent on the relative displacement
and relative velocity in such suspension system of vehicles.
Hence, it is very difficult to obtain the criteria for stick,
nonstick and grazing motions of each object for such system
in absolute coordinates. Therefore, it is necessary to introduce
relative coordinates for the masses m(1) and m(2) herein. The
relative displacement, velocity and acceleration of the mass
m(α) (α ∈ {1, 2}) to the mass m(ᾱ) are defined as

z(α)=x(α)−x(ᾱ), ż(α)= ẋ(α)−ẋ(ᾱ), z̈(α)= ẍ(α)−ẍ(ᾱ), (15)

where i 6= i ∈ {1, 2}. The relative domains and boundaries
for the mass m(α) (α ∈ {1, 2}) are sketched in Fig. 4. The
stick domain �(α)

0 and nonstick domain �(α)
1 (α ∈ {1, 2})

are plotted by blue areas and shaded regions, respectively.
The displacement boundary ∂�(α)

01 or ∂�(α)
10 (α ∈ {1, 2}) is

independent of time and becomes a straight line represented
by red dashed curves as plotted in Fig. 4.
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FIGURE 4. Relative domains and boundaries with stick: (a) mass m(1) and (b) mass m(2).

The relative stick domain �(α)
0 and nonstick domain �(α)

1
for motion of the mass m(α) (α ∈ {1, 2}) are defined by

�
(1)
0 =

{
(z(1), ż(1)) |z(1)∈(e, +∞), ż(1)∈(−∞, +∞)

}
,

�
(2)
0 =

{
(z(2), ż(2)) |z(2)∈(−∞, −e), ż(2)∈(−∞, +∞)

}
,

�
(1)
1 =

{
(z(1), ż(1)) |z(1)∈(−∞, e), ż(1)∈(−∞, +∞)

}
,

�
(2)
1 =

{
(z(2), ż(2)) |z(2)∈(−e, +∞), ż(2)∈(−∞, +∞)

}
,

(16)

and the relative displacement boundary ∂�(α)
01 or ∂�(α)

10 of the
mass m(α) (α ∈ {1, 2}) is given by

∂�
(1)
01 =

{
(z(1), ż(1)) | ϕ(1)01 ≡ z(1)cr − e = 0, ż(1) < 0

}
,

∂�
(2)
01 =

{
(z(2), ż(2)) | ϕ(2)01 ≡ z(2)cr + e = 0, ż(2) > 0

}
,

∂�
(1)
10 =

{
(z(1), ż(1)) | ϕ(1)10 ≡ z(1)cr − e = 0, ż(1) > 0

}
,

∂�
(2)
10 =

{
(z(2), ż(2)) | ϕ(2)10 ≡ z(2)cr + e = 0, ż(2) < 0

}
,

(17)

where the boundary ∂�(α)
01 or ∂�(α)

10 is the displacement (or
stick) boundary of the mass m(α) (α ∈ {1, 2}), and z(α)cr stands
for the relative displacement of the massm(α) (α ∈ {1, 2}) for
the appearance or vanishing of the stick motion.

In relative frames, the state vector and vector of vector field
for the mass m(α) (α ∈ {1, 2}) are defined as

z(α)λ , (z(α)λ , ż(α)λ ), g(α)λ , (ż(α)λ , g(α)λ )T, λ = 0, 1, (18)

where λ = 0 and λ = 1 represent the stick motion in domain
�

(α)
0 and nonstick motion in domain �(α)

1 , respectively. Then
the equation of motion of the vector form for the mass m(α)

(α ∈ {1, 2}) in relative frames is

ż(α)λ =g
(α)
λ (z(α)λ , x

(ᾱ)
λ , t) with ẋ(ᾱ)λ =F

(ᾱ)
λ (x(ᾱ)λ , x(α)λ , t), (19)

where λ = 0, 1, α 6= ᾱ ∈ {1, 2}; and

g(1)1 = −(A
(1)
+ A(2))z(1)1 − (B(1) + B(2))ż(1)1

−η(1)(z(1)1 + x
(2)
1 − X )− ξ

(1)(ż(1)1 + ẋ
(2)
1 − Ẋ )

−E (1)
− E (2),

g(2)1 = (A(1) + A(2))z(1)1 + (B(1) + B(2))ż(1)1

+η(1)(x(1)1 − X )+ ξ
(1)(ẋ(1)1 − Ẋ )

+E (1)
+ E (2)

(20)

for the nonstick motion (λ = 1); and

g(1)0 = −(A
(1)
+ A(2))z(1)0 − (B(1) + B(2))ż(1)0

−η(1)(z(1)0 + x
(2)
0 − X )− ξ

(1)(ż(1)0 + ẋ
(2)
0 − Ẋ )

−2C (1)(z(1)0 − e)− 2D(1)ż(1)0 − E
(1)
− E (2),

g(2)0 = (A(1) + A(2))z(1)0 + (B(1) + B(2))ż(1)0

+η(1)(x(1)0 − X )+ ξ
(1)(ẋ(1)0 − Ẋ )

+2C (1)(z(1)0 − e)+ 2D(1)ż(1)0 + E
(1)
+ E (2)

(21)

for the stick motion (λ = 0).

IV. ANALYTICAL CONDITIONS
For the transformation mechanism of the 2-DOF oscil-
lator with strong nonlinearity under a periodic excita-
tion, the switching criteria of stick (or passable) motion
and two kinds of grazing motions on dynamic displace-
ment boundaries will be given in the following theo-
rems by using the general theory of flow switchability in
Luo [63].

