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ABSTRACT With the growing demand for information security, finger-vein recognition has become
widespread. However, the robustness of the recognition process becomes a major problem.When identifying
unseen categories with traditional finger-vein recognition systems, a few issues remain, such as recognition
interference and low efficiency. This paper proposes a Deep Generalized Label Finger-Vein (DGLFV)
model to extract feature maps and achieve high-accuracy recognition. The largest rectangular finger-vein
region is extracted through image semantic segmentation and the advanced bidirectional traversing and
center diffusion method for the known categories. Then we generalize all the unseen categories actively as
Class C + 1 to reduce interference from unregistered users. Furthermore, an adaptive threshold acquisition
algorithm is proposed for Label Receiver Operating Characteristic (LROC), so that the procedures of
classification, recognition, and verification are unified. Apart from Shandong University Homologous
Multi-modal Traits (SDUMLA-HMT), we have conducted additional experiments on our self-built database,
Finger Veins of Signal and Information Processing Laboratory (FV-SIPL). The recognition accuracy of the
approach proposed in this paper has reached 99.25% and 99.08% testing on FV-SIPL and SDUMLA-HMT,
with a low error rate at 1.481% and 2.228% and little time consumption of 0.157s for a single image, which
is better than most state-of-the-art finger-vein recognition methods.

INDEX TERMS DGLFV, finger-vein recognition, generalized category, FV-SIPL, SDUMLA-HMT.

I. INTRODUCTION
Finger-vein recognition belongs to the field of biometrics,
similar to some other types, such as faces, fingerprints, irises,
and palmprints. Individuals are usually identified through
personal characteristics. With the rapid development of tech-
nologies, people pay much more attention to security cer-
tification. However, deceitful and fabricated systems have
emerged one after another, leading to countermeasure sys-
tems. They may face a challenging situation when bio-
metric recognition is applied in security prevention and
other scenarios. The recognition of finger veins has been a
research hotspot in biometrics because of its uniqueness and
immutability [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wang .

A. RELATED WORK
The majority of finger-vein recognition systems mainly con-
tain two modes: verification (1: 1) and recognition (1: N).
Generally, these models are divided into two types: learning
and non-learning. In non-learning models, Gabor filters [2]
are considered as an effective extractor of vein lines. Kumar
and Zhou [3] employed a judicious combination of morpho-
logical operations and even Gabor filters to achieve shape
features. Some other researchers employ Local Binary Pat-
terns (LBP) or Line Local Binary Patterns (LLBP) for the
extraction of binary vein texture features [4]; the method like
Scale Invariant Feature Transformation (SIFT) [2] is adopted
to extract the features of specific points. In terms of matching
strategies, most people choose the Hamming distance [4] and
the Euclidean distance [5] to convert the features into vec-
tors and enhance the recognition robustness. Yang et al. [6]
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analyzed the anatomy structure and vein extraction (ASAVE)
combined with integrationmatching strategy for performance
improvement.

However, the above algorithms are susceptible to the
severe impact of some problems, such as low picture qual-
ity, non-finger region inter vein-texture block loss, and
low robustness. Therefore, people have gradually introduced
some learning-based algorithms [7], which enjoy strong
adaptability and are not prone to the environment. Refer-
ence [8] proposed using Gabor filters to extract features
from finger veins and Support Vector Machines (SVM) for
classification. They introduced Principal Component Anal-
ysis (PCA) to obtain the essential information and neural
network for classification matching [9]. In learning models,
Region of Interest (RoI) extraction is an essential step for
non-finger region elimination, noisy data preprocessing, and
further training. [10] improved the RoI extraction of finger
vein in knuckle region. The feature images were transformed
into particle features after feature enhancement, and the lay-
ered hypersphere method was used for recognition.

The block execution of the system increased research com-
plexity. Recently, Convolutional Neural Network (CNN) has
becomemore widely accepted in the field of biometrics. Deep
feature extraction has improved the performance and robust-
ness of finger-vein recognition. Ahmad Radzi et al. [11]
proposed a 4-layer hybrid down-sampling CNN to classify
finger veins. Reference [7] proposed to utilize Visual Geom-
etry Group (VGG), in which the input was a set of pictures
combining the testing samples with the training ones. Also,
it aimed to acquire the correlation between the two ones
and finally output the binary classification results. As shown
in [12], deep convolutional networks play a crucial role in
proper feature extraction. The recognition accuracy directly
reflects the security level. Xie and Kumar [14] succeeded
in finger-vein authentication using the CNN and supervised
discrete hashing. Except for extraction method improve-
ment, [14] extracted and recovered the finger-vein feature
through the prior knowledge to enhance the feature quality.

Although such methods performed well in general
finger-vein recognition tasks, it is possible that the unseen
finger vein from unregistered people can be recognized as
some label. There is a need for subjective finger-vein feature
extraction and generalization.

