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ABSTRACT Distinctive phonetic features (DPFs) abstractedly describe the place, manner of articulation,
and voicing of the language phonemes. While DPFs are powerful features of speech signals that capture the
unique articulatory characteristics of each phoneme, the task of DPF extraction is challenged by the need
for efficient computational model. Unlike the ordinary acoustic features that can be directly determined
form speech waveform using closed-form expressions, DPF elements are extracted from acoustic features
using machine learning (ML) techniques. Therefore, for the objective of developing an acoustic-to-phonetic
converter of high accuracy and low complexity, it is important to select the input acoustic features that
are simple, yet carry adequate information. This paper examines the effectiveness of using spectrogram
as the acoustic feature with DPFs modeled using two deep learning techniques: the deep belief network
(DBN) and the convolutional recurrent neural network (CRNN). The proposed method is applied onModern
Standard Arabic (MSA). Multi-label modeling is considered in the proposed acoustic-to-phonetic converter.
The learning techniques were evaluated by proper evaluation measures that accommodate the imbalanced
nature of DPF elements. The results showed that the CRNN is more accurate in extracting the DPFs than the
DBN.

INDEX TERMS Distinctive phonetic features, spectrograms, speech processing, convolutional recurrent
neural network, deep belief networks, KAPD corpus, Arabic, MSA.

I. INTRODUCTION
Distinctive phonetic features (DPFs) are relevant and highly
descriptive features of speech waveforms that have the
remarkable ability to capture and represent the unique articu-
latory characteristics of each phoneme [1]. which are relevant
and highly descriptive features of speech waveforms [1].
A DPF vector is simply organized as a sort of binary ele-
ments that outlines the phonemes in terms of their articulatory
and vocal properties [1]. Each phonological component of
a language is either present which is typically marked as
‘‘+,’’ or absent which is typically marked as ‘‘−.’’ By way of
illustration, in phonology we encounter this typical phoneme
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/θ / which is phonetically characterized as ‘‘unvoiced,’’ ‘‘frica-
tive,’’ ‘‘interdental,’’ or ‘‘consonant.’’ Hence, a potential DPF
vector of /θ / can be pointed out as voiced−, consonant+,
fricative+, interdental+. Since languages differ in terms of
their DPF elements, DPFs are not neutral but actually a
language-dependent.

A. BACKGROUND ON DPF ELEMENTS
Phonemes are uttered by realizing the relevant DPF elements
in coordination between the speaker’s brain and vocal sys-
tem [2]. As an example of phoneme classification by DPFs,
consider the two English phonemes /p/ and /b/ that have
all DPF elements equal except the ‘‘voicing’’ element. That
is, since /b/ is generated by vibrations of the vocal folds,
the voicing element is ‘‘+.’’ Conversely, no vibrations of
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TABLE 1. DPF values of MSA phonemes [1].

vocal cords when uttering /p/, and, hence, the voicing element
is ‘‘−’’ in the DPF elements vector [2].

The literature on phonology offers language-specific tables
listing the finite given DPF vector values [3]. However, owing
to a contextual variation known as the coarticulation effect,
the DPF vector of a spoken phoneme can differ from the
theoretical presumption. Although the shape of the vocal
tract adapts to the uttered sequence of phonemes, there is a
limitation in the change rate of the utterances; consequently,
the DPF elements gradually change during the transition
periods before and after the designated phoneme. When

this smooth transition causes overlap of adjacent phonemes,
features that influence each other may be gained or
lost [4].

Because DPFs describe speech signals both contextually
and phonetically, they enhance the performance and robust-
ness of a system [4]. Their advantages of language-specific
experiments may be maximized. This paper focuses on Mod-
ern Standard Arabic (MSA) DPF modeling. In this research,
the DPF elements considered are described in Table 1 [1],
In addition, the table provides a mapping between Interna-
tional Phonetic Alphabet (IPA) [5] and King Abdulaziz City
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for Science and Technology (KACST) [6] symbols whichwill
be used in the rest of the paper.

B. OBJECTIVES
The common approach applied in the literature for DPF
extraction is converting acoustic features to DPF elements.
Therefore, a preprocessing stage is always assumed where
raw speech waveform is converted to acoustic features. Con-
sequently, this stage has direct impact on the performance
and complexity of the DPF extractor (the converter). If this
preprocessing stage is designed to deliver acoustic features
that are simple to compute yet carries significant information
about the waveform, then that would greatly facilitate the
design of the DPF extractor.

