IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 20, 2021, accepted May 21, 2021, date of publication May 26, 2021, date of current version June 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3084050

The Matthews Correlation Coefficient (MCC) is
More Informative Than Cohen’s Kappa and Brier
Score in Binary Classification Assessment

DAVIDE CHICCO™!, MATTHIJS J. WARRENS"“2, AND GIUSEPPE JURMAN "3

nstitute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
2Groningen Institute for Educational Research, University of Groningen, Groningen, The Netherlands
3Data Science for Health Unit, Fondazione Bruno Kessler, Trento, Italy

Corresponding author: Davide Chicco (davidechicco@davidechicco.it)

ABSTRACT Even if measuring the outcome of binary classifications is a pivotal task in machine learning
and statistics, no consensus has been reached yet about which statistical rate to employ to this end. In the
last century, the computer science and statistics communities have introduced several scores summing up
the correctness of the predictions with respect to the ground truth values. Among these scores, the Matthews
correlation coefficient (MCC) was shown to have several advantages over confusion entropy, accuracy, Fi
score, balanced accuracy, bookmaker informedness, markedness, and diagnostic odds ratio: MCC, in fact,
produces a high score only if the majority of the predicted negative data instances and the majority of the
positive data instances are correct, and therefore it results being very trustworthy on imbalanced datasets.
In this study, we compare MCC with two other popular scores: Cohen’s Kappa, a metric that originated in
social sciences, and the Brier score, a strictly proper scoring function which emerged in weather forecasting
studies. After explaining the mathematical properties and the relationships between MCC and each of these
two rates, we report some use cases where these scores generate different values, which lead to discordant
outcomes, where MCC provides a more truthful and informative result. We highlight the reasons why it is
more advisable to use MCC rather that Cohen’s Kappa and the Brier score to evaluate binary classifications.

INDEX TERMS Matthews correlation coefficient, Cohen’s Kappa, binary classification, confusion matrix,
supervised machine learning, Brier score, confusion matrix, applied machine learning.

I. INTRODUCTION
Two-class binary classification is a popular task in machine
learning and computational statistics. When the goal of the
study is to classify or predict elements in groups, usually the
practitioner assigns labels 0 and 1 to them in the original
ground truth dataset. The data instances with label O are
usually called negatives, while the data instances labeled 1 are
usually called positives.

A trained classifier then makes a prediction by associating
a real or binary value to each element of the ground truth
dataset. If the values are real, they are often made binary
by assigning the value O to the predictions that are below
a specific cut-off threshold t (usually equal to 0.5) and by
assigning the value 1 to the predictions that are greater than
or equal to that threshold (prediction > ). This way, both
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the ground truth elements and the predictions can be split into
positives and negatives. At this point, a two-class confusion
matrix can be created:

« The actual positives that are correctly predicted positives
are called true positives (TP);

« The actual positives that are wrongly predicted negatives
are called false negatives (FN);

o The actual negatives that are correctly predicted nega-
tives are called true negatives (TN);

o The actual negatives that are wrongly predicted positives
are called false positives (FP).

Each of these four categories contains a quantitative number
that can be important for the study carried on; considering
all the four tallies together, however, can be complicated and
uneasy. For this reason, scientific researchers have invented
several metrics able to recap the quantitative information of a
confusion matrix or of the original predictions themselves.
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The Matthews correlation coefficient [1], in particular,
is a rate that resulted being more informative than confu-
sion entropy (CEN) [2], accuracy and F; score [3], balanced
accuracy, bookmaker informedness, and markedness [4], and
diagnostic odds ratio [5] in the past (Supplementary Infor-
mation). In this study, we decided to continue this series
of comparisons by confronting MCC with another two-class
confusion matrix rate (Cohen’s Kappa), and with a strictly
proper score function representing the original predictions of
a classifier (Brier score).

A. MATTHEWS CORRELATION COEFFICIENT (MCC)

The Matthews correlation coefficient has been introduced
by Brian W. Matthews to evaluate the predicted structure of
an enzyme, in a biochemical study in 1975 [1]. Since then,
it has been used in several studies, but has never become as
popular as accuracy and F; score in the mathematics and
computer science communities [3]. The situation changed
after 2000, when MCC was reproposed as a standard metric
for binary classification by Baldi and colleagues [6] and its
spread started to grow.

