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ABSTRACT Reliability is a crucial consideration in the expansion of generation or transmission in a bulk
power system, especially in a power grid with a high penetration of renewables. Reliability indices, such as
loss of load probability (LOLP), are generally evaluated to determine the adequacy of a bulk power system
in the future. When a Monte-Carlo simulation is conducted to evaluate the LOLP, the computational time is
long because chronological time-series data are involved. This work proposes a novel scenario-based method
for studying the LOLP in a bulk power systemwith a high penetration of renewables. Scenarios are generated
by aggregating Markov states of hourly loads, photovoltaic power generations and wind power generations.
The power flow result in each scenario is examined to ensure power balance among demand, supply and
losses, so the LOLP can be obtained. This novel scenario-based method is more efficient than the traditional
chronological time-series approach because the number of considered scenarios is much smaller than the
number of considered time-series cases. A set of realistic data regarding Taiwan power system, consisting
of 2078 buses associated with a peak load of 39.178 GW, wind power of 6.938GW and photovoltaic power
of 20 GW in 2025 is used to validate the proposed method.

INDEX TERMS Loss of load probability, Markov model, Monte-Carlo simulation, renewables, reliability.

I. INTRODUCTION
The operation and planning of electric power grids is becom-
ing increasingly complex on account of the high penetration
of renewables and the transactions of powermarket [1]. Relia-
bility studies are generally performed in the planning or short-
term scheduling stages. Power system reliability indicates the
overall ability of the power system to deliver its power gen-
eration to end-users [2]–[5]. Typical power system reliability
studies are categorized into two groups – those that address
adequacy and those that address security [6]. Adequacy is a
static condition and is determined by whether sufficient facil-
ities are available to satisfy demand. Security, which relates
to dynamic phenomena of the system, refers to the ability
of the system to respond to disturbances. Most reliability
studies address adequacy. Detailed static and dynamic aspects

The associate editor coordinating the review of this manuscript and
approving it for publication was Jian Guo.

of bulk power system reliability evaluations can be found
elsewhere [7].

One of the most popular indices of reliability in a bulk
power system is the loss of load probability (LOLP) [8].
Rashidaee et al. formulated an LOLP-constrained generation
expansion planning problem as a mixed integer nonlinear
programming problem [9]. Choi et al. proposed a method-
ology that used a probabilistic reliability criterion to deter-
mine an optimum plan for transmission system expansion,
minimizing the expected cost by considering the LOLP con-
straint [10]. Xu and Zhuan presented a probabilisticmethod to
assess the system LOLP and to estimate the spinning reserve,
which depends on the uncertainty of wind power generation
and the forecasted load demand [11]. Deulka et al. presented
a Markov-modulated fluid queue to model the LOLP that
is associated with a battery energy storage system (BESS),
which serves an uncertain demand and copes with intermit-
tent renewable power generation [12].
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The analytical enumeration method (AEM) and
Monte Carlo simulation (MCS) are commonly used to eval-
uate system states for reliability evaluation [13]. The AEM
analyzes all possible system states to obtain accurate results,
resulting in high computational complexity for a large-scale
power system. MCS, in contrast, provides information about
a bulk power system by randomly sampling system data
in a manageable set. Xie et al. presented a uniform-design
technique to generate the system states, yielding sampled
states that were more uniform and representative in the whole
state space than were the enumerated system states in the
AEM or the randomly generated system states in MCS [13].
Peng et al. presented a method to partition the chronological
system state sequence produced by a sequential MCS into a
set of mutually exclusive events for a composite generation
and transmission system [14].

Reliability studies that involve the LOLP were also con-
cerned in microgrids [15]–[18] and standalone (off-grid)
power systems [19]–[22]. MCS was conducted to study
storage-reserve sizing [15]. A time-varying probability-
ordered tree was presented to evaluate the LOLP in [16].
A model of load shedding minimization combined with
sequential MCS was used to study energy storage sizing
in [17]. An energy storage size was determined for a specific
LOLP in a microgrid with a large penetration of renew-
ables, considering generation and load forecast error in [18].
A stand-alone hybrid generation system capacity was deter-
mined from the cost and the LOLP considering PV and
wind power in [19]. Markov model and frequency-duration
reliability techniques were used to evaluate reliability indices
for a stand-alone hybrid photovoltaic (PV)-BESS system in
[20]. Markov models were used to simulate the stochastic
behavior of a microgrid and to obtain a realistic value of the
LOLP, taking the failure and repair rates of each component
into account in [21]. Reliability and emissions were estimated
for a hybrid PV-BESS system and compared with those for a
system with diesel generators in [22].