There are few acoustic features that are commonly con-
sidered in the published literature. The use of mel-frequency
cepstral coefficients (MFCC) and local features (or just one of
them) as input vector to the DPF extractor has been addressed
by many studies such as [4], [7], [8]. The work in [9], [10]
examined a more diverse combination of features consist-
ing of spectrogram, MFCC, zero-crossing rate, short-time
energy and pitch. The work in [11] investigates the use of
mel-spectrogram and its first and second derivatives.

The aforementioned studies demonstrate how acoustic
features, when combined with each other, are effective in
DPF extraction. However, these acoustic features are either
complex in terms of dimensionality or in steps to compute.
We believe that input vectors can be further simplified with-
out jeopardizing system performance. Moreover, there is a
noticeable research gap related to Arabic DPF extraction.
Thus, in this work, we investigate the effectiveness of spec-
trogram as input to the DPF extractor. To achieve this goal,
a multi-label classification approach is proposed in order
to provide a comprehensive model of the DPF vector as
a whole entity. This approach is more aligned with how
DPFs are naturally generated and perceived. We adopted
sequence-to-sequence methodology where we convert data
from the acoustic space to the phonetic one. For the purpose
of DPF modeling, two techniques are used: the deep belief
networks (DBN) and the convolutional recurrent neural net-
works (CRNN). Both types of networks are recognized for
their significant modeling power.

II. DEEP LEARNING TECHNIQUES AND DATASET
A. DEEP BELIEF NETWORKS
If the weights of deep neural networks (DNNs) are prop-
erly initialized, they can achieve high accuracy [12] beside
being able to model the complex, highly nonlinear rela-
tionships of speech signal [12]–[14]. Effective weight ini-
tialization in DNNs can be achieved by the use of the
Restricted Boltzmann Machine (RBM) [15], [16]. An RBM
is a bipartite, fully-connected networks containing two lay-
ers (visible and hidden). DBN is used to pre-train RBMs
to generate initialization values. The weights initialized
by a DBN must then be fine-tuned before we get a

DBN–DNN [12], [13], [15]. DBN–DNNs have proven their
advantages in digital speech-processing applications [13],
[14], [16]–[24].

The probability p(v,h) of a joint configuration between a
visible and a hidden unit, and the probability p(v) of con-
figuring a visible unit, are determined by normalizing the
energy E(v, h) by the partitioning function. The calculations
are respectively given by [13], [16]

p(v,h) =
e−E(v,h)∑

v′,h′
e−E(v′,h

′)
(1)

p(v) =

∑
h
e−E(v,h)∑

v′,h′
e−E(v′,h

′)
. (2)

B. CONVOLUTIONAL RECURRENT NEURAL NETWORKS
The CRNN model combines a convolutional neural net-
work (CNN) with long short-term memory (LSTM), thus
exploiting the spatial and temporal features of both networks.

Any CNN architecture is a collection of ordered neural
networks with various layers placed in a specific order. Each
layer in one network makes a specific contribution. A typical
model comprises several convolutional layers that convolve
the input features A with a variety of kernels K (known as
filters) to obtain a feature map S as follows:

S=A∗K , where S(i,j)=
∑
n

∑
m

A(i−m, i−n).K (m, n) (3)

The kernel coefficients (like the neural network weights)
are learned throughout the training phase.

The pooling layers in the CNN gather the concentrated
activation features H obtained by adding the bias matrix B
to S and applying a nonlinear activation function on S. In this
way, the pooling layer reduces the spatial resolution of the
maps as mentioned earlier.

The LSTM network, originally designed to overcome
the vanishing gradient problem of a conventional RNN,
adaptively learns the patterns in a time-variable sequence.
We considered that combining LSTM with a CNN would
reap the benefits of both connectionist architectures.
This hybrid configuration is detailed in the following
subsections.

C. USED CORPUS
In this paper we used the KACST Arabic Phonetic Database
(KAPD) [6], which contains 35,981 phonemes that have
imbalanced distribution. The cumulative period of the cor-
pus is 1.2 hours. The KAPD is an isolated-word MSA
speech corpus. Seven male’s speakers have participated in
recording audio material. The 26,499 tokens in the dataset
are randomly split into a training subset (80%) and a test
subset (20%). The KAPD data were manually segmented
at the phoneme level by trained personnel under expert
supervision.