B. CONTRIBUTIONS
Focusing on the recognition accuracy and generalization
capability, we propose a deep neural network called Deep
Generalized Label Finger-Vein (DGLFV). Our main contri-
butions are as follows:

1) MASK-RCNN AND PROPOSED ADAPTIVE THRESHOLD
ACQUISITION ALGORITHM FOR MASK SEGMENTATION
Firstly, the image semantic segmentation model based on
deep learning is applied to the RoI extraction of finger veins.
We use the advanced bidirectional traversing and center dif-
fusion method to extract the maximum RoI rectangle for the

irregular mask of finger veins. Based on Mask Region Con-
volutional Neural Network (Mask-RCNN)Mask-RCNN [15],
a deeper convolution model was proposed for RoI extraction.
Then we select the Regional Production Network (RPN) [16]
to scout out the interest area. After that, the appropriate
areas of finger veins were captured through the maximum
rectangle to facilitate subsequent image enhancement and
recognition. The successful extraction rate can reach 100%
on Shandong University Homologous Multi-modal Traits
(SDUMLA-HMT) [17]. In addition, an adaptive threshold
acquisition algorithm is proposed to complete the intelligent
matching strategy, which further improves the robustness.

Different decision-making algorithms are utilized accord-
ing to different systems, which can improve the overall per-
formance. In this paper, the LROC verification threshold
self-adaption acquisition algorithm for the DGLFV model
is proposed. We utilize the Youden index to find the best
reception threshold for each class, and the maximum refers
to the LROC separation threshold.

2) CLASS GENERALIZATION AND DGLFV CONSTRUCTION
In practice, new samples of unseen categories are the central
factor that affects the recognition accuracy. The traditional
passive comparison in finger-vein systems will cause seri-
ous recognition interference, low recognition efficiency, and
bad recognition effects when identifying unseen samples.
Reference [7] can deal with the verification of new finger
veins, but lack of practice and much time consumption. It
is necessary to select the primary comparison samples and
the time consumption of N comparisons in the recognition
mode. Our model focuses on not only the accuracy and time
consumption but also generalization capability.

Based on well-extracted RoI and generalization, DGLFV
has gained a low error rate, accounted for 1.481% and
2.228%. We have conducted additional experiments on our
database called FV-SIPL to verify the effectiveness further.
The experimental results are better than most of the latest
finger-vein recognition models, with significant application
value.

II. PROPOSED ALGORITHM
A. FINGER-VEIN RoI EXTRACTION ALGORITHM
Because of finger postures and environmental factors,
some inaccurate segmentation problems exist in tradi-
tional finger-vein RoI extraction methods, such as direct
method [18] and finger-knuckle positioning extraction [19].
This paper introduces the concept of image semantic segmen-
tation to improve adaptability and robustness. Compared with
traditional image segmentation algorithms, it can complete
more complicated segmentation tasks. The RoI extraction
process is shown in Fig.1.

1) FINGER-VEIN MASK EXTRACTION BASED ON MASK-RCNN
The structure of Mask-RCNN is shown in Fig.2. We extract
feature maps of original images by ResNet-101 [20], with
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FIGURE 1. In this paper, Mask-RCNN is implemented to segment finger
veins semantically and obtain the masks, region boundaries, and
recognition category probabilities. According to the advanced
bidirectional traversing and center diffusion method, the model has
access to good regions of interest (RoI) by the maximum rectangular
extraction.

shared weights. Afterward, the RPN network offers optimal
bounding boxes and recognition probabilities. We normal-
ized multi-target particular region mapping features through
the RoI correction algorithm. In this way, part of the fea-
tures has been connected to the fully connected layer, giv-
ing errors between the probabilities and bounding results;
others serve as the input of the fully convolutional neu-
ral network, from which the mask outputs by threshold
suppression.

1) We extract feature maps through ResNet-101 and
pass them to the RPN model. Region Proposal Net-
work (RPN) adopts the feature pyramid network and
anchor working mechanism. The multi-scale feature
maps are extracted by the convolutional layer of the
neural network; then, we inversely reverse the smallest
feature maps by up-sampling. Finally, it fuses with
the original features to construct multi-scale seman-
tic features, which are considered as the unpredicted
target.

2) After giving all possible bounding boxes, we should
determine whether the results are the target or back-
ground. Therefore, we assign a binary-class label to
each anchor and introduce IoU , the intersection, and
the union ratio of the anchor selection boxes and the
ground. In (1), So is the intersection area of two boxes,
and SU is the union area.

IoU = So/SU (1)

Then we label all the boxes with more than 0.7 IoU
as positive, less than 0.3 as negative, while others
not including targets will be corrected. If there are
no positive samples (all the IoU are less than 0.7),
we will label the anchor with the max IoU . In this
paper, we define the loss function as (2). The former is
classification loss, which calculates the error between
bounding boxes and the truth; the latter is regression

loss of the yielded coordinate and the ground.

L({pi}, {ti}) =
1
Ncls

∑
i

Lcls(pi, pi∗)

+ λ
1
Nreg

∑
i

p∗i Lreg(ti, ti
∗) (2)

In this expression, i is the serial number of the anchors
in each mini-batch. pi denotes the probability of the
target, and p∗i is the label of 0 or 1. ti denotes the four
parameters of the prediction boxes, and t∗i is the param-
eter of the real boxes. We define Lcls and Lreg as the
classification and regression loss. Here, p∗i Lreg rep-
resents the regression only for the positive-labeled
samples (negative-labeled samples p∗i = 0). At last,
pi and ti are the outcomes of classification and regres-
sion, respectively.