Before developing the switching criteria of motion at dis-
continuous boundaries, the normal vectors of the discontin-
uous boundaries should be defined. From the function of
the boundary determined in phase space, the normal vector
of the separation boundaries in relative frames is defined
as

n
∂�

(α)
ij
=

h
ϕ
(α)
ij = (

∂ϕ
(α)
ij

∂z(α)
,
∂ϕ

(α)
ij

∂ ż(α)
)T, (22)

where
`
= (∂/∂z, ∂/∂ ż)T is the Hamilton operator, i 6=

j ∈ {0, 1}. Considering the fact that the displacement
(or stick) boundary ∂�

(α)
01 or ∂�(α)

10 (α ∈ {(1, 2)}) of
motion for the mass m(α) (α ∈ {1, 2}) is independent on
time in relative frames according to (17), thus using (22),
we have

n
∂�

(α)
10
= n

∂�
(α)
01
= (1, 0)T. (23)

Further, the zero-order G-function and first-order
G-function for the relative displacement (or stick) boundaries
∂�

(α)
ij (i 6= j ∈ {0, 1} and α = 1, 2) can be expressed
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as

G(0,λ)

∂�
(α)
ij

(z(α)λ , tm±) ≡ G(0,λ)

∂�
(α)
ij

(z(α)λ , x(ᾱ)λ , t)
∣∣∣
t=tm±

= nT
∂�

(α)
ij
· g(α)λ (z(α)λ , x(ᾱ)λ , t)

∣∣∣
t=tm±

, (24)

G(1,λ)

∂�
(α)
ij

(z(α)λ , tm±) ≡ G(1,λ)

∂�
(α)
ij

(z(α)λ , x(ᾱ)λ , t)
∣∣∣
t=tm±

= nT
∂�

(α)
ij
· Dg(α)λ (z(α)λ , x(ᾱ)λ , t)

∣∣∣
t=tm±

, (25)

where tm denotes the switching time of the flow z(α)λ
on the corresponding boundary and tm± = tm ± 0
stands for responses in domains rather than on the
boundaries.

Using the G-functions and the related theory in Luo [63],
the conditions of switchability for stick motion and
the two kinds of grazing motions to the boundary are
given.
Theorem 1: For the 2-DOF oscillator described in

Section 2, if a flow of such system contacts the relative
displacement boundary ∂�(α)

10 (α ∈ {1, 2}) at time tm, the fol-
lowing analytical results hold.
(i) The onset conditions for stick motion of the mass m(1) on

the displacement boundary ∂�(1)
10 at time tm are guaranteed

by

either ż(1)1 (tm−)>0 and ż(1)0 (tm+)>0;

ż(1)1 (tm−)=0 and g(1)1 (tm−)>0,
or

ż(1)0 (tm+)=0 and g(1)0 (tm+)>0




for �(1)

1 →�
(1)
0 .

(26)

(ii) The onset conditions for stick motion of the mass m(2)

on the displacement boundary ∂�(2)
10 at time tm are guaran-

teed by

either ż(2)1 (tm−)<0 and ż(2)0 (tm+)<0;

ż(2)1 (tm−)=0 and g(2)1 (tm−)<0,
or

ż(2)0 (tm+)=0 and g(2)0 (tm+)<0




for �(2)

1 →�
(2)
0 .

(27)

Proof: The stick motion occurs when the relative dis-
placement of the mass m(1) to the mass m(2) is e at time tm
and is greater than e after time tm, in other words, the nonstick
motion will turn to stick motion during this process. And the
essence of this transformation process is the same as the semi-
passable flow on the boundary ∂�(1)

10 as described in sys-
tematic theory of flow switchability at separation boundary
of [63].

Using the G-functions and decision theorems in Luo [63],
the criteria for the appearance of stick motion of the first mass

at x(1)m ∈ ∂�
(1)
10 with time tm are

either G(0,1)

∂�
(1)
10

(z(1)λ , tm−) > 0,

G(0,0)

∂�
(1)
10

(z(1)λ , tm+) > 0;

G(0,1)

∂�
(1)
10

(z(1)λ , tm−) = 0 and

G(1,1)

∂�
(1)
10

(z(1)λ , tm−) > 0,

and
G(0,0)

∂�
(1)
10

(z(1)λ , tm+) = 0 and

G(1,0)

∂�
(1)
10

(z(1)λ , tm+) > 0





for �(1)
1 → �

(1)
0 .

(28)

Combinedwith (18), (23), (24) and (25), the zero-order and
first-order G-functions on the relative displacement boundary
∂�

(1)
10 can be computed by

G(0,λ)

∂�
(1)
10

(z(1)λ , tm±) = nT
∂�

(1)
10
·g(1)λ (z(1)λ , tm±)= ż

(1)
λ (tm±), (29)

G(1,λ)

∂�
(1)
10

(z(1)λ , tm±) = nT
∂�

(1)
10
·Dg(1)λ (z(1)λ , tm±)=g

(1)
λ (tm±), (30)

where λ ∈ {0, 1}.
Integration of (28), (29) and (30) obtains the appearance

criteria in (26). In a similar manner, the appearance criteria
in (27) holds. �
Theorem 2: For the 2-DOF oscillator described in

Section 2, if a flow of such system contacts the relative
displacement boundary ∂�(α)

01 (α ∈ {1, 2}) at time tm, the fol-
lowing analytical results hold.
(i) For the mass m(1), the vanishing of the stick motion on

the displacement boundary ∂�(1)
01 at time tm is guaranteed by

either ż(1)0 (tm−)<0 and ż(1)1 (tm+)<0;

ż(1)0 (tm−)=0 and g(1)0 (tm−)<0,
or

ż(1)1 (tm+)=0 and g(1)1 (tm+)<0




for �(1)

0 →�
(1)
1 .

(31)

(ii) For the mass m(2), the vanishing of the stick motion on
the displacement boundary ∂�(2)

01 at time tm is guaranteed by

either ż(2)0 (tm−)>0 and ż(2)1 (tm+)>0;

ż(2)0 (tm−)=0 and g(2)0 (tm−)>0,
or

ż(2)1 (tm+)=0 and g(2)1 (tm+)>0




for �(2)

0 →�
(2)
1 .