Since then, for example, MCC has been used as a standard
metric in several scientific competitions, such as the Kaggle
competition to detect power line fault detection [7] and the
DataDriven challenge to identify clogged blood vessels in
the brain of mice with Alzheimer’s dementia [8]. Addition-
ally, MCC has been included in DREAMTools [9], a Python
package to assess results of collaborative DREAM chal-
lenges [10], and can be found on several software packages of
free open source programming languages such as Python,
R, and TensorFlow.

The Matthews correlation coefficient gained popularity
when the US Food and Drug Administration (FDA) agency
employed it as the main evaluation metric in the MicroArray /
Sequencing Quality Control (MAQC/SEQC) comprehensive
analyses in 2010 and 2014 [11], [12].

Recently, Boughorbel and colleagues [13] described an
enhanced classifier based on the Matthews correlation coef-
ficient, while Zhu [14] investigated the behavior of MCC on
several imbalanced cases.

With the growing spread of the Matthews correlation coef-
ficient [15], [16], specialized blogs about machine learning
and technology started to discuss this rate, too. For example,
articles on MCC appeared on the blog of Towards Data
Science [17] and on the blog of the graphic designer David
Lettier [18].

For 2 x 2 confusion matrices MCC is identical to the
phi (¢) coefficient [19]-[21]. Other generalizations of the phi
coefficient were proposed in Janson and Vegelius [22] and
Gorodkin [23]. As phi coefficient, the Matthews correlation
coefficient is employed often in psychometrics [24].

B. COHEN'S KAPPA

The Kappa coefficient is a metric for summarizing the agree-
ment between two nominal classifications, based on the same
categories. It is extensively used in social, behavioral and
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medical sciences, as a measure of agreement between two
raters [25]-[28]. It was first introduced by Jacob Cohen
in 1960 as an alternative metric to accuracy that considers
agreement due to chance [29]. The Kappa coefficient can
be interpreted as a measure of agreement beyond chance
compared to the maximum possible beyond chance agree-
ment [30], [31].

Originally, Kappa was designed for classifications with
more than two classes [29], [32]-[35]. Nevertheless, it is com-
monly applied to two-class classification problems too [36],
[37]. Similar to MCC, Cohen’s Kappa considers all the four
categories of the binary classification confusion matrix: true
positives, true negatives, false positives, and false negatives.
Furthermore, both metrics are balanced measures that sum-
marize the classification problem in one value [38] and have
value equal to 41 in the case of perfect prediction (except for
indeterminate cases) and 0 if the prediction is random.

It can be shown that Cohen’s Kappa is equivalent to
the Hubert-Arabie adjusted Rand index [39], that has been
employed in cluster analysis for quantifying agreement
between two partitions [40]. Furthermore, the relation-
ship between Cohen’s Kappa and operating characteristic
curves (ROC) has been explored by Ben-David [41].

Several authors have presented population models for
Cohen’s Kappa [42], [43]. Under several of these models,
Kappa can be interpreted as an association coefficient. How-
ever, Kappa is also commonly used as a sample statistic or
performance measure, for example, when calculating Kappa
for a sample of subjects is one step in a series of research
steps, or when Kappa is used for analyzing a binary classifi-
cation. In these cases, researchers can usually be interested in
the agreement in the sample, not in the agreement of a popu-
lation. In the case of 2 x 2 confusion tables, the test statistic
for Cohen’s Kappa is the same as Pearson’s chi-squared (x2)
test [44]. Tables for sample size determination for a variety
of common study designs involving Cohen’s Kappa can be
found in a study of Cantor [45], and standard errors for
Cohen’s Kappa can be found in works of Garner [46] and
Shan and Wang [47].

As a sample statistic, Cohen’s Kappa is known to be
marginal or prevalence dependent since it takes the class
sizes into account [48]-[52]. In social sciences, it is well
known that the value of Kappa depends on the prevalence
of the class being diagnosed. In the 2 x 2 case values of
Kappa can be quite low if one class is quite common or
very rare [53], [54]. Various authors have shown that if two
pairs of binary classifications have the same accuracy, the pair
whose class distributions are more similar to each other may
have a lower Kappa value than the pair with more divergent
class distributions [53], [55]. Since binary classifications with
similar class distributions usually have a higher amount of
agreement expected to occur by chance, a fixed accuracy
will lead to a lower Kappa value due to the definition of
the statistic [56]. The dependence of Cohen’s Kappa on the
class distributions has been studied extensively by means of
examples of 2 x 2 confusion tables in the literature [50],
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[51], [53], [54]. Warrens [57] presented exact formulations
of many of these properties and observations. In general,
the use of Kappa is accepted: its pitfalls can be overcome
by considering the class distributions. Nevertheless, multiple
researchers have proposed alternative metrics for 2 x 2 con-
fusion tables [54], [55], [58].