3) Concerning the region proposal suggestion and RPN
prediction results, we have access to the ideal images
with a shared convolution layer, called the correction
output. Compared with Faster-RCNN [16], the RoI
correction inMask-RCNN cancels the quantization and
proposes bilinear interpolation to obtain floating coor-
dinates. After obtaining the correction map through
Mask-RCNN, a pooling layer is added to normalize the
feature maps.

4) A solid-size area feature map is generated through the
RoI correction pooling layer. When adjusting the out-
put of Conv5 in ResNet-101, we obtain a shared feature
map for mask withdrawing and recognition. They also
share feature maps to the fully connected layer, and
the final result is obtained by Softmax and Sigmoid
for regression. Mask-RCNN uses a multitasking loss
function, defined as (3):

L = Lcls + Lreg + Lmask (3)

Here, the classification loss of bounding boxes is Lcls,
the regression loss of the box position is Lreg, and the
loss of the mask area is Lmask .

2) FINGER-VEIN RoI EXTRACTION BASED ON THE
ADVANCED BIDIRECTIONAL TRAVERSING AND CENTER
DIFFUSION METHOD
With the regular identity of the finger-vein mask provided by
Mask-RCNN, it needs to be further cropped into a rectangular
RoI to transform into the recognition model. To retain as
many features as possible, we need to extract the largest rect-
angle [21], [22] in the irregular region. This paper employs
the advanced bidirectional traversing and center diffusion
method to extract the rectangular RoI. Suppose the four ver-
tical coordinates of the rectangle are P1(x1, y1), P2(x2, y1),
P3(x1, y2) and P4(x2, y2), then they form a rectangular area:
R(x1, x2, y1, y2), whose acreage is SR = (x2 − x1)(y2 − y1).
Max(SR) refers to the objective function.
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FIGURE 2. Here is the advanced Mask-RCNN framework. We extract feature maps through the backbone structure of ResNet-101 and pass them to the
RPN model. Region Proposal Network (RPN) adopts the feature pyramid network and anchor working mechanism to receive multi-scale proposals. A
fully connected layer is used with corrected RoI region results to give out possibilities and bounding error. The final results will be obtained by Softmax
and sigmoid regression.

Algorithm 1 Horizontal Maximum Rectangle Area
Input: Set the initial rectangle coordinates as R(xc, xc +

1, yc − 1)
Output: Horizontal maximum rectangle’sR(xc−1, xc+1+j,
yc − 1, yc + 1)
Set the initial rectangle coordinates as R(xc, xc+ 1, yc− 1)
while R(xc, xc + 1, yc − 1) do

Increase the per-unit length of i
end while
while R(xc − 1, xc + 1+ j, yc − 1, yc + 1 ∈ Q(qn) do

Increase the per-unit length of j
end while

Irregular masks are made up of dots qn(1, 2 . . .m). We
assume the enclosed area as Q(qn), so the constraints are as
follows:

• The four vertices of the rectangle must be in the irregular
area, which means Pk ∈ Q(qn);

• Irregular mask points are limited to be outside the
bounding rectangle (qn /∈ R).

Mask-RCNN can give the optimal recognition frame when
extracting the mask, regarded as region D (Q ∈ D). Amongst
the structure, the central point C(xc, yc) of the optimal recog-
nition is deemed to be the cortex of the irregular mask. There-
fore, this paper diffuses the rectangle to the horizontal and
vertical directions from the center of C(xc, yc), and optimizes
the objective function w.r.t. the conditions.

The algorithm we proposed can be divided into two parts:
the first is to take a single-direction maximal area rectangle in

Algorithm 2 Lateral Degradation Process
Input: Horizontal maximum rectangle’sR(xc−1, xc+1, yc+

1)
Output: Horizontal degeneration coordinate and area dictio-

nary Dict(h)
for k = 1, 2, 3, . . . do

while R(xc, xc + 1, yc − 1) do
if R(xc−1− i+K , xc+1+ j, yc−1, yc+1 ∈ Q(qn)

then
Dict(h)k Fixed horizontal axis, use Algorithm 1

to achieve a longitudinal maximum area rectangle
else if Dict(h)k < Dict(h)k−{1,...,9} then

break
end if

end while
end for

two directions. For example, when taking a maximum lateral
area rectangle, we fix the vertical axis a length of 1 and
traverse it to the maximum lateral boundary. At that time,
to choose the maximum bounding, we are mainly confined
to be outside or above the target’s largest rectangle. Step 1
(the rectangle algorithm for finding the maximum area in the
horizontal direction) is shown in Algorithm 1, with the same
theory of the vertical one.

The second one is the degradation algorithm in
Algorithm 2. With the exposure of the maximal rectangles,
there needs to degenerate from these two directions. For
instance, increasing the vertical axis value is an excellent
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way when the lateral direction is degraded. Meanwhile,
we put the coordinate and the area of degradation into the
dictionary Dict(h). Similarly, the dictionary for the vertical
axis is Dict(v). The degradation procedure will not continue
until the current area covers ten times less than that of the
previous. Finally, the dictionaries are compared to find out
overlapping data, which should be sorted by the area’s size.
Then we achieve the maximum rectangle of the irregular
masks. Algorithm 2 illustrates the extraction processing of
the dictionary Dict(h) during lateral degradation.