(32)

Proof: The stick motions of the masses m(1) and m(2)

will vanish when the relative displacement of the mass m(1)

to the mass m(2) is equal to e at time tm and is less than e
after time tm. In other words, the stick motion will turn to
nonstick motion during this process, which indicates that this
switching mechanism is similar to that of the appearance of
stick motion for the mass m(1).
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From the non-smooth dynamical theory in Luo [63], the
criteria for the vanishing of stick motion of the first mass at
x(1)m ∈ ∂�

(1)
01 with time tm are

either G(0,0)

∂�
(1)
01

(z(1)λ , tm−) < 0,

G(0,1)

∂�
(1)
01

(z(1)λ , tm+) < 0;

G(0,0)

∂�
(1)
01

(z(1)λ , tm−) = 0 and

G(1,0)

∂�
(1)
01

(z(1)λ , tm−) < 0,

or
G(0,1)

∂�
(1)
01

(z(1)λ , tm+) = 0 and

G(1,1)

∂�
(1)
01

(z(1)λ , tm+) < 0





for �(1)
0 →�

(1)
1 .

(33)

Therefore, integration of (29), (30) and (33) obtains the
criteria for the vanishing of stick motion in (31). Similarly,
(32) holds. �
Theorem 3: For the 2-DOF oscillator described in

Section 2, if a flow of such system contacts the relative
displacement boundary ∂�(α)

10 (α ∈ {1, 2}) at time tm, the fol-
lowing analytical results hold.
(i) The necessary and sufficient conditions for the grazing

motion of the mass m(1) at displacement boundary ∂�(1)
10 in

nonstick domain �(1)
1 at time tm are

ż(1)1 (tm±) = 0 and g(1)1 (tm±) < 0 on ∂�
(1)
10 in �

(1)
1 .

(34)

(ii) The necessary and sufficient conditions for the grazing
motion of the mass m(2) at stick displacement boundary ∂�(2)

10
in nonstick domain �(2)

1 at time tm are

ż(2)1 (tm±) = 0 and g(2)1 (tm±) > 0 on ∂�
(2)
10 in �

(2)
1 .

(35)

Proof: It is worth noting that grazing at the separation
boundary is an important phenomenon in motion transfor-
mation mechanism. When the relative displacement z(1) of
the mass m(1) to the mass m(2) is e at time tm, and is less
than e before and after time tm, the grazing motion on the
displacement boundary in nonstick domain occurs for the
mass m(1). In a same fashion, when the relative displacement
z(2) of the mass m(2) to the mass m(1) is −e at time tm, and is
greater than −e before and after time tm, the grazing motion
on the displacement boundary in nonstick domain occurs for
the mass m(2).
The grazing flow in nonstick domain is just that the flow in

nonstick domain is tangential to the displacement boundary at
time tm and returns back to the nonstick domain after time tm.
Then the criteria for grazing motion at x(1)m ∈ ∂�

(1)
10 with time

tm can be obtained from the discontinuous dynamical theory
in Luo [63], i.e.

G(0,1)

∂�
(1)
10

(z(1)λ , tm±) = 0,

G(1,1)

∂�
(1)
10

(z(1)λ , tm±) < 0

 on ∂�
(1)
10 in �

(1)
1 . (36)

Integration of (29), (30) and (36) proves the criteria of
appearance of the grazing motion in free domain in (34).
In the same way, (35) are obtained. �
Theorem 4: For the 2-DOF oscillator described in

Section 2, if a flow of such system contacts the relative
displacement boundary ∂�(α)

01 (α ∈ {1, 2}) at time tm, the fol-
lowing analytical results hold.
(i) The appearance conditions for the grazing motion of

the mass m(1) on the displacement boundary ∂�(1)
01 in stick

domain �(1)
0 at time tm are

ż(1)0 (tm±)=0 and g(1)0 (tm±) > 0 on ∂�
(1)
01 in �

(1)
0 . (37)

(ii) The appearance conditions for the grazing motion of
the mass m(2) on the displacement boundary ∂�(2)

01 in stick
domain �(2)

0 at time tm are

ż(2)0 (tm±) = 0 and g(2)0 (tm±) < 0 on ∂�
(2)
01 in �

(2)
0 .

(38)

Proof:As discussed in Theorem 3, the switching process
of grazing motion on the separation boundary in the stick
domain is as same as that in nonstick domain, however the
premise and the criteria of grazing in stick domain may be
different. Hence, from Luo [63], the appearance criteria of
grazing motion are

G(0,0)

∂�
(1)
01

(z(1)λ , tm±) = 0,

G(1,0)

∂�
(1)
01

(z(1)λ , tm±) > 0

 on ∂�
(1)
01 in �

(1)
0 . (39)

Combinedwith (29), (30) and (39), (37) are proved. Similarly,
(38) holds. �

V. MAPPING STRUCTURES AND PERIODIC MOTIONS
To better discuss the stick (or passable) motion, grazing
motion and periodic motion with and without stick in the
2-DOF oscillator described in Section 2, the mapping theory
will be a useful and efficient method to help us understand all
the possible periodic motions of such system, and the map-
ping structures will be introduced based on the relative dis-
placement boundaries in this section. Thus, the switching sets
and the corresponding mappings for motions of each mass
will be given primarily, and the four-dimensional mappings
for periodic motions in this oscillator system are constituted
by the corresponding switching sets and basic mappings.
Using such mapping structures, the periodic motions of the
two masses will be determined by a group of nonlinear
algebraic equations. The basic mappings will be discussed in
relative coordinates.