According to the above discussions, the aforementioned
works have at least one limitation as follows:

(1) Power flow in the power grid is ignored [8]–[12],
[15]–[22]; only whether the power generation and
transmission capacities suffice for the demand is deter-
mined. For a large bulk composite power system with
many large power plants and renewables farms, a com-
prehensive power flow study considering spinning
reserve is essential.

(2) MCS is widely used to carry out reliability studies.
A chronological time-series approach takes a long com-
putational time [15], [17].

(3) Implementing MCS with time-coupling constraints is
difficult, such as when the energy and power of a BESS
are related [13], [14].

To overcome the above limitations, this paper proposes a
novel scenario-based method for exploring the LOLP in a
bulk power system with a high penetration of renewables.

The Taiwan power system in 2025will be used as an example.
The contributions of this paper can be summarized as follows.
(1) Not only the power balance between power genera-

tion and demand is confirmed but also the violation
of spinning reserves from generators is examined in
all scenarios by performing power flow studies. This
additional but essential factor (spinning reserves) was
generally ignored in previous studies.

(2) The fuzzy-c-means algorithm is utilized to develop the
Markov models of load, wind power and photovoltaic
power in the individual state spaces, which are further
transformed into an aggregated scenario space.

(3) Rather than solving the LOLP problem in a chronology
space, the proposed method deals with the LOLP in
a scenario space, significantly reducing the computa-
tional time that is required by MCS.

(4) The time-coupling constraint is converted into the
scenario-coupling constraint in the LOLP problem
using a fixed probability transition matrix, which is
proved to be convergent using realistic Taiwan power
system data.

The rest of this paper is organized as follows. Section II
describes the relevant Markov theory. Section III presents the
proposed method. Section IV discusses simulation results.
Section V draws conclusions and suggests directions for
future work.

II. BACKGROUND OF MARKOV MODEL
Solving this reliability problem is prohibitively time-
consuming owing to the extremely large number of chrono-
logical parameters and constraints that are involved. For
example, if 8760 hourly power flows are studied to obtain
the LOLP, then 8760 sets of bus data and line data must be
prepared. Among all relevant parameters, the hourly loads,
photovoltaic power and wind power are essential [23]–[26].
This paper converts this chronological problem into a
scenario-based problem, in which the probabilities and dura-
tions of load, wind power and PV power states can be
obtained by applyingMarkov theory. Specifically, rather than
using a traditional chronological time series with increasing
hours from h = 1 to h = 8760 in sequence, the con-
ditions of the power system are varied among Markovian
scenarios (Markov chain) according to system transition rates
(probabilities).

The Markov model captures the probability, duration and
frequency of a state in a stochastic process [27], [28]. Suppose
that a component (such as photovoltaic power, PPV) has M
states, m = 1, 2, . . ., M. The transition rates between any
two states are λ and µ. Let Pm be the probability associated
with the mth state. Then ∑M

m=1
Pm = 1 (1)

[Ts] [P1 . . .Pm . . .PM ]t = 0 (2)

where [Ts] is the state transition matrix. For example,
Fig. 1 displays a three-state Markov model. The state

VOLUME 9, 2021 78051



Y.-Y. Hong et al.: Reliability of Power System With High Penetration of Renewables: Scenario-Based Study

FIGURE 1. Three-state Markov model.

transition matrix can be defined as (3).

[Ts] =

−(λ1 + λ2) µ2 µ1
λ2 −(µ2 + λ3) µ3
λ1 λ3 −(µ1 + µ3)

 (3)

To evaluate λ and µ, the transitions from a state to any
other state in a given time-series, which consists of these three
states, must be counted. Suppose that the number of state
transitions is given, as shown in Table 1.

TABLE 1. Number of transitions among states.

From Table 1, the transition probability matrix [Tp] can be
calculated using (4).

[Tp] =

 6/10 1/10 1/10
2/10 7/10 1/10
2/10 2/10 8/10

 (4)

The state transition matrix [Ts] is defined by (5) where
the upper triangle of the M ×M matrix [Ts] is composed of
µ’s between pairs of states and the lower triangle consists
of λ’s between pairs of states. Each diagonal term of [Ts]
equals the negative sum of all off-diagonal terms in the same
column.