B. GENERALIZED CATEGORY FINGER-VEIN RECOGNITION
MODEL BASED ON DEEP LEARNING
Finger-vein recognition is divided into classification and
verification. The training-based algorithms are proved to
be of high classification robustness. However, construct-
ing these algorithms requires prior knowledge. In practice,
the untrained samples will bring out severe interference with
the classification results. Even though verification is secure,
we should consider matching templates and the time loss
of repeated identifications. We aim to solve the problems
that unseen categories cannot be classified in traditional
finger-vein algorithms, and passive comparison would be
rejected and inefficient. Hereafter, we propose a recognition
method based on a convolutional neural network to iden-
tify unseen samples and generalize them into a class. It is
named the Deep Generalized Label Finger-vein (DGLFV)
model, which utilizes the deep Inception-ResNet V2 [23] and
constructs a neural network to identify unseen finger-vein
categories. Based on this, we can explore the Softmax classi-
fication results. Consequently, the Label Receiver Operating
Characteristic (LROC) is proposed to convert the classifica-
tion results into verification ones. While ensuring the high
accuracy of the known category, we achieve the aim of gen-
eralizing the unseen categories into one class (C+1).

1) BASIC MODEL OF DEEP LEARNING
After introducing the convolutional calculation, the artifi-
cial neural network utilizes local interconnection and shared
weights to make itself more consistent with biological neu-
rons’ sparse characteristics. CNN directly inputs the origi-
nal pictures without much attention to image preprocessing.
Further, a deeply hidden network can extract multi-level fea-
tures [24] and obtain recognition results through subsequent
calculation. At this time, only a complete CNN needs to be
trained. Such an end-to-end idea enables CNN to train a uni-
fied objective function. The model with data contains more
adjustment opportunities and increases the overall fitness.

Inception-ResNet V2 is a model combining the ideas of
Inception and ResNet. The Inception network was devel-
oped by GoogleNet [25], which tends to reduce parameters
and invest parallel and asymmetric convolution, causing a
widening network and effective feature extraction [26]. The
ResNet network introduced a residual calculation method-
ology to strengthen the network’s depth and improve per-
formance [20]. Increasing the network’s width or depth

will improve the performance and achieve a better result
if keeping them in parallel. In this paper, we choose the
Inception-ResNet V2 model, which achieves optimal perfor-
mance by balancing the number of layers in the network
and filters in each layer. Table 1 shows the detailed struc-
ture of each module in Inception-ResNet V2, from input to
output. The input is a three-channel image with a size of
224 × 224, and the output is the classification probabilities.
Inception-ResNet V2 proposed three types of modules: Stem,
Inception-ResNet, and Reduction, in which both parallel
and asymmetric convolution kernel structures are covered.
It decreased the computation complexity with small enough
information loss.

Large-scale data is one of the foundations of CNN training.
Due to extraction costs, the number of stored images cannot
afford CNN’s training within huge parameters. Fine-tuning
of weights can be performed using pre-trained models in
ImageNet. Also, the amount of training data can be expanded
by translating and rotating, which can prevent overfitting and
enhance robustness.

2) DGLFV MODEL
This paper proposes a novel finger-vein recognition algo-
rithm, DGLFV, based on a deep convolutional neural net-
work. This model realizes an active identification of unseen
categories then generalizes them into a class. The recognition
accuracy has been improved through deepening more lay-
ers and formulating related matching strategies. The estab-
lishment and training process is illustrated in Fig.3. First,
we preprocess and amplify the known and other categories of
finger-vein images; There is a modification of the parameters
in Inception-ResNet V2 and training two datasets, where
C + 1 is regarded as an unseen class; Based on the overall
Softmax results, a matching strategy is developed to obtain
each class’s verification threshold.

FIGURE 3. We amplify the training dataset and modify the parameters in
Inception-ResNet V2, where C + 1 denotes an unseen class. Finally, based
on the overall Softmax results, a matching strategy is developed to obtain
the verification threshold for each class.

The unseen classes come from unregistered users rather
than the finger-vein databases with labels. For this reason,
the testing results for specific categories are approximately 0,
ideally. By contrast, when using Softmax on CNN, the prob-
ability sum should be 1, and the probabilities of every unseen
class are 1/C . C is the number of registered user classes. The
Softmax classifier adopts an approximate optimal strategy,
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TABLE 1. Inception-ResNet V2 module framework.

which can lead to a high-probability approximate event.
It is triggered by the characteristics of Softmax. There is
still low security and low accuracy when applying a thresh-
old separation strategy. Therefore, we propose a method
for generalizing unseen categories. Adding category C + 1
(unseen categories) when the known category is identified,
the approximate optimal result is attributed to Class C + 1. It
is a condition that ClassC+1must have strong generalization
identities.