Based on the relative displacement boundaries in (17),
the corresponding switching sets of themassm(α) (α ∈ {1, 2})
are expressed by

(1)
∑

10
= {(x(1)k , ẋ

(1)
k , tk )|x

(1)
k − x

(2)
k = e, k ∈ N},

(1)
∑−

10
= {(x(1)k , ẋ

(1)
k , tk )|x

(1)
k − x

(2)
k = e−, k ∈ N},

(1)
∑+

10
= {(x(1)k , ẋ

(1)
k , tk )|x

(1)
k − x

(2)
k = e+, k ∈ N},

(40)
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FIGURE 5. Generic mappings in phase space: (a) sub-mappings for the mass m(1) and
(b) sub-mappings for the mass m(2).

and
(2)
∑

10
= {(x(2)k , ẋ

(2)
k , tk )|x

(2)
k − x

(1)
k = −e, k ∈ N},

(2)
∑−

10
= {(x(2)k , ẋ

(2)
k , tk )|x

(2)
k − x

(1)
k = −e

+, k ∈ N},

(2)
∑+

10
= {(x(2)k , ẋ

(2)
k , tk )|x

(2)
k − x

(1)
k = −e

−, k ∈ N},
(41)

where x(i)k = x(i)(tk ), ẋ
(i)
k = ẋ(i)(tk ) (i ∈ {1, 2}) are the

displacement and velocity on boundary for themassm(α) (α ∈
{1, 2}) at switching time tk , accordingly; e± = lim

ε→0+
(e± ε).

From the above equations, the four-dimensional switch-
ing sets of two masses in such oscillator system are further
defined as

∑
10
=

(1)
∑

10

⊗
(2)
∑

10
={(x(1)k , ẋ

(1)
k , x

(2)
k , ẋ

(2)
k , tk )|

x(1)k −x
(2)
k =e, k ∈ N},∑−

10
=

(1)
∑−

10

⊗
(2)
∑+

10
={(x(1)k , ẋ

(1)
k , x

(2)
k , ẋ

(2)
k , tk )|

x(1)k −x
(2)
k =e

−, k ∈ N},∑+

10
=

(1)
∑+

10

⊗
(2)
∑−

10
={(x(1)k , ẋ

(1)
k , x

(2)
k , ẋ

(2)
k , tk )|

x(1)k −x
(2)
k =e

+, k ∈ N},
(42)

where the notation
⊗

denotes the direct product of two
switching subsets. For the 2-DOF oscillator system described
in Section 2, the basic mappings for motions of the two
masses m(1) and m(2) are given by

P0 :
∑

10
→

∑
10
, P1 :

∑−

10
→

∑−

10
, P2 :

∑+

10
→

∑+

10
,

(43)

where the generic mappings have two components

P0= ((1)P0, (2)P0)T, P1=((1)P1, (2)P1)T, P2=((1)P2, (2)P2)T

(44)

and
(i)P0 : (i)

∑
10→

(i)∑
10 for i = 1, 2,

(1)P1 : (1)
∑
−

10→
(1)∑−

10,
(2)P1 : (2)

∑
+

10→
(2)∑+

10,
(1)P2 : (1)

∑
+

10→
(1)∑+

10,
(2)P2 : (2)

∑
−

10→
(2)∑−

10 .


(45)

From the above basic mappings, all possible motions
including periodic motions in such system can be described
through a certain mapping structure and be labeled through
such four-dimensional resultant mappings. The generic map-
pings can be determined in Fig. 5. If the motion lies in free
domain �(α)

1 ( i.e. , x(1) − x(2) < e), the mapping is plotted
by the generic mapping (α)P1 (α ∈ {1, 2}); if the motion lies
in stick domain �(α)

0 ( i.e. , x(1) − x(2) > e), the mapping is
sketched by the generic mapping (α)P2 (α ∈ {1, 2}); if the
motion reaches to the displacement boundary ( i.e. , x(1) −
x(2) = e) and the relative velocity of two objects is zero
and this relative motion lasts for a period of time, the generic
mapping is presented by (α)P0 (α ∈ {1, 2}).

Based on the foregoing definitions, the governing equa-
tions of displacement and velocity of the two masses m(1)

and m(2) for the resultant mapping Pi (i ∈ {0, 1, 2}) can be
described by a set of four algebraic equations, i.e.

f(i)(mk ,mk+1) = 0 for Pi, (46)

with 
mk = (x(1)k , ẋ

(1)
k , x

(2)
k , ẋ

(2)
k , tk )

T,

mk+1 = (x(1)k+1, ẋ
(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1)

T,

f(i) = (f (i)1 , f (i)2 , f (i)3 , f (i)4 )T,

(47)

where
f (i)1 (x(1)k , ẋ

(1)
k , x

(2)
k , ẋ

(2)
k , tk, x

(1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1)=0,

f (i)2 (x(1)k , ẋ
(1)
k , x

(2)
k , ẋ

(2)
k , tk , x

(1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1)=0,

f (i)3 (x(1)k , ẋ
(1)
k , x

(2)
k , ẋ

(2)
k , tk , x

(1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1)=0,

f (i)4 (x(1)k , ẋ
(1)
k , x

(2)
k , ẋ

(2)
k , tk, x

(1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1)=0.

(48)
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For analyzing periodic motions in the oscillator system,
the symbol for mapping actions is presented as

Pnknk−1···n1 = Pnk ◦ Pnk−1 ◦ · · · ◦ Pn1 , (49)

where nj ∈ {0, 1, 2} with j = 1, 2, · · · , k .
For instance, consider a generalized mapping structure of

a periodic motion with stick in the following

P = P(2km20km01km1 )···(2k120k101k11 )

≡ (Pkm22 ◦ P
km0
0 ◦ P

km1
1 ) ◦ · · · ◦ (Pk122 ◦ P

k10
0 ◦ P

k11
1 ) (50)

where kiλ ∈ {0, 1} for i ∈ {1, 2, · · · ,m}, λ ∈ {0, 1, 2} and
P0λ = I .
Define a vector

ak ≡ (x(1)k , ẋ
(1)
k , x

(2)
k , ẋ

(2)
k , tk )

T. (51)

From the previous generalized mapping structure, consider
the periodic motion related to the mapping structure in (50)
as

ak+∑m
s=1(ks2+ks0+ks1)

=Pak=P(2km20km01km1 )···(2k120k101k11 )ak .