The popularity of Cohen’s Kappa has led to the devel-
opment of various extensions, including weighted Kappa
coefficients for classifications with three or more ordered
classes [59]-[63], Kappa coefficients for three or more
observers or classifications [64], and a Kappa coefficient that
can handle missing data [65]. Inequalities between different
weighted Kappa variants for ordered classes have been dis-
cussed in studies of Warrens [28], [34]. Furthermore, vari-
ous authors have found applications of Cohen’s Kappa that
are different than the original context considered by Cohen.
For example, Chang [66] used Cohen’s Kappa to capture
discrimination in the same way as the receiver operating
characteristic curve. Holle and Rein [67] employed Cohen’s
Kappa to assess agreement for segmentation and annotation.
Vieira and coauthors [68] used Cohen’s Kappa as a perfor-
mance measure for feature selection.

Other studies describe the drawbacks of Cohen’s Kappa in
remote sensing [69], [70]. Stein et al. [69] saw the Cohen’s
Kappa single-value as a flaw, incapable to express the overall
assessment of the classification. Instead, they proposed the
Bradley-Terry model, that gives information on the separate
categories and not just a single number. The Bradley-Terry
model could be useful for the multi-class predictions, but not
for binary classifications.

Pontius and Millones [70] criticized the Kappa statistic
because it can generate values that do not make sense in
remote sensing, and stated that Kappa coefficient’s statis-
tically expected agreement can be irrelevant for the same
domain. Instead, Pontius and Millones [70] proposed two
alternative metrics (quantity disagreement and allocation dis-
agreement) as an alternative to Cohen’s Kappa that can
be used complementary to accuracy in remote sensing
applications [71].

C. BRIER SCORE

Unlike Cohen’s Kappa and the Matthews correlation coef-
ficient, the Brier score is a strictly proper scoring rule and
hence favours probability forecasts that are well calibrated.
Similarly to the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve and of the precision-
recall (PR) curve, the Brier score does not consider a specific
cut-off threshold to split the predicted values into positives
and negatives. The predicted values used for the Brier score
are usually forecast probabilities, differently from AUC. For
example, AUC is unchanged if the probabilities are trans-
formed monotonically. We usually refer to AUC as measuring
only discrimination whereas strictly proper scoring rules like
the Brier score are influenced by both the discriminating
ability of the forecasts and their calibration, where calibration
here means the relative frequency of observed outcomes [72].
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For example, a perfect calibration happens when a claim
predicts an event to appear with a 70% likelihood, and that
event actually occurs 70% of those times [72]. Calibration is
important if the forecasts are going to be taken at face value
by users.

With regard to classification, the Brier score can be inter-
preted as the loss expected for a uniform distribution of
cost-loss ratios when the classification is made by applying
the Bayes decision rule to the forecasts. Accuracy relates to
the loss expected when classification is made using a fixed
threshold, and ROC AUC relates to the loss expected for
another method of choosing the threshold [73]. Thus the
Brier score is a useful measure of the performance of the
classifier that we would create if we were to trust the forecast
probabilities (that is, if we were to assume that the forecasts
are calibrated and so consider the Bayes rule optimal). If
the forecasts are not calibrated, however, then it may be
possible to achieve better classifier performance by using
other decision rules.

The Brier score was originally introduced by
Glenn W. Brier in 1950 for weather forecasting related to
the probability of rain [74]. Several decades later, a few
researchers investigated the mathematical details of this cost
function: Blattenberger and Lad [75] presented a graph-
ical description of the separation into distinct calibration
and refinement components of the Brier score, while Mur-
phy and colleagues [76] described a decomposition of the
Brier score based on conditional distributions and mean
errors.

Almost twenty years later, the Brier score came back to
the attention of the statistics and weather community with
several articles published in the same period. Ikeda et al. [77]
studied the relationships between the Brier score and binor-
mal receiver operating characteristics (ROC) area under the
curve (AUC), while in his preprint Jewson [78] described
some clear issues regarding the Brier score in weather fore-
casting.