In this paper, we have trained the new class through
large-scale finger-vein images after the known ones. Conse-
quently, the generalization ability of the unseen categories has
been enhanced. Then we train and conclude all sorts of finger
veins into Class C + 1 for generalization. Account for the
dataset expansion, the effects have been improved, which will
be verified in the later experiment. To prevent over-fitting,
researchers usually adopt the regularization item method,
which can level up the generalization and the robustness of
the model. When adding Class C + 1, The objective function
J (θ ) will be shown as (4), in which R(θ ) is a regularization
term. For Class C + 1 models, the primary role of adding
regularization is to minimize probability peaks and selecting
Class C for unseen categories.

min
θ
J (θ ) =

1
C + 1

C∑
k=1

+L(y(k), h(k))+ λ · R(θ)

≈
1
C
L(y(k), h(k) + L(y(C+1), h(C+1) + λ · R(θ )))

(4)

Recognition decision is a vital part of the vein-recognition
algorithms. Different decision-making algorithms are pro-
posed according to different systems, which can improve the
overall performance. In this paper, the LROC verification

threshold self-adaption acquisition algorithm for the DGLFV
model is proposed. Following the training outcomes of Soft-
max, LROC analysis is performed for every single category.
We utilize the Youden index to find the best reception thresh-
old for each class, and the maximum refers to the LROC
separation threshold.

The decision-making algorithm determines that the recog-
nition system is divided into two parts: the first is the rough
identification, whichmeans that the category of themaximum
probability directly obtained by Softmax is served as the
results; the other is fine verification, using the best acceptance
threshold to confirmwhether the verification is accepted. Ver-
ification is to judge whether the sample belongs to a category.
In this paper, the output of Softmax, P(yk |x), is set to the
verification probability. Whether to accept or reject depends
on the verification threshold of Tk . Algorithm 3 shows the
LROC verification threshold self-adaption acquisition algo-
rithm. Combined with ROC, we evaluate every class at the
beginning. When a specific category is prone to be positive,
all the others are counterexamples. Under different stimulus
(acceptance thresholds), different test results were gained by
the measures of True Positive Rate (δkTPR) and False Positive
Rate (δkFPR). These results were applied to evaluate the overall
selection effect of such acceptance and rejection in different
situations.

Assuming that there are P positive examples and N neg-
ative examples in the classification system, the calculation
formulas of False Positive Rate (δkFPR) and True Positive Rate
(δkTPR) are illustrated as (5).

δkFPR =
FP
N
, δkTPR =

TP
P

(5)

δkFPR is the false positive rate, indicating the probabil-
ity that the negative case is divided into a positive one.
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Algorithm 3 Verification Threshold Self-Adaption Acquisi-
tion Algorithm Based on LROC
Input: Softmax testing output matrix GN×(C+1) and ground
Category HN

Output: Verification thresholds TC+1 for each category
for k ∈ {1, 2, . . . ,C + 1} do

Extract column gkN×1 from GN×(C+1) and arrange it in
reverse order

while Set the initial threshold t = 0 do
Calculate δkFPR and δ

k
TPR based on where t is ranked

in gN×1k and HN
Increase t , which is the value closest to the ground

truth in gkN×1
end while
Find out the best Youdenk index and according to δkFPR

and δkTPR, then according to this, t is the best threshold Tk
Output the overall threshold matrix TC+1

end for

Besides, δkTPR represents the probability that a positive case
can be divided successfully. In this case, the Youdenk index is
used to find the optimal threshold. Because TPR is as crucial
as FPR, the Youdenk index is usually used to evaluate the
authenticity of the screening results, whose most reasonable
’incentives’ can also be found. When a set of δkFPR and δkTPR
occurs, the Youdenk index is located according to (6). The
larger the index, the better the effect of reception or rejection.
At this time, the optimal threshold Tk is the value t of δkFPR
and δkTPR corresponding to the best Youdenk index.

Youdenk = max(δkTPR − δ
k
FPR) (6)

III. EXPERIMENTS
We have carried out the following experiments to verify
the advantages of the finger-vein recognition algorithm we
proposed in this paper. The experiments are mainly split
into two parts: firstly, the RoI extraction algorithm based on
Mask-RCNN is used to extract RoI and decide the training
and testing parts; then finger-vein recognition experiments
are performed on DGLFV.

A. TWO DATABASES FOR EXPERIMENTS
The finger-vein databases used in this paper are
SDUMLA-HMT [17] and FV-SIPL, shown in Table 2. The
former was collected by the Group of Machine Learning
and Applications of Shandong University. FV-SIPL is the
finger-vein database we built in Signal and Information
Processing Laboratory, Mine Safety Data Research Center.

1) SDUMLA-HMT: The dataset was produced by the
Group of Machine Learning and Applications of Shan-
dong University. This database contains a variety of
finger-vein images of 106 people. Each person offered
the index finger, middle finger, and ring finger of two
hands. Then six images were extracted for each finger.
There is a total of 3,816 sheets, with a size of 240×320.

TABLE 2. Introduction of two finger-vein databases we used.

FIGURE 4. The picture on the left is the forming principle of finger veins.
The infrared light is above the finger, and the infrared camera is located
below. The finger-vein images can be formed between them. The camera
transmits the received data to the micro control unit (MCU), responsible
for storing, calculating, and matching. MCU and the camera are smaller
than general, so the device is more portable. The right shows the
homemade finger-vein collector of FV-SIPL.