(52)

Based on the governing equations in (48), one can obtain
a set of nonlinear algebraic equations for such a mapping
structure

f(1)(ak , ak+k11 )=0,

f(0)(ak+k11 , ak+k11+k10)=0,

f(2)(ak+k11+k10 , ak+k11+k10+k12 )=0,

· · · · · ·

f(1)(ak+∑m−1
s=1 (ks1+ks0+ks2)

, ak+∑m−1
s=1 (ks1+ks0+ks2)+km1

)=0,

f(0)(ak+∑m−1
s=1 (ks1+ks0+ks2)+km1

,

ak+∑m−1
s=1 (ks1+ks0+ks2)+km1+km0

)=0,

f(2)(ak+∑m−1
s=1 (ks1+ks0+ks2)+km1+km0

,

ak+∑m
s=1(ks1+ks0+ks2)

)=0. (53)

In addition, the following equations for the periodic motion
with such a mapping structure of the two masses need to be
satisfied

x(α)k+
∑m

s=1(ks2+ks0+ks1)
= x(α)k ,

ẋ(α)k+
∑m

s=1(ks2+ks0+ks1)
= ẋ(α)k ,

�tk+∑m
s=1(ks2+ks0+ks1)

= �tk + 2Nπ, (54)

where N is a positive integer.
Using a similar approach as described above, different

periodic motions for the two masses can be discussed as
in (50)–(54).

VI. NUMERICAL SIMULATIONS
In this section, numerical results will be presented to bet-
ter understand the analytic conditions of different motions.
From the switching criteria as we discussed in Section 4,
the numerical simulations for the switching between the stick
and nonstick motions, the occurrence of grazing motion in
two different regions and periodic motions for the twomasses
will be presented in the first subsection by choosing appropri-
ate parameters and initial conditions, as shown in Figs. 6-10.
Furthermore, the second subsection will give a comparison
of the velocities and accelerations (or forces responses) for
the two masses under the two conditions of control force
(i.e., desired actuator force) f (t) in Fig. 11, and present the
numerical simulation for a periodic motion of this oscillator
subjected to control force f (t) = A1�2

1 sin(�1 t) in Fig. 12.

A. SIMULATIONS IN THE CASE OF f (t) = 0
During simulations, the green dots indicate the starting points
of object’s movement, and the yellow dots stand for the
switching points of motion where the two masses con-
tact the dynamic displacement boundaries. The dynamical
responses of the masses m(α) (α = 1, 2) are presented in
blue and black in Figs. 6-10 (a), (b) and (c), respectively.
The dynamic displacement boundaries for the masses m(α)

(α = 1, 2) are presented by purple and red dashed curves
in Figs. 6-10 (a), accordingly. The trajectories of the two
masses in relative frames are plotted by black curves, and
the relative displacement boundaries are sketched by red
dotted lines in Figs. 6-10 (d). The corresponding 1st-order
G-functions are described in purple and red in Fig. 7 (f),
Fig. 8 (f) and Fig. 10 (f), respectively. The gray regions are the
stick domains, and the black arrows stand for the directions
of motion of such system in the absolute and relative phase
portraits. Figs. 6-10 (g) and (h) describe the corresponding
motion switching and the responses of relative displacement
with respect to time for the mass m(2) in relative frames.
To demonstrate the switching between the stick and non-

stick motions of each mass, the system parameters of the
passable motion in such system are considered as m(1)

=

600 kg, m(2)
= 1300 kg, k0 = 550 N/cm, c0 = 50 Ncm/s2,

k1 = 150 N/cm, c1 = 6 Ncm/s2, k2 = 490 N/cm,
c2 = 3 Ncm/s2, A = 3 N , � = 1 rad/s, e = 3 cm.
The initial conditions are chosen as t0 = 3 s, x(1)0 = 4 cm,
ẋ(1)0 = 1 cm/s, x(2)0 = 1 cm, ẋ(2)0 = 2 cm/s. With the
above system parameters and initial conditions, the passable
motions for each mass are plotted in Fig. 6. At time t0 =
3 s, the relative displacement z(1) of the mass m(1) to the
mass m(2) is e in Fig. 6 (a) and (d), and the velocities for
the masses m(1) and m(2) satisfies ẋ(1) < ẋ(2) as presented
in Fig. 6 (f), which fits the first case of the switching criteria
in (31) and (32), therefore, each mass will move away from
the displacement boundary after time t0 and then enter the free
region �(α)

1 (α ∈ {1, 2}). Each mass does free motion until
it reach the displacement boundary at time t1 = 8.2354 s,
which can be observed in Fig. 6 (a) and (d). At this time,
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FIGURE 6. Numerical simulation of a passable motion for the two masses: (a) displacement–time history,
(b) velocity–time history, (c) phase trajectory, (d) and (g) phase trajectory in relative coordinate,
(e) and (h) relative displacement–time history, (f) relative velocity–time history (m(1) = 600 kg,
m(2) = 1300 kg, k0 = 550 N/cm, c0 = 50 Ncm/s2, k1 = 150 N/cm, c1 = 6 Ncm/s2, k2 = 490 N/cm,
c2 = 3 Ncm/s2, A = 3 N , � = 1 rad/s, e = 3 cm). The initial conditions are t0 = 3 s, x(1) = 4 cm,
ẋ(1)
= 1 cm/s, x(2) = 1 cm, ẋ(2)

= 2 cm/s.

the relative velocity ż(1) > 0 as we observed in Fig. 6 (f) (i.e.,
ẋ(1) > ẋ(2) in Fig. 6 (b)), so the first case of the switching

conditions in (26) and (27) in Theorem 1 are fitted, thus
each mass will cross the displacement boundary ∂�(α)