[Ts] =

 −4/10 1/10 1/10
2/10 −3/10 1/10
2/10 2/10 −2/10

 (5)

According to (3) and (5), λ1 = λ2 = λ3 = 2/10, µ1 =

µ3 = µ2 = 1/10. The absolute value of the diagonal term
for state m in (5) is defined as the rate of departure of state
m. The duration of a state equals the reciprocal of its rate of
departure [28]. Solving (1) and (2) leads to three probabilities:
0.2, 0.3 and 0.5.

Appendix A provides the convergence theorem for a
Markov chain [29]. This theorem is useful when a scenario-
coupling constraint is involved. This scenario-coupling con-
straint corresponds to the time-coupling relation between the
energies of BESS at times h and (h+ 1).

III. PROPOSED METHOD
A. FUZZY-C-MEANS (FCM)
Given a time series, the corresponding Markov states can be
obtained using a fuzzy-c-means (FCM) algorithm [30]. In this
paper, 8760 historic wind speeds and irradiances from 2018
serve as references for 2025. Assume that the profile of 8760
hourly loads in per unit in 2025 is the same as that in 2018.
The operational states of system load, PV power generation
and wind power generation are discretized to Pd(s1), Ppv(s2)
and Pw(s3), respectively, where s1, s2 and s3 are the state
indices.

Each dataset of load, PV power and wind power has some
fuzzy membership values µcζ , associated with a cluster in
the FCM algorithm. µcζ signifies the membership value that
relates Vc to Xζ where Xζ is the ζ -th known dataset and
Vc is the unknown central vector of the c-th cluster. The
membership value is obtained by minimizing an objective
function [30]:

J (µc,Vc) =
∑N

ζ=1

∑C

c=1
µ
ρ
cζ

∥∥Xζ − Vc∥∥2, 1 ≤ ρ ≤ ∞

(6)

where N is the known number of datasets and C is a given
number of clusters. When the FCM converges, the N datasets
are grouped into C clusters.

In this paper, the numbers of clusters (C) for Pd(s1), Ppv(s2)
and Pw(s3) are 15, 8 and 13, respectively. Specifically, the sys-
tem loads in 8760 hours are discretized with intervals of
approximately 1000 MW between the peak 39178 MW and
the off-peak 17734 MW. The number of clusters for irradi-
ances is estimated around every 100W/m2 from 300W/m2 to
1000W/m2. The wind power data are clustered about every
1m/s within the range between the cut-in speed and the rated
speed. The center Vc of cluster c corresponds to the repre-
sentative vector of a cluster and is regarded as a state in the
Markov model. The dimensions of Xζ and Vc are 1 × 1 and
N = 8760.

B. AGGREGATION OF Pd (s1), Ppv (s2) AND Pw (s3)
After the individual Markov states of Pd (s1), Ppv(s2) and
Pw(s3) have been identified, these Markov states can be
aggregated to generate the probabilities and durations of all
scenarios. Suppose that s1 = 1, 2, . . . ,C1; s2 = 1, 2, . . . ,
C2; s3 = 1, 2, . . . ,C3. In total, C1 × C2 × C3 (that’s,
15 × 8 × 1560 = C, s = 1, 2, . . . ,C) scenarios need to be
explored. The probability and duration of a scenario can be
calculated as follows.

(i) The product of the probabilities of any 3 states
(Pd (s1), Ppv(s2) and Pw(s3)) yields the probability of a
scenario.

(ii) The rate of departure of a scenario is the sum of the
rates of departure of any 3 states (Pd (s1), Ppv(s2) and
Pw(s3)). The reciprocal of the rate of departure for this
scenario is its duration (d (s)).
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C. DATA PREPARATION
Data regarding the Taiwan power system in 2025were used to
show the applicability of the proposed method in this paper.
The system comprises 2078 buses, 47 combined cycle units,
19 hydro units, 10 pumped storage units, and 24 coal-fired
units. The summer peak load andwinter off-peak load in 2025
are estimated to be 39.178 and 17.734 GW, respectively.
A total of 8760 hourly loads in 2025 are generated from the
historical load profile in 2018.

The photovoltaic power of 20GW is allocated to 168 buses
each of which has a load of around 110∼120 MW. The
8760 hourly photovoltaic powers at each bus were generated
fromHOMER software usingNASAweather data [31]. Since
more than 50% of photovoltaics in Taiwan are installed in
its central area, the Markov states of the photovoltaics in the
northern and southern areas are assumed to be the same as
those in the central area except for the capacity.