Gerds and Schumacher [79] described their findings
when employing the Brier score for survival analysis.
Another meteorological application regards the study of
Casati and colleagues [80], who employed the Brier score to
forecast lightnings.

Roulston [81], Stephenson and colleagues [82], and
Ferro et al. [83] investigated some mathematical properties
of the Brier score. Bradley and colleagues [84] explored the
sampling uncertainties of the Brier score and its variant Brier
skill score [85].

Rufibach published a short report [86] where he described
the advantages of the Brier score for binary predictions
over Spiegelhalter’s z-statistic [87], while Jachan and col-
leagues [88] described a biomedical case study where they
used the Brier score to assess predictions of epileptic seizures.

Johansson and coauthors [89] investigated how to use the
Brier score for existing rule extraction, and applied their
methods on 26 datasets of the University of California Irvine
Machine Learning Repository [90].

VOLUME 9, 2021



D. Chicco et al.: MCC is More Informative Than Cohen’s Kappa and Brier Score

IEEE Access

The theme of the Brier score decomposition was treated
again in the correspondence article of Young [91], in an
correspondence article by Ferro and Fricker [92], in a letter
by Siegert [93], and in a study by Merkle and Hartman [94].

Hernandez-Orallo and colleagues [95] proposed a curve
based on the Brier score as an alternative to traditional
curves such as receiver operating characteristics (ROC) or
precision-recall (PR) curve. Lesik and Leake [96] described
an application of the Brier score to assess the placement of
students among mathematics courses after Scholastic Assess-
ment Test (SAT) examinations.

A recent article by Assel and coauthors [97] claims that
the Brier score is incapable of predicting diagnostic tests or
prediction models in clinical environments.

D. THE APPLICATION FIELDS

Although the three metrics (MCC, «, Brier score) share a
common statistically grounded origin in their definition, they
faced a different evolution in their usage in the following
years. The « statistic originated in the social sciences and
then became of general purpose, being commonly used in all
research fields whenever the level of agreement between two
nominal classifications is investigated. The Brier score was
originally introduced in weather forecasting studies, but its
usage has become increasingly widespread as a risk score in
survival and prediction models in medicine, being nowadays
its elective application field. Oppositely, MCC was originally
conceived as a performance metric for classifiers in bio-
chemistry and as such it has been used in several biomedical
domains in the following years, becoming quite common in
bioinformatics and computational biology. In the last years,
its popularity has overcome the life science limits, and its
use is spreading across all scientific and technological dis-
ciplines.

To the best of our knowledge, no study comparing MCC,
Cohen’s Kappa, and the Brier score has been released in the
scientific literature so far; we fill this gap by presenting the
current study on these three statistical rates.

E. THIS STUDY

We organized the rest of this article as follows. After this
Introduction, we explain the mathematical background of
MCC, Cohen’s Kappa, and the Brier score (section II).
Afterwards, we describe the relationship between MCC and
Cohen’s Kappa and the relationship between MCC and the
Brier score (section III), and discuss some use cases where
these pairs of rates give discordant messages (section IV). At
the end of the article, we outline some conclusions and future
developments (section V).

Il. MATHEMATICAL BACKGROUND

A. MATTHEWS CORRELATION COEFFICIENT

The Matthews correlation coefficient (MCC) [1] is a case of
the Cramér’s V [19] applied to a 2 x 2 traditional confusion
matrix, having true positives (TP), true negatives (TN), false
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negatives (FN), and false positives (FP) (Equation 1). The
metric is defined as:
TP -TN—FP-FN
- /(TP+FP)-(TP+FN)-(TN +FP)-(TIN +FN)
(worst value = —1; best value = +1)

MCC

ey

MCC is class symmetric: switching positives and negatives
would lead to the same result. The minimum value of MCC
is —1, meaning perfectly wrong prediction, where a classifier
labels all the positives as negatives and all the negatives
as positives. The maximum value of MCC is +1, which
means perfect classification. If the value of MCC is around 0,
it means that the prediction made was similar to random
guessing. The Matthews correlation coefficient can be unde-
fined when a pair of confusion matrix values are both 0, but
these cases can be handled with some mathematical steps [3].