10 at
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FIGURE 7. Numerical simulation of a grazing motion for the two masses: (a) displacement–time
history, (b) velocity–time history, (c) phase trajectory, (d) and (g) phase trajectory in relative
coordinate, (e) and (h) relative displacement–time history, (f) 1-order G-function–time history
(m(1) = 156 kg, m(2) = 1000 kg, k0 = 570 N/cm, c0 = 66.7 Ncm/s2, k1 = 160 N/cm,
c1 = 6.28 Ncm/s2, k2 = 486 N/cm, c2 = 2.5 Ncm/s2, A = 5 N , � = 1.6 rad/s, e = 0.15 cm). The
initial conditions are t0 = 13.74 s, x(1) = 2.8991 cm, ẋ(1)

= −0.1969 cm/s, x(2) = 3.1411 cm,
ẋ(2)
= −3.6552 cm/s.

time t1 and enter the stick domain �(α)
0 (α ∈ {1, 2}) after

time t1. From Fig. 6 (e), each mass moves in stick domain
�

(α)
0 (α ∈ {1, 2}) until time t2 = 9.5609 s. At time t2, each

mass reaches the displacement boundary ∂�(α)
01 (α ∈ {1, 2})
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FIGURE 8. Numerical simulation of a grazing motion for the two masses: (a) displacement–time
history, (b) velocity–time history, (c) phase trajectory, (d) and (g) phase trajectory in relative
coordinate, (e) and (h) relative displacement–time history, (f) 1-order G-function–time history
(m(1) = 50 kg, m(2) = 240 kg, k0 = 70 N/cm, c0 = 13 Ncm/s2, k1 = 75 N/cm, c1 = 8 Ncm/s2,
k2 = 50 N/cm, c2 = 4 Ncm/s2, A = 15 N , � = 1.8 rad/s, e = 5.28 cm). The initial conditions are
t0 = 2.5 s, x(1) = 6 cm, ẋ(1)

= −12 cm/s, x(2) = −6 cm, ẋ(2)
= −23.41 cm/s.

(i.e., x(1) − x(2) = e) with the relative velocity ż(1) < 0 as
presented in Fig. 6 (a), (d) and (f), by Theorem 2, each mass

will move freely in domain �(α)
1 (α ∈ {1, 2}) until switching

time t3 = 13.5981 s. In addition, the motion switching of a
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FIGURE 9. Numerical simulation of a periodic passable motion for the two masses:
(a) displacement–time history, (b) velocity–time history, (c) phase trajectory, (d) and (g) phase trajectory
in relative coordinate, (e) and (h) relative displacement–time history, (f) 0-order G-function–time history
(m(1) = 60 kg, m(2) = 130 kg, k0 = 50 N/cm, c0 = 50 Ncm/s2, k1 = 150 N/cm, c1 = 6 Ncm/s2,
k2 = 90 N/cm, c2 = 5 Ncm/s2, A = 13 N , � = 1.8 rad/s, e = 6 cm). The initial conditions are
t0 = 3.633 s, x(1) = 3.6978 cm, ẋ(1)

= 12.9795 cm/s, x(2) = −2.3022 cm, ẋ(2)
= −7.515 cm/s.

passable motion for such system in relative frames can be also
observed in Fig. 6 (d) for the mass m(1) and in Fig. 6 (g) for
the mass m(2).

The simulation of a grazing motion in nonstick domain
�

(α)
1 (α ∈ {1, 2}) is presented in Fig. 7. The parameters and

original conditions are m(1)
= 156 kg, m(2)

= 1000 kg,
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FIGURE 10. Numerical simulation of a periodic grazing motion for the two masses: (a) displacement–time
history, (b) velocity–time history, (c) phase trajectory, (d) and (g) phase trajectory in relative coordinate,
(e) and (h) relative displacement–time history, (f) 1-order G-function–time history (m(1) = 256 kg,
m(2) = 1170 kg, k0 = 560 N/cm, c0 = 60 Ncm/s2, k1 = 170 N/cm, c1 = 7.5 Ncm/s2, k2 = 437 N/cm,
c2 = 3.3 Ncm/s2, A = 3 N , � = 1.15 rad/s, e = 4.74 cm). The initial conditions are t0 = 22.7720 s,
x(1) = 3.5402 cm, ẋ(1)

= 2.7615 cm/s, x(2) = −0.3968 cm, ẋ(2)
= −0.2667 cm/s.
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FIGURE 11. Numerical simulation of a stick motion: (a) and (b) velocity–time history for the two
masses, (c) and (d) Forces–time history for the mass m(1), (e) and (f) Forces–time history for the mass
m(2), (m(1) = 600 kg, m(2) = 1300 kg, k0 = 550 N/cm, c0 = 50 Ncm/s2, k1 = 150 N/cm, c1 = 6 Ncm/s2,
k2 = 490 N/cm, c2 = 3 Ncm/s2, A = 3 N , � = 1 rad/s, A1 = 1300 N , �1 = 1 rad/s, e = 3 cm). The initial
conditions are t0 = 3 s, x(1) = 4 cm, ẋ(1)

= 1 cm/s, x(2) = 1 cm, ẋ(2)
= 2 cm/s.

k0 = 570 N/cm, c0 = 66.7 Ncm/s2, k1 = 160 N/cm,
c1 = 6.28 Ncm/s2, k2 = 486 N/cm, c2 = 2.5 Ncm/s2,
A = 5 N , � = 1.6 rad/s, e = 0.15 cm and t0 = 13.74 s,
x(1) = 2.8991 cm, ẋ(1) = −0.1969 cm/s, x(2) = 3.1411 cm,
ẋ(2) = −3.6552 cm/s, respectively. For convenience, the start
position of such an oscillator is placed in the nonstick domain
�

(α)
1 . When time t satisfies the range of t ∈ (t0, 13.9591 s),

each mass moves in the free regions. At time t1 = 13.9591 s,
the difference of displacement between the masses m(1) and
m(2) is e with the relative velocity ż(1) > 0 and G-functions
g(1)1 < 0, g(2)1 > 0, as sketched in Fig. 7 (a), (b) and (f),
respectively, which follows the switching criteria of Theo-
rem 3, consequently, each mass tangentially moves back to
the nonstick regions when it gets to the displacement bound-
ary. In Fig. 7 (d) and (g), we can see the process visually in
relative frames.