VOLUME 9, 2021 80211



M. A. Qamhan et al.: Sequence-to-Sequence Acoustic-to-Phonetic Conversion

III. EXPERIMENTS
A. SELECTED FEATURES (SPECTROGRAMS)
The spectrogram carries much useful information on speech
signals, such as formants (F1, F2, F3, . . . ), high frequency
components, pitch information and periodicity, and energy.
It discriminates almost all phonetic features to various
degrees [25], [26]. Each spectrogram is represented as a
two-dimensional graph with time on the horizontal axis and
frequency on the vertical axis. The strength of the color in the
spectrogram represents the amplitude of the corresponding
signal. Additionally, the color intensity at a particular point
in the graph correlates with the signal frequency. The color
ranges from light blue at low amplitudes to dark red at the
highest amplitude.

The spectrograms in this work were obtained by short-time
fast Fourier transform (FFT) of the speech signals, which
generates a time–frequency representation. Here, the spec-
trograms were extracted by applying 64-point FFT on a
set of frames sampled across a certain phoneme. Through
this operation, we extracted 15 evenly spaced frames per
phoneme. Each frame was preprocessed by 20-ms Hamming
windowing, DC removal, and pre-emphasis (α = 0.97).
As the phonemes vary in length, the frame step size was set
to cover the phoneme duration satisfying the required number
of frames. For a small portion of short-length phonemes
in the corpus, the phenome length was augmented with
zero-padding prior to the framing process.

It is often preferred to train DNN on learning complex
representations rather than imposing them. For that, in some
applications, spectrogram produces better accuracies against
the commonly used MFCC.

B. MODEL ARCHITECTURE
The implemented CRNN model consists of three convolu-
tional layers (Conv1, Conv2, and Conv3) connected to one
bidirectional LSTM layer, followed by one fully-connected
(FC) layer and a softmax layer. The network input is a
(64 × 15) feature matrix.
The input spectrogram segments are processed by the first

convolutional layer (i.e.,Conv1), which has 16 kernels of size
12 × 16 applied with a stride of one. This is followed by
an exponential linear unit (ELU) activation function and a
max pooling layer of size 2 × 2 with a stride of two. Here,
the ELU replaces the typical sigmoid function to improve the
efficiency of the training process. The second layer Conv2
has 24 kernels of size 8 × 12, which are applied to the
input with a stride of one. Similarly, Conv3 has 32 kernels
of size 5 × 7. Each of these convolutional layers is fol-
lowed by an ELU unit. After applying these three layers,
the bidirectional LSTM layers are applied with a batch size
of 128. To avoid overfitting, the bidirectional-LSTM layer
is followed by a dropout layer with a dropout ratio of 40%.
Finally, one FC layer (connected to the previous layer) is
applied with 34 different phonemes for phoneme classifica-
tion, or 30 binaries (‘‘+’’ or ‘‘−’’) for DPF classification.

In this research, the 34 phonemes and binary DPF outcomes
were constrained by the used KAPD corpus. The proposed
DBN model contains two hidden layers composed of RBMs
with 256 neurons (processing units) in each layer and a
sigmoid activation function.

C. MODEL TRAINING
The proposed CRNN and DBN models were implemented
in TensorFlow [27], applying Keras at the front end [28].
Spectrograms were generated for all audio files in the used
dataset. Eighty percent of the data were dedicated to train-
ing; the remainder were reserved for the testing phase. The
data were randomly split during each new training run. The
models were trained using a NVIDIA GeForce RTX 2080 Ti
graphics processing unit with 11 GB memory. The training
process was run for a maximum of 200 epochs with a batch
size of 64 samples. The proposed CRNN model was trained
using the adaptive gradient descent algorithm Adam [29] as
the optimizer with a learning rate of 0.001. For the DBN
model, we pre-trained a stack of RBMs with a learning rate
of 0.05 over 10 epochs, and fine-tuned the parameters with
a learning rate of 0.1 over 200 iterations. The CRNN and
DBM training times were approximately 100 minutes and
47 minutes, respectively.

D. ACOUSTIC-TO-PHONETIC CONVERSION
Every spoken language has its own set of phonemes and its
own relevant and well-built-in DPF elements. For example,
‘‘emphatic’’ is amajor DPF elements in Arabic languages and
is included in all Arabic dialects, but is not found in English.
This paper proposes two DPF extractors based on the DBN
andCRNNmodels, which attempt to find theweak and strong
correlations between the considered DPF elements and the
acoustic features embedded in Arabic speech and language.