Onshore wind farms with a total of wind power capacity
of 1.2 GW were installed at 104 buses of 69 kV on the west
coast. Each bus has several wind turbines with total capacities
of 11-12 MW. Offshore wind farms with a total capacity
of 5.738 GW will be installed in 2025. Six 161 kV and two
345 kV buses are identified to connect the offshore wind
farms to provide a total capacity of 5.738 GW. The historical
wind speeds at a height of 10 m in both onshore and offshore
wind farms were input to HOMER software [31] to generate
8760 hourly wind power generations at heights of 122m and
135m, respectively. The Markov states of wind power in the
onshore wind farms, with the exception of the wind power
capacity, are assumed to be the same as those in the offshore
farms.

Since a comprehensive power flow study using PSS/E
software [32] will be performed in the MCS, different power
generations from generators shall be set. Let ‘‘Net Load(s)=
System_Load(s) - total_PV(s) - total_WT(s)’’ where Sys-
tem_Load(s), total_PV(s), and total_WT(s) are system load,
total PV power and total wind power in scenario s, respec-
tively. Five sets of on-line generators were implemented
according to the following net load(s): (a) net load(s) >
3.6 GW, (b) 3.6 GW≥ net load(s)>3.2 GW, (c) 3.2 GW≥ net
load(s) > 2.8 GW, (d) 2.8 GW ≥ net load(s) > 2.4 GW, and
(e) 2.4 GW ≥ net load(s). These 5 sets of on-line generators
ensure that no wind or photovoltaic power will be curtailed
and no line congestion will occur.

Because all combined cycle units in this power systemwith
a high penetration of renewables are designed to provide spin-
ning reserves, all combined cycle units are set as swing buses.
When the power flow algorithm is not convergent or the MW
limit of one of the combined cycle units is violated, this
scenario is considered to be one in which the power supply
is inadequate to meet the system demand.

D. BESS MODEL AND CONVERGENCE THEOREM OF
MARKOV CHAIN
The BESS will be also used in the Taiwan power system
in 2025. The operation of a BESS must meet the following

constraints, which are generally not considered in traditional
power flow studies, because the traditional power flow prob-
lem does not involve inequality constraints or the time-
coupling constraint.

Eminb ≤ Eb (s) ≤ EMaxb (7)

0 ≤ Pdisb (s) ≤ Prb (8)

0 ≤ Pchb (s) ≤ P
r
b (9)

Eb
(
s′
)
= Eb (s)+ ηc × Pchb × d (s)

−ηd × Pdisb × d (s) (10)

where Eminb ,Eb (s) and EMaxb are the minimum energy, energy
in the present scenario s, and the maximum energy (10MWh)
of BESS, respectively, at a specified bus. Pdisb (s) and Pchb (s)
are the discharging and charging powers at a specific bus in
scenario s. The rated power Prb is 10 MW. The term d (s) is
the duration of scenario s and ηc (ηd ) denotes the charging
(discharging) efficiency (85% (100%) herein). The strategy
for charging and discharging the BESS is based on power
generation from photovoltaic farms. If total power generation
from photovoltaic farms exceeds 500 MW, then the charging
mode is activated; otherwise, the discharging mode is acti-
vated. The total MW in the Taiwan power system in 2025 is
590 MW, allocated at various 59 buses.

The symbol s′ in (10) denotes the scenario after scenario s.
Scenario s′ is randomly generated and identified using cumu-
lative probability. For example, the probabilities of transitions
from scenario 1 to scenario 1, scenario 2 and scenario 3 are
6/10, 2/10, and 2/10, respectively, in (4). Let MCS iteration
index IT = 1 and Markov chain index k = 1. Generate
a random number γ 0 uniformly within [0,1]. If γ 0 ≤ 0.6,
then scenario 1 does not change. If 0.6 < γ 0 ≤ 0.8, then the
next scenario will be scenario 2. If 0.8 < γ 0 ≤ 1.0, then the
next scenario will be scenario 3. Increase k by 1. Compute
[Tp]k and repeat the above process until convergence ([Tp]k

becomes nearly fixed) as described in Appendix A. When a
fixed [Tp] is obtained in the first MCS iteration, the diagonal
terms of [Tp] represent the probabilities of all scenarios.
In the subsequent MCS iterations, a random number γ 0 is
generated to determine the next scenario using the cumu-
lative probability from the fixed [Tp] until the probability
of each scenario is close to its corresponding diagonal term
of [Tp] .