Based on (37) in Theorem 4, another grazing motion of
each mass in the stick domain �(α)

0 (α ∈ {1, 2}) can be
obtained at time t = 3.6613s in Fig. 8, where the parameters
and original conditions arem(1)

= 50 kg,m(2)
= 240 kg, k0 =

70 N/cm, c0 = 13 Ncm/s2, k1 = 75 N/cm, c1 = 8 Ncm/s2,
k2 = 50 N/cm, c2 = 4 Ncm/s2, A = 15 N , � = 1.8 rad/s,
e = 5.28 cm and t0 = 2.5 s, x(1) = 6 cm, ẋ(1) = −12 cm/s,
x(2) = −6 cm, ẋ(2) = −23.41 cm/s.
The simulation of a periodic passable motion with two

periods (2T ) is plotted in Fig. 9 with the parameters m(1)
=

60 kg, m(2)
= 130 kg, k0 = 50 N/cm, c0 = 50 Ncm/s2,

k1 = 150 N/cm, c1 = 6 Ncm/s2, k2 = 90 N/cm, c2 =
5 Ncm/s2, A = 13 N , � = 1.8 rad/s, e = 6 cm. Using the
original conditions as t0 = 3.633 s, x(1) = 3.6978 cm, ẋ(1) =
12.9795 cm/s, x(2) = −2.3022 cm, ẋ(2) = −7.515 cm/s.
As we can see in Fig. 9 (d), the start position of each mass
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FIGURE 12. Numerical simulation of a periodic stick motion for the two masses:
(a) displacement–time history, (b) velocity–time history, (c) phase trajectory, (d) Forces–time history
(m(1) = 600 kg, m(2) = 1300 kg, k0 = 550 N/cm, c0 = 50 Ncm/s2, k1 = 50 N/cm, c1 = 6 Ncm/s2,
k2 = 490 N/cm, c2 = 3 Ncm/s2, A = 3 N , � = 1 rad/s, A1 = 1300 N , �1 = 1 rad/s, e = 3 cm). The
initial conditions are t0 = 2.8 s, x(1) = 4.2907 cm, ẋ(1)

= −2.8069 cm/s, x(2) = 1.2907 cm,
ẋ(2)
= 1.295 cm/s.

is on the displacement boundaries ∂�(α)
01 (α = 1, 2) in green

dots. At time t0 = 3.633 s, it follows from Fig. 9 (f) that
the relative velocity ż(1) is greater than zero (i.e., ẋ(1) > ẋ(2)),
which satisfies the criteria in (26) and (27) in Theorem 1, thus
each mass will cross the displacement boundary and into the
stick domain �(α)

0 (α ∈ {1, 2}). Then, in Fig. 9 (a) and (d),
each mass reaches the displacement boundary ∂�(α)

01 (α ∈
{1, 2}) at time t1 = 4.7124 s, and in Fig. 9 (e), the relative
velocity ż(1) < 0 at time t1, which fits Theorem 2, thus each
mass will get inter the nonstick domain �(α)

1 (α ∈ {1, 2})
from the boundary at time t1. At time t2 = 7.1138 s, each
mass reaches to the displacement boundary again, at this
points, the position of each mass coincides with the original
position. Therefore, the first periodic passable motion for
each mass is realized, and the second periodic motion can be
also explained and observed. The periodic phase trajectory of
each mass in absolute and relative frames can be seen more
visually in Fig. 9 (c), (d) or (g), respectively.

In Fig. 10, the parameters are m(1)
= 256 kg, m(2)

=

1170 kg, k0 = 560 N/cm, c0 = 60 Ncm/s2, k1 = 170 N/cm,
c1 = 7.5 Ncm/s2, k2 = 437 N/cm, c2 = 3.3 Ncm/s2,
A = 3 N , � = 1.15 rad/s, e = 4.74 cm, which is used
to achieve a periodic grazing motion for this oscillator in the
nonstick region. t0 = 22.7720 s, x(1) = 3.5402 cm, ẋ(1) =
2.7615 cm/s, x(2) = −0.3968 cm, ẋ(2) = −0.2667 cm/s are
original conditions. During the time interval (t0, 23.2847 s),

FIGURE 13. Grazing motion on the displacement boundary ∂�
(2)
ij

(i 6= j ∈ {0, 1})(m(1) = 35 kg, m(2) = 250 kg, k0 = 1600 N/cm,
c0 = 100 Ncm/s2, k1 = 160 N/cm, c1 = 10 Ncm/s2, k2 = 200 N/cm,
c2 = 3 Ncm/s2, A = 3 N , � = 1 rad/s, A1 = 250 N , �1 = 1 rad/s,
e = 14.4 cm, x(1) = 0.6657 cm, x(2) = −13.7343 cm/s).

each mass moves freely in domain �(α)
1 (α ∈ {1, 2}) with-

out the effect of the third linear spring and damping. Then
in Fig. 10 (b) and (f), each mass contacts the displacement
boundary at time t1 = 23.2847 s with the relative velocity
ż(1) = 0 and 1st-order G-functions g(1)1 < 0 and g(2)1 > 0,
based on the criteria of Theorem 3, the grazing motion for
each mass occurs on displacement boundaries, then each
mass moves back to its free domain after this switching
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FIGURE 14. Stick scenarios varying with driving frequency (m(1) = 35 kg, m(2) = 350 kg, k0 = 1600 N/cm,
c0 = 100 Ncm/s2, k1 = 160 N/cm, c1 = 10 Ncm/s2, k2 = 200 N/cm, c2 = 3 Ncm/s2, A = 3 N , A1 = 350 N , �1 = 1 rad/s,
e = 3 cm). The initial conditions are t0 = 2.2 s, x(1) = 1.2 cm, ẋ(1)

= 1.3 cm/s, x(2) = −1.8 cm, ẋ(2)
= −2.5 cm/s.