If a specific DPF elements has a strong and confirmed
presence in a specific phoneme (or part of that phenome),
that DPF elements should be extracted with a high accuracy
rate. Conversely, if a given DPF elements is extracted with
low accuracy by both extractors, it is probably irrelevant to
the specific phoneme. This low accuracy can be attributed
to a slight presence in the neighboring phonemes introduced
by the co-articulation effect. The extractor learns the relevant
DPF elements of MSA Arabic phonemes and maintains them
in the proposed set of DPFs. This technique provides the rel-
evant DPF elements of Arabic languages through acoustical
experimental methods. In this sense, it differs from the purely
linguistic approaches found in the literature.

E. PHONEME CLASSIFICATION
Thirty-four phenomes (see Table 1) were classified by two
DNN classifiers (DBN and CRNN). Here we investigated the
effect of batch size and number of iterations on the training
performance. To optimize the batch size, we first observed
the DBN performance for batch sizes of 32, 64, 128, and
256. In the given values, the highest accuracy performance
(82.3%) was obtained for a batch size of 64. The batch-size
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FIGURE 1. Tune up of the batch size.

tune-up results are illustrated in Figure 1. The optimal batch
size depends on the corpus configuration, that is, on the
number of audio files and the file-duration statistics.

TABLE 2. Model parameters of the DBN–DNN phoneme classifier.

TABLE 3. Model parameters of the CRNN phoneme classifier.

Next, the DBN–DNN and CRNN phoneme classifiers
were developed under the specifications in Table 2 and
Table 3, respectively. The parameters listed in these tables
were selected and evaluated by trial-and-error. The shown
parameters yielded the lowest system errors in all runs and
classifiers.

IV. RESULTS AND DISCUSSION
When evaluating the performances of the DBN and the
CRNN DPF extractors, the accuracy scores of the DPF ele-
ment classifications must be carefully interpreted to avoid
erroneous conclusions. In MSA phonology the distribution
of + and − classes is unbalanced as well as in KAPD. The
accuracy paradox is the paradoxical finding, which asserts
that a high-accuracy classifier is not inherently better than a
lower-accuracy one, is often invoked by classifying imbal-
anced results [30]. The paradox arises because the minority
class is overwhelmed by the majority class. In consequence,
the minority class will not affect the overall accuracy even
when all of its members are not usefully classified.

FIGURE 2. Distributions of + and − classes across the DPF elements in
(a) the MSA phonology and (b) KAPD corpus.

Panels (a) and (b) of Fig. 2 show the +/− distributions of
the DPF elements as derived from Table 1 and from KAPD
corpus respectively, which are both typically imbalanced. The
‘‘−’’class dominates all elements except the ‘‘continuant’’
element, which is dominated by the ‘‘+’’ class. Only four ele-
ments are almost balanced: the ‘‘anterior,’’ the ‘‘consonant,’’
the ‘‘coronal,’’ and the ‘‘voiced’’ features.

A. EVALUATION METRICS
Several measures can accurately evaluate the performances
of imbalanced-data classifiers. Assuming that the accura-
cies of the majority and minority classes are the true neg-
ative rate (TNR) and true positive rate (TPR), respectively,
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FIGURE 3. AUC, F1, and GM performances of the extractors in the DBN (blue) and CRNN (orange) classifiers.

we evaluate the performances of our proposed phoneme
classifiers by three widely used measures, the area under
the curve (AUC), the geometric mean (GM), and the
F-measure [31].

The ROC is a graphical plot that depicts the tradeoff
between FPR versus the TPR in the x − y plane. The ROC
checks that a classifier does not enhance the TPR by jeopar-
dizing the TNR. Both the TPR and TNR must be high. There-
fore, the area under the curve (AUC), which is proportional
to the classifier performance, must also be high. for a binary
classifier. The AUC can be calculated as follows [31]

AUC =
1
2
(1+ TPR− FPR) (4)

TheGMs of the classifier results balance the TPR and TNR.
Any decrease in either value will reduce GM. The GM is
computed as follows [31]

GM =
√
TPR · TNR. (5)

The classifiers were finally evaluated by the F-measure,
which defines the harmonic mean of the precision (also called
positive predictive value PPV) and recall (also known as
True Positive Rate TPR). The F-measure can be calculated
as follows [31]:

F =
2 · PPV · TPR
PPV + TPR

. (6)

B. PERFORMANCE EVALUATION
The AUC, F1, and GM performances of the extractors in the
DBN and CRNN classifiers are shown in Figure 4. These per-
formance metrics are expected to resolve the data-imbalance
problem, as explained previously. In Figure 4, all three met-
rics were more-or-less stable in the CRNN extractor, but the
DBN performance was variable. Especially, the F1 metric of
the DBN extractor repeatedly fell to zero. As an example
of DPF elements extraction by the CRNN, we consider the
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FIGURE 4. Numbers of mistakenly converted DPF elements in each
classification system.

balanced element ‘‘consonantal’’ and the imbalanced element
‘‘high’’ in Table 1.