B. COHEN'’S KAPPA

Cohen’s Kappa [29] was originally proposed for quantifying
agreement between two observers that judged the same set
of persons on a nominal scale, with two or more classes.
The metric is also commonly used for two-class classification
problems. Using the cells of a 2 x 2 traditional confusion
matrix Cohen’s Kappa [27], [40], [42] is defined as:

2-(TP-TN—FP-FN)
K=
(TP+FP)-(FP+TN)+(TP+FN)-(FN+TN)

(worst value = —1; best value = +1)

©))

Cohen’s Kappa shares various properties with MCC. Both
these rates are class symmetric, their minimum value is —1
(perfectly wrong prediction) and their maximum value is 41
(perfect classification). Furthermore, if ¥ ~ 0, the prediction
made was similar to random guessing. Finally, « can be
undefined in some cases, but these cases can be handled with
mathematical operations similar to the ones needed when
MCC is undefined [3].

In 1960, Cohen’s Kappa was originally proposed as a
chance-corrected measure, more precisely a chance-corrected
version of accuracy. The metric in Equation 2 is equivalent to:

accuracy — expected accuracy
k= 3)

1 — expected accuracy

where the formula of accuracy is given by:

TP + TN
accuracy = 4)
TP+ FP+ FN + TN

(worst value = 0; best value = 1)

and where the formula of expected accuracy is given by:

expected accuracy
_ <TP+FP TP+FN>

N N
TN + FP TN + FN
N N

where N is the number of samples in the dataset. The for-
mula of expected accuracy (Equation 5) is the value of

&)
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accuracy (Equation 4) under statistical independence of the
observers (or two nominal variables). In inter-rater reliabil-
ity studies, accuracy is generally considered artificially high
since some agreement might be due to chance. Therefore,
it makes sense to use a measure that takes this aspect into
account.

Various authors later discovered that Cohen’s Kappa may
be interpreted as chance-corrected version of various mea-
sures other than accuracy in Equation 4 [33]. In fact, all
special cases of:

o TP+ Q2 —«a)-TN

M) = P T FPY N + 2 —a) TN ©)

(worst value = 0; best value = 1)

become Cohen’s Kappa after correction for agreement due
to chance [33]. Two examples are the F; score (@« = 2) and
accuracy (¢ = 1). The special case for « = 0 was studied
by Cicchetti and Feinstein [54].

C. BRIER SCORE
The Brier score [74] is a strictly proper scoring function that
is equivalent to the mean squared error:

N

1

BS = 21: (i —yi)° (7
=

(worst value = 1; best value = 0)

where N is the number of samples in the dataset, x; is the
predicted value for the i element and y; is the actual value
of the i’ element.

In the general case when x; is an actual probability, a com-
parison to MCC and « can be difficult to interpret, since the
two aforementioned measures are applicable only in the hard
classification cases when x; is binarized to correspond to one
of the two class labels.

In particular, reducing to the case where the ground truth
values are zeros and ones, since the prediction probability
range in the [0, 1] interval, by setting the confusion matrix
threshold t is set to 0.5, the Brier score can be expressed
through traditional two-class confusion matrix classes. We
call this Brier score binary variant binaryBS:

FP + FN
TP + FP+ FN +TN

(worst value = 1; best value = 0)

binaryBS =

=1 —accuracy (8)

binaryBS is the complementary value of accuracy and, like
the original Brier score, has its best value equal to 0 (perfect
prediction) and its worse value equal to 1 (prediction with
maximum errors possible).

Ill. RELATIONSHIPS BETWEEN RATES

In this section, we first study the mathematical relationships
and correlations between the Matthews correlation coeffi-
cient and Cohen’s Kappa, and then between the Matthews
correlation coefficient and the Brier score.
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FIGURE 1. Relationship between MCC and Cohen’s Kappa. We computed
MCC and Cohen’s Kappa for 103 possible confusion matrices.

A. MCC AND COHEN'’s KAPPA

The formulas of MCC in Equation 1 and Cohen’s Kappa in
Equation 2 have a number of features in common. We have
MCC = « if and only if FP = FN, that is, the metrics
coincide when the 2 x 2 confusion matrix is symmetric. Fur-
thermore, MCC and Kappa are, respectively, the geometric
mean and harmonic mean of the following quantities:

TP .TN—FP - FN TP .TN—FP - FN
(TP + FP) - (FP + TN) (TP + FN) - (FN + IN)’
9

From the geometric-harmonic-means inequality we obtain
the inequality |MCC|| > |kl [37], [38]. From this inequality
it follows that the Kappa value will always be closer to O than
the MCC value: the Kappa value will always be equal or
less extreme. In turn, this implies that, in the case of positive
association (that is: TP - TN > FP - FN), it is impossible
that Kappa produces a higher value than MCC in the case of
a binary classification [37], [38].