FIGURE 15. Stick scenarios varying with amplitude (m(1) = 35 kg, m(2) = 350 kg, k0 = 1600 N/cm, c0 = 100 Ncm/s2,
k1 = 160 N/cm, c1 = 10 Ncm/s2, k2 = 200 N/cm, c2 = 3 Ncm/s2, � = 1 rad/s, A1 = 350 N , �1 = 1 rad/s, e = 3 cm). The
initial conditions are t0 = 2.2 s, x(1) = 1.2 cm, ẋ(1)

= 1.3 cm/s, x(2) = −1.8 cm, ẋ(2)
= −2.5 cm/s.

time t1. After that, the position of each mass coincides with
the original position at time t2 = 28.2356 s. The second
periodicmotion can be also explained and observed. The peri-
odic phase trajectory of each masses in absolute and relative
frames can be seen more visually in Fig. 10 (c), (d) or (g),
respectively.

B. SIMULATIONS IN THE CASE OF f (t)=A1�2
1 sin(�1t)

In this subsection, the effect of the control force f (t) on the
velocity and acceleration of two masses is studied through
a set of comparison graphs in Fig. 11. Based on the same
system parameters as shown in Fig. 6, A1 = 1300 N and
�1 = 1rad/s are selected to present stick motions of the
two masses. The time histories of velocities, acceleration
(i.e., force of per unit mass) of the mass m(1) and the mass
m(2) are plotted in Fig. 11 (a), (c), (e) with the control force
f (t) = 0 and in Fig. 11 (b), (d), (f) with the control force
f (t) = A1�2

1 sin(�1 t), respectively. The black curves and
green curves denote the force’s responses of the twomasses in
free domains and stick domains, respectively. By comparing
Fig. 11 (a) and (b), (c) and (d), (e) and (f), it can be clearly
seen that the amplitudes of velocity and acceleration for the
two masses with f (t) = A1�2

1 sin(�1 t) are much smaller
than those with f (t) = 0. Therefore, the vibration amplitudes
of the two masses can be reduced through appropriate control
force generated by the control unit of system or exerted by
the external excitation, which means that the stability and
comfort of the vehicle can be improved by the control force.

Choosing the same parameters as Fig. 11, k1 = 50 N/cm
is used to demonstrate a periodic passable motion for each

mass in Fig. 12. t0 = 2.8 s, x(1) = 4.2907 cm, ẋ(1) =
−2.8069 cm/s, x(2) = 1.2907 cm, ẋ(2) = 1.295 cm/s are
original conditions.

VII. STICK AND BIFURCATION SCENARIOS FOR DRIVING
FREQUENCY OR AMPLITUDE
For the purpose of investigating stick motion and giving
a reference for selecting appropriate parameters in such a
2-DOF oscillator, stick and bifurcation scenarios varying
with driving frequency or amplitude will be presented in this
section.

For obtaining a grazingmotion on the displacement bound-
aries ∂�(2)

10 and ∂�(2)
01 , the criteria in Theorem 3 and The-

orem 4 are used in this computer program. The parameters
are m(1)

= 35 kg, m(2)
= 250 kg, k0 = 1600 N/cm,

c0 = 100 Ncm/s2, k1 = 160 N/cm, c1 = 10 Ncm/s2,
k2 = 200 N/cm, c2 = 3 Ncm/s2, A = 3 N , � = 1 rad/s,
A1 = 250 N , �1 = 1 rad/s, e = 14.4 cm, x(1) = 0.6657 cm,
x(2) = −13.7343 cm/s. The two masses have the same
velocity when they graze on the separation boundary. Thus,
switching velocity of the two masses on the displacement
boundary versus excitation frequency in a bifurcation sce-
nario is presented in Fig. 13 in the range of � ∈ [0, 1].
To further discuss the stick motion of such oscillator,

the displacement, velocity and acceleration of stick motion
for the mass m(2) versus frequency and amplitude are given
in Figs. 14 and 15 in the range of � ∈ [0, 2] and A ∈ [0, 15],
respectively. The parameters arem(1)

= 35 kg,m(2)
= 350 kg,

k0 = 1600 N/cm, c0 = 100 Ncm/s2, k1 = 160 N/cm, c1 =
10 Ncm/s2, k2 = 200 N/cm, c2 = 3 Ncm/s2, A1 = 350 N ,
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�1 = 1 rad/s, e = 3 cm. And the original conditions are
selected as t0 = 2.2 s, x(1) = 1.2 cm, ẋ(1) = 1.3 cm/s,
x(2) = −1.8 cm, ẋ(2) = −2.5 cm/s.

In the future, more numerical simulations and bifurcation
scenarios about different parameters will be further analyzed.

VIII. CONCLUSION
In present paper, the discontinuous dynamical behaviors in a
class of strongly nonlinear 2-DOF oscillators were discussed.
The switching criteria between the stick and nonstickmotions
and the analytical conditions for the grazing motion to occur
in two different regions were developed by means of the
G-functions and switching control laws. The discontinuous
boundaries of the system configurations were defined and the
mapping between these boundaries was formulated. The peri-
odic motions for this oscillator were described via employing
the mapping theory. Especially, the stick motions, two kinds
of grazing motions and periodic motions for this system were
further predicted analytically and simulated numerically. The
comparison of the velocities and accelerations (or force’s
responses) for the two masses under the two conditions of
control force was presented, and the results showed that
the stability and comfort of the vehicle can be improved
by the control force, which is generated by the control unit
of system or exerted by the external excitation. In addition,
the stick and bifurcation scenarios varying with driving fre-
quency or amplitude were further given to better demonstrate
the dynamical behaviors in such system. This paper may pro-
vide useful information for parameter selection of vibration
systems with clearance, and it also has important reference
value for practical applications in other industries or machin-
ery with elastic impacts. The results of this paper can be
also extended to a broader class of dynamic systems, such as
vibration systemwith higher than two degrees of freedom and
mechanical oscillators with variable damping and stiffness
properties.
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