For the ‘‘consonantal’’ DPF elements, the normalAUC, F1,
and GM measures were 0.97, 0.91, 0.98, and 0.81, respec-
tively. Meanwhile, the normal AUC, F1, and GM measures
of the ‘‘high’’ DPF elements were 0.1, 0.89, 0.84, and 0.71,
respectively. Note that the normal accuracy measures were
relatively consistent for the balanced DPF, but varied for the
imbalanced DPF.

Ideally, one of the unique vectors mentioned in the search
table should fit the DPF vector generated by the extractor,
as depicted in Table 1. To evaluate the outcomes of the
extractors, we thus seek a match in the lookup table. In fact,
it is expected that the DPF vectors of spoken phonemes
deviate slightly from their references in the search table based
on general theoretical phonology. The deviation is at least
partly caused by the co-articulation effect. Such deviations
are unavoidable even under the idealized conditions of perfect
DPFmodels. Other deviations can be introduced bymodeling
imperfections, which must be minimized. For this purpose,
we must elucidate the contribution of the DPF extractor to
the vector deviation from the ideal.

When evaluating a practical DPF extractor, we cannot
expect 100% similarity to a reference vector, because the
co-articulation effect is inevitable. Table 4 lists the similar-
ities of the CRNN- and DBN-extracted files to the reference
files, expressed as Hamming distances. When the Hamming
distance equals 0, the extracted vector is 100% similar to
a valid reference vector. Among the vectors extracted by
DBN and CRNN, 51.33% and 78.68% were 100% similar
to a reference vector, respectively. At a similarity-tolerance
threshold of 90%, implying an error tolerance of 3 bits out
of 30. The percentages of acceptable vectors returned by
DBN and CRNN were 79.62% and 92.53%, respectively as
can be seen in Table 4.

That is, a match is considered when any vector with a
Hamming distance not exceeding 3 bits from a reference
vector. In case of the output vector does not match any vector
in the lookup table it will be considered as an invalid-output
and is scored as an extraction error. Meanwhile, a confusion

TABLE 4. Test and reference phonemes classified by hamming distance.

error occurs when the existing vector of a wrong phoneme
matches some erroneous output vector.

1) PERFORMANCE OF THE DPF EXTRACTORS
The performances of the DBN and CRNN extractors are
shown in Table 5. As shown in this table and other tables
and figures in this paper, KACST symbolization is consid-
ered instead of IPA ones but mapping to IPA can be found
in Table 1. Both extractors were evaluated on a test set
of 5,299 phonemes. Each phoneme to be inspected by each
extractor was described by 30 DPF elements, yielding a total
of 158,970 (5299 × 30) DPF elements in the testing subset.
The systems with the DBN and CRNN extractors missed
8,409 and 3,516 DPF elements out of 158,970, respectively.
Most of the missed DPF elements in both extractors belonged
to the ‘‘velar,’’ ‘‘alveodental,’’ ‘‘uvular,’’ and ‘‘voiced’’
categories.

Conversely, the four most accurately extracted DPF ele-
ments were ‘‘short,’’ ‘‘labiovelar,’’ ‘‘high,’’ and ‘‘fricative’’
in the DBM system, and ‘‘labiovelar,’’ ‘‘unvoiced,’’ ‘‘high,’’
and ‘‘short’’ in the CRNN system. The CRNN generally
outperformed the DBN. Note that the four worst-extracted
DPF elements, and three of the best-extracted DPF elements
(‘‘short,’’ ‘‘labiovelar,’’ and ‘‘high’’), were common to both
extractors. Table 7 details the performances of the DBN and
CRNN extractors on each DPF elements. From this table,
we can understand the accuracies of the extractors for both
DPF elements and their related phonemes. Listed are the
numbers of correctly predicted DPF elements among the
5,299 elements (31 DPF elements per phoneme) in the test
files. The numbers of DPF elements that were mistakenly
toggled from 1 to 0, or mistakenly toggled from 0 to 1, are
also reported.