E. MONTE-CARLO SIMULATION
The LOLP of a power system relies on the Forced Outage
Rates (FOR) of different types of generators. In this paper,
the FORs of combined cycle units, hydro units including
pumped storage units, coal-fired units, photovoltaics and
wind turbines are 0.0414, 0.0468, 0.0516, 0.0500 and 0.0500,
respectively. The maximum number of Monte-Carlo simula-
tions is set at 10000. The MCS steps were developed using
PSS/E power flow software [32] to study the reliability of
the Taiwan power system considering spinning reserves as
follows.
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Step 1: Let IT, td and TD be the MCS index, the total
duration for which the power generation is inadequate to meet
the system demand, and the total duration of all scenarios in
MCS, respectively. Also, let g and s be the generator index
(g = 1, 2, . . . ,G;G = 100 traditional generators plus 168
photovoltaic buses and 112 buses with wind turbines herein;
in total G = 380) and the scenario index (s = 1, 2, . . . ,C;
C = 1560 herein), respectively. Let PG(g,s) be the power
generation of the g-th unit in scenario s. Initially, s = 1,
td = 0 and TD = 0. Let the Markov chain index k = 1.
Step 2: TD = TD+ d(s).
Step 3: Use ‘‘Net Load(s)’’ to set the generator buses and

their scheduled power generations, as described in Sec. III.C.
Step 4: Let g = 1.
Step 5: Generate a random number γ 1 uniformly

within [0,1].
Step 6: If γ 1 < FOR(g), then PG(g,s)= 0 MW; otherwise,

PG(g,s) = scheduled value. g = g+ 1.
Step 7: If g>G, then go to Step 8; otherwise, go to Step 5.
Step 8: Run the PSS/E power flow software package.
Step 9: If the power flow algorithm is not convergent or the

MW limit of one of the combined cycle units is violated,
then this scenario is considered to be one in which the power
supply cannot meet the system demand. td = td+ d(s).
Step 10: Generate a random number γ 2 uniformly

within [0,1].
Step 11: Identify the interval, in which γ 2 is located, of the

cumulative probability for scenario s to determine the next
scenario s′. (See Sec. III.D)
Step 12: If IT = 1, then k = k + 1 and compute [Tp]k ;

otherwise, go to Step 13. If [Tp]k becomes nearly fixed as
described in Appendix A and Sec. III.D, then the Markov
chain converges and go to Step 14; otherwise, s = s′ and
go to Step 2.
Step 13: If the probability of each scenario becomes nearly

fixed, then go to Step 14; otherwise, s = s′ and go to
Step 2.
Step 14: IT = IT+ 1.
Step 15: If IT = ITmax(10000 herein), then com-

pute LOLP/LOLE and stop; otherwise, s = 1 and go to
Step 2.

In Step 15, the LOLP and LOLE can be calculated as
follows.

LOLP =
td
TD

(11)

LOLE = LOLP× 8760(hours/year) (12)

A flow chart showing the stages of the proposed method is
provided in Fig. 2.

IV. SIMULATION RESULTS
A Python code was developed to integrate the PSS/E
power flow software with the Taiwan power system data
to study the reliability. A personal computer with Intel@
Corer i7-8700 CPU@ 4.60GHz, and 32.00GB RAM was
used.

FIGURE 2. Flow chart showing stages of proposed method.

A. MARKOV STATES OF LOAD, PHOTOVOLTAIC POWER
AND WIND POWER
The 8760 system loads were clustered into 15 states,
as described in Sec. III.A. Table 2 shows these 15 states whose
probabilities are within the range [0.03, 0.09] with durations
from 1.46h to 3.59h. It is interesting to find that state 1 has
the smallest probability but the longest duration. Please note
that the values of powers shown in Table 2 are the vectors Vc
(centers of clusters) in (7).

The 8760 irradiances in 2018 from NASA were input to
the HOMER software to produce photovoltaic power values
in the central area of Taiwan. The 8760 photovoltaic pow-
ers were clustered into 8 states, as described in Sec. III.A.
As shown in Table 3, the probabilities of states (except
state 1) are within the range [0.04, 0.10]. State 1 covers the
evening, midnight and early morning with a large probability
of 0.58 and a long duration of 13.79 h. Assume that the
characteristics (probability and duration) in the northern and
southern areas are the same as those of the central area.
The ratio of power generations in the northern, central and
southern areas is 1:53:33. Please note that the values of power
shown in Table 3 are the vectors Vc (centers of clusters) in (7).
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TABLE 2. Markov model of system loads.