Since MCC = « if and only if FP = FN, the largest differ-
ences between MCC and Kappa are quite likely to be found
when FP and FN are very different, which is more likely
when the metrics produces negative values. To highlight this
aspect, we depicted a scatterplot with all the possible values
of the Matthews correlation coefficient on the x axis and all
the possible values of Cohen’s Kappa on the y axis (Figure 1),
both in the [—1, +1] interval.

As one can notice, MCC and « have almost identical values
in the top-right quarter, that is where the values of both MCC
and « are positive (Figure 1). In the [0, 4+1] interval, in fact,
the two rates are generally concordant, showing the same
trend and minimal differences between values. The top differ-
ence of 0.11 can be noticed when MCC equals to +0.339 and
k equals to 40.229, as we discuss later (section IV).
A difference of 0.11 between MCC and « means a 5% differ-
ence in the total range of 2, so we can consider that minimal.

On the contrary, MCC and Cohen’s Kappa show very
different behavior on the bottom-left quarter, that corresponds
to the values in the [—1, 0] interval (Figure 1). To a MCC of
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—1, for example, can correspond any negative value of «. This
ambiguity results being very strong, because both these rates
have different meanings for 0 and for —1: a value close to
zero, in fact, means that the prediction is similar to random
guessing, while a value close to —1 means perfect opposite
prediction. Note that these values can happen when the pre-
dictor generated no true positive and no true negative. We
discuss this scenario later in several use cases (section V).

Finally, the inequality |[MCC| > |«| does not hold for
the case of multi-class classification. Delgado and Tibau [38]
presented various cases in which a worse classifier gets a
higher Kappa value, differing qualitatively from the MCC
value, although in most cases the two metrics produce similar
values.

B. MCC AND BRIER SCORE

The Brier score has a huge difference from MCC and Cohen’s
Kappa: it is a strictly proper score function with values
ranging from O (perfect prediction) to 1 (worst prediction).
Therefore, the Brier score is not generated by the two-class
confusion matrix categories, but rather as the cumulative sum
of the squared mean error computed between the predicted
values and the ground truth values (Equation 7).

If one wanted to investigate the relationship between MCC
and the Brier score through FP, FP, TN, and TP, she/he would
therefore need to use binaryBS (Equation 8) instead of the
original Brier score. As we mentioned earlier, binaryBS is a
variant of accuracy, and therefore has the same properties.
The relationships between MCC and accuracy have been
already investigated in previous study [3].

For this reason, to investigate the relationship between
MCC and the Brier score, we decided to focus on scat-
terplots having these two rates on the x axis and y axis.
To generate proper scatterplots, we first had to find a way
to generate a reasonable set of predictions. Following the
example of Cao and colleagues [98] for the MCC-F1 curve,
we used Beta distributions [99], that are probability distribu-
tions controlled by two shape parameters. Beta distributions
generate real values in the [0, 1], like a traditional machine
learning classifier. By changing the two shape parameters,
we simulated various different classifiers.

Figure 2 presents three example classifiers based on the
Beta distributions. When the two shape parameters have iden-
tical values, for example Beta(4, 4), the beta distribution is
symmetric and a majority of simulated prediction scores will
be scattered around 0.5. If the shape parameters are quite
distinct, the majority of simulated scores will be closer to 0
(for example, Beta(9, 15)) or 1 (for example, Beta(15, 8)).

Regarding the ground truth, we employed three syn-
thetic datasets: a balanced dataset with 5,000 positives
and 5,000 negatives; a negatively imbalanced dataset with
1,000 positives and 9,000 negatives; and a positively imbal-
anced dataset: 9,000 positives and 1,000 negatives. Regarding
the simulated classifiers, we generated two groups of pre-
dictions: in the first case (symmetric simulated predictions),
we associated a particular Beta distribution to the positives,
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FIGURE 2. Beta distributions plot. Three example simulated classifiers
based on Beta distributions [99].

and a particular Beta distribution to the negatives; in the sec-
ond case (asymmetric simulated predictions), we associated a
particular Beta distribution to the positives, a particular Beta
distribution to the first 70% of the negatives, and a particular
Beta distribution to the last 30% of the negatives.