Figure 4 compares the numbers of DPF elements wrongly
flipped from 1 to 0 (and vice versa) in the two classification
systems. Both classifiers were more likely to flip the result
from 1 to 0 than from 0 to 1.
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TABLE 5. Phoneme recognition accuracies (%) (in ascending order).

2) PERFORMANCE OF THE PHONEME CLASSIFIERS
Table 5 lists the overall accuracies of all phonemes in both
extractors. The overall accuracies of the DBN and CRNN
phoneme classifiers were 81.75% and 84.02%, respectively.
The classification accuracy of the zs10 phoneme exceeded
98% in both classifiers. This phoneme was biased in the

TABLE 6. Number of missed DPF elements (in ascending order).

KAPD corpus, as it exists in every training and testing audio
file (as explained in the original corpus datasheet). The
short vowel phonemes also ranked among the best recog-
nized phonemes in both extractors. Meanwhile, the Arabic
emphatic phonemes (db10, tb10, zb10, sb10) were poorly rec-
ognized by both classifiers. Inspecting the confusionmatrices
of both classifiers, we observe that most phonemes were con-
fused with their minimal pair counterparts, which increased
the error rates of the classifiers. For example, the empathic
phoneme sb10 was frequently confused with its correspond-
ing non-emphatic phoneme ss10.

80216 VOLUME 9, 2021



M. A. Qamhan et al.: Sequence-to-Sequence Acoustic-to-Phonetic Conversion

TABLE 7. Element-wise statistics of the extracted DPF elements.

As shown in Table 5, CRNN was generally more accurate
than DBN, but the vs10, ds10, zs10, tb10, gs10, ks10, hs10,
and us21 phonemes were more accurately classified by DBN.
When the poorly recognized phonemes in the CRNN clas-
sifier intersected with the poorly recognized DPF elements,
the outcomeswere usually ones (i.e., plusses) (see Table 9 and
similar cases for the DBN classifier in Table 10).

In other words, when CRNN performed poorly, the ‘‘+’’
symbols in the DPF tables were reversed to ‘‘−’’ sym-
bols. The misclassified and erroneous DPF elements
degraded the accuracy of classifying the corresponding
phonemes. The inverse situation also appeared: the most

TABLE 8. Overall accuracy performances of the DBN and CRNN (%).

accurately classified phonemes and DPF elements inter-
sected as ‘‘−’’ symbols in Table 9. This result is consoli-
dated in other tables and figures; for example, Table 7 and
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TABLE 9. The best and worst DPF and phoneme classifications by DBN.

TABLE 10. The best and worst DPF and phoneme classifications by DBN.

Figure 4 show more erroneous 1-to-0 toggles than 1-to-0
toggles.

In general, the CRNN outperformed the DBN in
DPF-elements extraction and phoneme classification. The
performance was measured by the numbers of correct
matches between the extracted elements and the reference
entries of the lookup table. Both extractors were fed with
the test subset of KAPD (Table 8). To our knowledge,
we present the first attempt to combine the spectrogram as
a feature of DNNs in Arabic DPF modeling, DPF extrac-
tion, and phoneme classification. In our previous work [9],
we examined several combinations of acoustic cues, and
determined which combination can efficiently represent a
DPF elements. The responsiveness of the acoustic cues was
assessed from the MLP performance. Among the top-level
extractors, the DNN-based extractor outran the MLP-based
extractor.

V. CONCLUSION
This study examined the advantages of deep learning in the
DPF modeling and extraction of Arabic language phonemes.
Experiments were performed on 30 DPF elements of MSA.

Two models (one based on DBN, the other on CRNN)
were designed for extracting the DPF elements and classi-
fying the phonemes. The extraction and classification tasks
were experimentally assessed on spectrogram data. Finally,
DPF-vector extraction was applied to the resulting models.
For this task, two extractors were developed. The detailed
phoneme-matching rates demonstrated the higher effectives
of the CRNN extractor than the DBN extractor. Beside
achieving a lower error rate in general, the CRNN extractor
generated fewer confusion errors than the DBN extractor,
and more robustly generated error-free vectors. The CRNN is
widely applied in digital speech processing, and the present
study demonstrated its additional advantage in acoustic-
to-phonetic conversion. The study further confirmed the rep-
resentativeness of the spectrogram cues as DPF elements.

The present results have improved our understand-
ing of DPFs and lay a foundation for more advanced
applications in this context. The high-performance DPF
extractors proposed in this work provide promising perspec-
tives towards the effective integration of phonetic features
thereby solving many problems in Arabic digital speech
processing.
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