The images in this database contain many non-finger
areas. Also, different images of the same finger were
covered, which are flipped over.

2) FV-SIPL: We collected the database by a self-made
finger-vein collection device. The equipment has an
850nm near-infrared LED, IR camera, and PC soft-
ware structure, using a single-sided LED projection.
We constructed the database from 27 people and col-
lected the index finger, middle finger, ring finger,
and little finger of everyone’s right hand. Each finger
extracted 12 images, and there is a total of 1296 copies
(176 × 415). The database enjoys high quality, little
shadow, and highlight issues, little non-finger areas.
More specific the different images of the same finger
are not flipped over a lot. Fig. 4 shows a single-sided
light imaging process of collection and our finger-vein
collector.

B. EFFECT ANALYSIS OF THE PROPOSED RoI EXTRACTION
ALGORITHM
We verified the finger-vein mask fromMask-RCNN with the
RoI extraction using advanced bidirectional traversing and
center diffusion method. Then compared them with the direct
extractor and finger-knuckle positioning method. Finally,
we tested the effectiveness and compared the ratio of the
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FIGURE 5. The finger-vein RoI image extraction process. The left picture is
the outputs given by Mask-RCNN; the middle is the binary image
extracted according to the mask and the largest rectangle obtained by the
advanced bidirectional traversing and center diffusion method in this
paper; moreover, the right is the actual extracted RoI image.

FIGURE 6. The Mask-RCNN loss value trend. Because of the pre-trained
weight, the initial loss value is minimal. After 15 steps of training,
the model loss value does not change and is already in the best fitting.
The SDUMLA-HMT dataset was chosen for this experiment.

largest rectangular area with existing algorithms. Fig.5 shows
the extracting process of the finger-vein RoI regions.

It contains many non-finger-vein regions, which can
quickly reflect RoI extraction performance. Before training
Mask-RCNN, this paper randomly selected 100 images as the
training set and annotated the pictures through tagging soft-
ware. Because of the numerous parameters in Mask-RCNN,
retraining the network requires tremendous data support.
Thus, we utilize transfer training [28]–[30] to reduce input.
The weights trained by the COCO dataset [30] are employed
as the initials. There are no finger veins in this database, so we
need to make an adjustment based on finger-vein datasets and
make it the optimal extractor. In the end, we decreased the
value of the loss function to complete the extracting process
with fewer inputs. During training, the learning rate is set to
0.001 for the whole network. Fig.6 shows the loss tendency
during training, covering the total loss, mask regression loss,
classification loss, and bounding box regression loss.

To prove the effectiveness of the RoI extraction algorithm
based on Mask-RCNN proposed in this paper, we picked out
500 testing samples. The successful extraction refers to the
number of images from which we can extract RoI regions
successfully, which means more than 95% of the total RoI
can be extracted as RoI, as shown in Table 3.When extracting
RoI, the algorithm proposed in this paper realized a signifi-
cant number of successful extractions. Also, the effective rate
in later selections reaches 100%. It is significantly higher than

TABLE 3. RoI extraction performance comparison.

TABLE 4. Comparison of the maximum rectangular area ratios.

the direct method of 94.2% and the finger-knuckle position-
ing methodology of 95%, with extremely strong robustness.

Our experiments have been compared with the travers-
ing and center diffusion method [31] and Largest Inscribed
Rectangles in Convex Polygons [22] to prove the reliability
of the advanced bidirectional traversing and center diffusion
method we proposed. This method starts from the top, bot-
tom, left, and right to the calculated center, compared to
the previous area. Moreover, Largest Inscribed Rectangles in
Convex Polygons mainly covers the approximation method.
When adding it to the experiment, mask patterns have been
approximated as a polygon near the original irregular one. As
is shown in (7), the measurement parameter is the ratio of the
largest rectangular area R(s), the pixel number of extracted
rectangular is Srect_pixel , and that of masks is Smask_pixel .

R(s) =
Srect_pixel
Smask_pixel

(7)

We randomly selected four pictures from the testing set and
tested the maximum rectangular area’s proportion using three
different methods, as in Table 4.
From the experimental results, our work shows a stable and

excellent extraction effect. In contrast, the traversing and cen-
ter diffusion method easily fall into a local optimum and lead
to inconsistent results. The Largest Inscribed Rectangles in
Convex Polygons misses some regions when approximating
the polygon, which will affect the result.

With the well-labeled data and transfer learning,
Mask-RCNN converges and fits the finger-vein identification
area. Also, it outputs better loss trends. We compared the
maximum rectangular area ratio with traditional algorithms
and verified the effectiveness of the advanced bidirectional
traversing and center diffusion method. Based on the mask
extracted byMask-RCNN, the method in this paper can better
avoid local optimum, extract as many finger-vein regions
as possible, and remove the background. In the process
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of testing, the average ratio is optimal. By comparing the suc-
cessful extraction ratio and effectiveness rate of SDUMLA-
HMT, it proves that the method in this paper enjoys high
accuracy and robustness. The effective extraction rate can
reach 100%.