TABLE 3. Markov model of PV power generation in Central Taiwan.

The 8760 historic wind speeds in the offshore wind farms
in 2018 from the Center Weather Bureau in Taiwan were
investigated. These wind speeds were also input to the
HOMER software to produce wind power generation values
of a wind turbine hub at a specific height. Table 4 shows
the 13 Markov states of offshore wind farms. In state 13,
the offshore wind farms produce 5326.93 MW with a high
probability of 0.27 and a long duration of 4.21 h. Assume that
the characteristics (probability and duration) of the offshore
wind powers are the same as those of the onshore ones. The
ratio of wind speeds in the offshore and onshore wind farms is
1.2:1. The powers shown in Table 4 are the vectorsVc (centers
of clusters) in (7).

The corresponding transition probability matrics for
Tables 2, 3 and 4 are provided in Appendix B.

The above results from Tables 2 through 4 were integrated
to be 1560 scenarios of the Taiwan power system in 2025.
Thus, the number of dimensions of both the transition prob-
ability matrix [Tp] and the state transition matrix [Ts] is
1560× 1560. [Tp]k can converge with a tolerance of 10−4 (or
10−6) when Markov chain index k is 63 (or 159). Fig. 3 illus-
trates the convergence pattern of iterations for [Tp]k if the
tolerance is set to 10−4. The y values in Fig. 2 denote the abso-
lute value of the maximum element of

(
[Tp]k − [Tp]k−1

)
.

B. VALIDATION OF PROPOSED METHOD
Validating the proposed method is the first step in ensur-
ing that the proposed scenario-based reliability study is

TABLE 4. Markov model of offshore wind farms.

FIGURE 3. Convergence of transition probability matrix [Tp].

applicable. However, creating 1560 scenarios with the PSS/E
data format by setting hourly loads at different buses and
hourly power generations at various generators for the bulk
Taiwan power system is almost impossible. Consequently,
in this paper, one-week data (168 hours) rather than one-year
data are used to validate the proposed method. The week with
the summer peak load was considered: the loads are within
[26.193, 39.718] GW; the maximum photovoltaic and wind
powers in that week are estimated to be 15.516 and 6.028GW,
respectively.

In order to carry out a comparative study, the load, pho-
tovoltaic power and wind power are clustered into 6, 4 and
6 groups, respectively. Restated, 144 (= 6×4×6) scenarios,
somewhat fewer than the 168 chronological cases, will be
studied.

Two traditional MCSs, considering 168 chronological
cases, were used for comparison: (a) only check the real
power balance (method in [19]) and (b) run AC power flow
studies (method in [14]). The method in [14] can be regarded
as a benchmark method, which determines whether there are
problems such as a shortage of generation capacity, over-
loading of the transmission lines or node voltage violation
by conducting the AC power flow calculation. As shown
in Table 5, the proposed method yields the same LOLP and
LOLE as the method in [14]; however, the CPU time required
by the proposed method is less than that required by the
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TABLE 5. Validation of proposed method.

TABLE 6. Comparison of results among different load clusters.

TABLE 7. Comparison of results among different achieved renewable
generation capacities.

method in [14]. Although the traditional method in [19] is
the fastest, its obtained LOLP and LOLE are very different
from those obtained by the method in [14]. The simula-
tion results reveal that the traditional method in [19] is too
optimistic.

C. COMPARISON OF RESULTS AMONG DIFFERENT
NUMBERS OF SCENARIOS
The number of clusters associated with a time-series affect
the accuracy of calculation of the LOLP/LOLE. Since the
system load has the largest discrete size for clustering among
three time series, various numbers of clusters of the load
data were studied. In addition to 15 clusters, 9 and 25 load
clusters were also explored herein; the numbers of clusters
associated with photovoltaic (8) and wind (13) power gener-
ations are fixed. When the load data were clustered into 25
groups, 2600 scenarios have to be investigated, resulting in
the longest CPU times, as shown in Table 6. The proposed
15 × 8 × 13 scenarios yielded almost the same result as
25 × 8 × 13 scenarios. When the load was clustered into 9
groups, 9×8×13 scenarios yielded an optimistic result with
a smaller LOLP and a shorter CPU time.