C. EXPERIMENT ON THE EFFECT OF FINGER-VEIN
RECOGNITION
1) TRAINING MODEL
The images collected from FV-SIPL and SDUMLA-HMT
are divided into three types: the known category training set,
unseen category training set, and testing set. For instance,
we picked up eight images from each of the 80 categories
in FV-SIPL as a known category training set. Then 20 out of
the remaining 28 categories are placed in the unseen training
set, and the rest eight categories are chosen to be tested. In
addition to the above 20 types of images, the unseen training
set also contains images of the finger-vein database published
byMalaysian Polytechnic University, Tianjin Key Laboratory
of Intelligent Signal and Image Processing, generally refer to
as Un_Data. In conclusion, the dataset is divided into two
parts: the unseen class and the data with labels. Besides,
the division results of SDUMLA-HMT are shown in Table 5.

TABLE 5. Database Partition. Except for splitting the normal training and
testing dataset, we considered unseen categories to verify generalization
capability of our proposed method.

The dataset should be expanded to prevent the network
from over-fitting, increase the robustness of the network,
and adapt to the needs of network parameters. Firstly,
we extracted the RoI region and resized them to 224 × 224.
The images are then normalized, randomly rotated, trans-
lated, and imported into the CNN network for training and
testing. In specific applications, such as using FV-SIPL to
train the network, one batch is 64, and a total of 500 steps
of training were carried out. With 1296 pictures sequentially
extracted in a loop, we achieved 64 pictures and conducted
preprocessing. At this time, the number of images in the
whole training network will reach 32,000. Fig.7 shows the
changing trend of the loss function of DGLFV when training
SDUMLA-HMT and FV-SIPL.

2) EXPERIMENT ON THE RECOGNITION EFFECT OF UNSEEN
CATEGORY
The unseen training category of different scales will cause
more or less influence on the results of the vein recog-
nition, We must determine the data volume of the unseen
category training dataset, which ensures the high accuracy

FIGURE 7. Here are the trends of training loss for SDUMLA-HMT and
FV-SIPL. The image quality of SDUMLA-HMT is lower than FV-SIPL, with
more shadowing data and a more extensive posture adjustment range. So
the experiment on SDUMLA-HMT enjoys significant initial loss and slower
training converges. The final training loss proves that the DGLFV model
we proposed has converged and good recognition ability.

FIGURE 8. The chart displays the impact of unseen label database size on
accuracy. Experiments are performed using a test set of unseen
categories divided from the data set. With more training data,
the recognition results are better. For the DGLFV model proposed in this
paper, the amount of training data is increased to about 30,000. The
recognition of unseen categories tends to a certain stability.

of subsequent experiments. We are clear that the unseen
category testing dataset is different from the training so that
it can be closer to the actual scenario. Based on the testing
set mentioned above, we used some conventional and classic
models for comparison, such asVGGNet [12], Inception [23],
ResNet [20], which obtained excellent results in games held
by ImageNet. The experimental results are shown in Fig.8.

According to those two databases, our novel algorithm
based on the Inception-ResNet V2 approach reach an excel-
lent accuracy level of over 99%.

Table 6 shows the identification effects when testing the
new categories on DGFLV and other usual models. To test
the performance and robustness to unseen finger-vein cate-
gories, we conducted different experiments based on various
feature extraction methods. It shows that our DGFLV model
based on Inception-ResNet V2 enjoys the highest recognition
accuracy, and VGG could not give more improvement than
ResNet.
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TABLE 6. Recognition effects of multiple networks on unseen label finger veins.

TABLE 7. Overall finger-vein recognition effects of multiple networks.

3) EXPERIMENT ON THE OVERALL ACCURACY OF
FINGER-VEIN RECOGNITION
There are two key evaluation indicators for measuring the
effect of finger-vein recognition: the accuracy rate and the
ROC curve. In the beginning, we compared the overall accu-
racy of the model constructed with VGGNet [12], Incep-
tion [23], and ResNet [20]. We measured the gross accuracy
of two kinds of databases (the unseen and known testing set).
The comparison results are shown in Table 7.

Although the database has unseen categories, the model
proposed in this paper still achieved an excellent recognition
effect and generalization capability. To further reflect this
algorithm’s recognition performance, we compare its accu-
racy with other recent finger-vein recognition technology
using the same database (SDUMLA-HMT). The results are
presented in Table 8.

4) EER EXPERIMENT OF THE WHOLE FINGER VEIN
Compared with the recognition accuracy, the ROC curve is
a more meaningful indicator for evaluating the effect. In the
ROC curve, the true positive rate (TPR) and the false positive
rate (FPR) are the vertical and horizontal axes. The equal
error rate (EER) is a point at which FPR is equal to the
false-negative rate (FNR), and the sum of FNR and TPR
is 1. Because FNR can be converted by TPR, we generally
regard the horizontal axis of the point where the ROC curve
intersects with the EER line as the EER value. It is customary
to use EER to measure the recognition effect. The smaller
the EER value, the better the overall recognition effect [40].
The Softmax output can be obtained after inputting the testing
set to the training model. Take the maximum probability
as the verification one, and compare it with the verification
threshold during training to decidewhether to accept or reject.
After multiple batches, we can receive TPR and FPR and
establish the ROC curve.

The comparison experiments cover [2], [7], and the recog-
nition of other classic models using the same recognition
method in this paper. Except for the Gabor-based recognition
algorithm [2] and that based on VGG19 and VGG16 [7],
we replaced the basic model proposed by Inception [23],
ResNet [20] and Xception [41] for comparison. They are
named as DGLFV-Inception, DGLFV-ResNet, and DGLFV-
Xception. Fig.9 and Fig.10 show the results on FV-SIPL

FIGURE 9. With the dataset of FV-SIPL, the algorithm in this paper
remains the lowest equal error rate (EER) even after introducing an
unseen category of finger veins. Compared with the reference [2] and [7],
the equal error rate (EER) decreased by 2.049% and 1.095%, respectively,
and the related classic models based on DGLFV were improved. Besides,
the Inception-ResNet V2 model used in this paper has better recognition
accuracy than other network models, with an EER of 1.481%.

FIGURE 10. Experimental results on SDUMLA-HMT show that the model
based on DGFLV has a better recognition effect than most existing
algorithms. EER has decreased by 2.192% and 1.225%, compared with [2]
and [7].

and SDUMLA-HMT, Table 9 demonstrates the statistical test
results.

5) EXPERIMENT ON THE EFFECTIVENESS OF THE LROC
ALGORITHM
DGLFV can utilize the LROC verification threshold
self-adaption acquisition algorithm to transform the classifi-
cation recognition probability into verification. Nevertheless,
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TABLE 8. Our proposed algorithm is compared with state-of-the-art for finger-vein recognition technology research. In the case that the finger-vein
recognition system becomes more complicated after the introduction of unseen finger-vein categories, the finger-vein recognition algorithm proposed in
this paper still has reached the state-of-art level of over 99 %, compared with the research results of finger-vein recognition in recent years. Besides,
there are different data partitioning in these models. We select and compare the best ratios with the results their papers claimed.

TABLE 9. Comparison of DGLFV and other model identification
capabilities. The finger-vein recognition model based on DGLFV still
outperforms the existing algorithms. When using the same training
method, it is found that Inception-ResNet V2 network can make progress.

in [7], based on CNN, there is a need to repeat the verification
according to the number of categories. In practice, DGLFV
will significantly improve the recognition efficiency, shown
in Table 10.

There are 400 known categories in SDUMLA-HMT.
The time spent on DGLFV recognition is approximately
0.0125 times as much as that of [7].

D. RESULT ANALYSIS
For finger-vein recognition, we determine the size of the
untold category training set and the method first. After that,

TABLE 10. Comparison of recognition efficiency. We present the time
consumption of our algorithm recognizing a single picture based on
different feature extraction models in SDUMLA-HMT.

we test the effects of other categories and the overall dataset
on DGLFV. The results show that the DGLFV model pro-
posed in this paper has an excellent recognition effect on
unseen finger-vein categories and enjoys more advantages
than other novel CNN recognition models. Compared with
other networks, DGLFV has achieved the state-of-art recog-
nition accuracy level of over 99% for the entire finger-
veins, including unseen categories. It has reached the lowest
EER value, indicating that the model enjoys higher security
and accuracy. When identifying unseen categories, different
from the passive comparison rejection used in the traditional
finger-vein recognition method, the DGLFV model uses an
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active way to generalize the test samples into separate unseen
categories directly. Although it costs some time to train the
model, the recognition speed can be significantly improved.
The results of the LROC algorithm also show that theDGLFV
model has a high finger-vein recognition efficiency.

IV. CONCLUSION
To address the recognition problem of interference and low
efficiency when identifying unseen categories with tradi-
tional methods, we propose a novel generalized finger-vein
recognition model called DGLFV, with good accuracy and
practical value. We apply an advanced Mask-RCNN-based
mask extraction algorithm to obtain accurate masks, both
for the known and unseen categories. Then an advanced
bidirectional traversing and center diffusion method is pro-
posed to obtain the finger-vein RoI. In terms of the unseen
categories, this model utilizes a deep neural network to train
them with a large-scale image database and realizes active
recognition. Finally, a recognition decision algorithm based
on Softmax is constructed to obtain the verification thresh-
olds of each category actively. The FV-SIPL dataset we con-
structed can be accessible by emailing us, and later it will
be open-source online. Through experiments on the FV-SIPL
and SDUMLA-HMT databases, the recognition accuracy of
DGLFV in this paper has reached 99.25% and 99.08%. EER
values reach 1.481% and 2.228%, respectively. From the
tables we present, our model reaches the state-of-art recog-
nition level. The total time consumption of our structure has
been improved at 0.157s, as shown in Table 10.

We have not explored more experiments in a real scene
or different products. For future research, we will con-
centrate on the extraction efficiency of RoI regions in
complicated backgrounds and recognition model general-
ization. Also, using transfer learning and implementing
more high-precision algorithms to finger-vein recognition is
another research trend. This kind of algorithms will influence
personal information security and protection as amain branch
of biometrics.Wewill further work on accuracy enhancement
without increasing time consumption. The possible applica-
tion research to micro-computing or bit-level systems will
provide widespread finger-vein recognition.
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