D. COMPARISON OF RESULTS ASSOCIATED WITH
ACHIEVED RENEWABLE POWER CAPACITY TARGETS
The target capacities of photovoltaics and wind farms
in 2025 are 20 GW and 6.938 GW, respectively. This sub-
section compares the LOLP/LOLE results that are obtained
by assuming various ratios (50%, 75% and 100%) of these
achieved capacities. Table 7 shows that the scenarios in
which the target is reached have the highest reliability
for the following reasons. When the achieved target is
low, many combined cycle units must be on-line to meet
the demand; however, the power generation capacity of
a combined cycle unit is generally 200∼800 MW while
those of photovoltaic units and wind farms are close to
100 MW. The inadequacy in a power system becomes severe
when a forced outage occurs at a combined cycle unit.

FIGURE 4. Variation of total MWh in a Markov chain (100% of renewables
target met; 590 MW/MWh).

TABLE 8. Comparison of results among different achieved renewable
power capacities with 590 MW BESS.

FIGURE 5. Variation of total MWh in a Markov chain (100% renewables
target; 1770 MW/MWh).

Accordingly, small and distributed renewables may result in
high reliability although the FOR (0.0500) of renewables
is slightly larger than that (0.0414) of a combined cycle
unit.

E. IMPACT OF BESS ON RELIABILITY
The reliability of the Taiwan power system was fur-
ther studied by considering the BESS (590 MW and
590 MWh). The state-of-charge (SOC) was set within
[10%, 90%] (59∼531MWh) [33]. Fig. 4 plots the vari-
ation of total MWh in a Markov chain, iterated from
a scenario to another scenario until convergence, in one
MCS. Table 8 shows the LOLP/LOLE that is obtained
with a fixed BESS of 590 MW and 590 MWh. For a
given achieved target of renewable generation capacity,
the LOLE can be reduced if the BESS is allocated in the
power system by comparing the results in Tables 7 and 8.
The BESS with a fixed 590 MW/590 MWh can greatly
improve the LOLE (from 18.045 to 14.542 hrs/year)
with 50% of the renewable generation capacity target
achieved.
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TABLE 9. Comparison of results among different capacities/energies of
BESS (100% of renewables target met).

The BESS of 590 MW is much smaller than the total
renewable capacity. Thus, further simulations that consider
1180MW/1180MWh and 1770MW/1770MWh were carried
out. Assume that the renewable capacity target is met.
Fig 5 plots the variation of total MWh in a Markov chain
for the 1770MW/1770MWh BESS in the MCS. Although
the capacities/energies of the BESS were doubled or tripled,
the decreases of the LOLE were rather limited, as shown
in Table 9.

V. CONCLUSION
Anovel scenario-basedmethod is proposed for the analysis of
power system reliability in this paper. The studied scenarios
can be aggregated by Markov models of chronological loads,
photovoltaic power generations and wind power generations.
Full power flow studies, rather than a simple check on the
real power balance, are carried out to assess the adequacy
of the composite power system in terms of the LOLP and
LOLE. This is especially essential for a large composite
power systemwith a high penetration of renewables, in which
the power generation resources are not allocated uniformly.
The 2025 Taiwan power system with 2078 buses is used to
demonstrate the applicability of the proposed method. The
1560× 1560 probability transition matrix of this bulk power
system can converge in a finite Markov chain. The computa-
tional time required for the proposed method is substantially
reduced by considering scenarios rather than chronological
cases in the Monte-Carlo simulation. A high penetration of
renewables and energy storage systems can reduce the LOLP
and LOLE. Future studies will consider the coordination of
reliability and stability in a bulk power system with a high
penetration of renewables.

APPENDIX A
This appendix provides the convergence theorem for a
Markov chain. For a sequential time-series, the computation
is straightforward from hour 1 to hour 8760. However, for
the Markov states, state m can be moved to any other state in
a manner that depends on the transition rates (probabilities),
as in (4). Generally, an irreducible and aperiodic Markov
chain can converge to a steady state [29].

Let the probability transition matrix [Tp] of a two-state

Markov model be
[

α 1− β
1− α β

]
where α and β are within

the range of (0,1). Then, the final two states will converge to
a steady state as follows.

lim
k→∞

1
2− α − β

[
1− β
1− α

]
(A-1)

where k is the number of steps to move.
After the first iteration of the MCS, a steady-state [Tp]

is obtained. In the subsequent iterations of the MCS, this
constant [Tp] will be utilized to determine scenario s′.

APPENDIX B
This appendix provides the corresponding transition proba-
bility matrices for the Markov models of system load, PV and
wind, as shown in Tables 2, 3 and 4.

Below is the 15 × 15 transition probability matrix of the
system load as shown at the bottom of this page.

Below is the 8 × 8 transition probability matrix of PV
power:

0.21 0.23 0.05 0.00 0.00 0.38 0.02 0.11
0.21 0.25 0.01 0.00 0.00 0.08 0.14 0.24
0.06 0.01 0.61 0.00 0.00 0.23 0.00 0.00
0.00 0.05 0.00 0.23 0.06 0.00 0.25 0.27
0.00 0.00 0.00 0.38 0.93 0.00 0.05 0.00
0.25 0.10 0.33 0.00 0.00 0.30 0.00 0.01
0.02 0.14 0.00 0.26 0.01 0.00 0.34 0.18
0.25 0.22 0.00 0.13 0.00 0.01 0.20 0.19




0.37 0.00 0.00 0.01 0.07 0.02 0.00 0.16 0.02 0.00 0.00 0.40 0.00 0.00 0.00
0.00 0.42 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00
0.00 0.00 0.73 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
0.07 0.00 0.00 0.36 0.00 0.16 0.00 0.02 0.00 0.36 0.00 0.04 0.02 0.00 0.01
1.00 0.22 0.00 0.00 0.56 0.00 0.00 0.00 0.28 0.00 0.02 0.00 0.00 0.00 0.00
1.03 0.00 0.00 0.36 0.00 0.32 0.00 0.06 0.02 0.02 0.00 0.14 0.02 0.00 0.00
0.00 0.00 0.25 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.03 0.11 0.05
1.31 0.02 0.00 0.00 0.03 0.01 0.00 0.39 0.18 0.00 0.00 0.02 0.00 0.00 0.00
0.01 0.07 0.00 0.00 0.13 0.00 0.00 0.33 0.43 0.00 0.03 0.01 0.00 0.00 0.00
0.02 0.00 0.00 0.16 0.00 0.02 0.00 0.00 0.00 0.36 0.00 0.07 0.39 0.01 0.03
0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.00 0.00 0.00
0.19 0.00 0.00 0.02 0.01 0.38 0.00 0.04 0.07 0.01 0.00 0.30 0.00 0.00 0.00
0.00 0.00 0.00 0.03 0.00 0.07 0.00 0.00 0.00 0.17 0.00 0.02 0.34 0.02 0.32
0.00 0.00 0.02 0.00 0.00 0.00 0.27 0.00 0.00 0.05 0.00 0.00 0.03 0.56 0.15
0.00 0.00 0.00 0.06 0.00 0.02 0.04 0.00 0.00 0.03 0.00 0.00 0.17 0.28 0.44
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0.46 0.01 0.00 0.03 0.00 0.02 0.01 0.13 0.20 0.00 0.04 0.02 0.01
0.01 0.72 0.00 0.00 0.00 0.01 0.00 0.13 0.01 0.03 0.08 0.00 0.00
0.00 0.00 0.33 0.00 0.12 0.01 0.06 0.00 0.00 0.18 0.04 0.01 0.03
0.03 0.00 0.01 0.36 0.00 0.06 0.01 0.01 0.12 0.01 0.03 0.17 0.02
0.00 0.00 0.24 0.01 0.43 0.01 0.03 0.00 0.01 0.07 0.11 0.01 0.03
0.01 0.00 0.01 0.04 0.01 0.23 0.05 0.00 0.02 0.02 0.02 0.16 0.17
0.00 0.00 0.05 0.00 0.02 0.08 0.28 0.00 0.00 0.14 0.03 0.02 0.14
0.16 0.08 0.00 0.03 0.00 0.01 0.00 0.55 0.03 0.00 0.04 0.02 0.00
0.14 0.00 0.00 0.20 0.00 0.01 0.01 0.02 0.34 0.00 0.02 0.06 0.02
0.00 0.02 0.14 0.01 0.04 0.03 0.18 0.00 0.01 0.31 0.04 0.02 0.06
0.17 0.17 0.19 0.15 0.37 0.18 0.17 0.16 0.19 0.19 0.51 0.15 0.18
0.01 0.00 0.01 0.15 0.00 0.20 0.03 0.00 0.06 0.01 0.02 0.26 0.05
0.01 0.00 0.02 0.02 0.01 0.15 0.17 0.00 0.01 0.04 0.02 0.10 0.29



Above is the 13× 13 transition probability matrix of wind
power as shown at the top of this page.
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