Symmetric simulated predictions. In this case, we associ-
ated to the positive data instances the values Beta(a, b) distri-
bution and associated to the negative data instances the values
Beta(c, d) distribution with a, b, ¢, d ranging from 1 to 15.
Since the worst value of MCC is —1 and the best value of MCC
is +1, while the Brier score is best when its value is 0 and
worst if the value is +1, we prefered to employ the normalized
MCC and the complementary Brier score for these plots. Both
the normalized MCC (normMCC = (MCC + 1)/2) and the
complementary Brier score (complBS = 1 — BS) range in the
[0, 1] interval, and have O as worst possible score and 1 as
best possible score.

We computed all the possible classifiers varying a, b, ¢, d,
and depicted the values of MCC and the Brier score in a
scatterplot (Figure 3).

As one can notice, both normMCC and complBS have
different behaviors in the three plots (Figure 3).

In the balanced dataset plot (Figure 3A), the two measures
are fairly concordant, generating a thin plot that behaves
like a x = y function scaled-up on the y axis. This plot
shows also that complBS is always higher than normMCC
in this case. Regarding the association between scores, one
can notice that multiple values of normMCC correspond to
few values of complBS: when complBS is around 0.6, all the
points having normMCC in the [0.1, 0.5] range are associated
to it. Some values of normMCC relate to multiple values
of complBS, too, but in a smaller interval: when normMCC
is around 0.48, the complBS values range in the [0.45, 0.7]
interval. This trend means that: multiple values of the Brier
score correspond to many values of the Matthews corre-
lation coefficient; few values of the Matthews correlation
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A balanced dataset B

complBS

0.00 0.25 0.50 0.75 1.00 0.00 0.25
normMCC

negatively imbalanced dataset C

positively imbalanced dataset

0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
normMCC

normMCC

FIGURE 3. Relationship between MCC and the Brier score, with simulated classifiers using same distributions on positives and negatives. We
report all the 50,625 points representing the complementary Brier score the normalized MCC generated by Beta distribution simulated classifiers on
simulated datasets. (A) Balanced dataset: 5,000 positives and 5,000 negatives. (B) Negatively imbalanced dataset: 1,000 positives and

9,000 negatives. (C) Positively imbalanced dataset: 9,000 positives and 1,000 negatives. Simulated classification points associated to the positives:
Beta(a, b) with a and b ranging from 1 to 15. Simulated classification points associated to the negatives: Beta(c, d) with c and d and f ranging from
1 to 15. normMCC = (MCC + 1)/2. compIBS = 1 - BS. The values of both normMCC and complIBS lay in the [0, 1] interval, with worst value equal to

0 and best value equal to 1.

coefficient correspond to many values of the Brier score.
Both these behaviors can generate discordant or ambigu-
ous messages about the binary classification assessment,
especially regarding the Brier scores that could mean both
excellent MCC and poor MCC in the same time. We will
deal with this issue more in detail in the use cases section
(section IV).

The negatively imbalanced dataset plot (Figure 3B) results
being identical to the positively imbalanced dataset plot
(Figure 3C), and this aspect comes with no surprise since both
the Brier score and the Matthews correlation coefficient are
class-invariant: differently from F; score, inverting positives
with negatives in the original datasets would not change the
scores for MCC and the Brier score.

These two plots show several differences from the bal-
anced dataset plot. Their points occupy almost completely
the lower-left quadrant, precisely the area where complBS
is in the [0.2, 0.5] range and normMCC is in the [0.2, 0.5]
interval. Another area dense of points can be observed where
normMCC equals to 0: for this normMCC value, complBS
can have values that go from 0.8 to 0.2. This aspect means
that there is an large multiplicity of normMCC-complBS
associations in that area, which can lead again to ambiguous
and discordant messages.

Asymmetric simulated predictions. The previously
described scatterplots between MCC and Brier score
(Figure 3) have a symmetry between the positives and the
negatives: we associated a particular Beta distribution to all
the ground truth positive data instances, and another par-
ticular Beta distribution to the ground truth negative data
instances.

To investigate a different case, similarly to what [98] did,
we generated additional simulated classifiers with a change
compared to before: we associated the values of a Beta dis-
tribution to the first 70% of the negative elements, and the
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values of a different Beta distribution to the last 30% of the
negative elements. While we kept the values of Beta(a, b)
associated to the positive data instances, we used the values
of Beta(c, d) for the first 70% of the negatives and Beta(e, f)
for the last 30% of the negatives, with a, b, ¢, d, e, f ranging
from 1 to 15.

We computed all the possible -classifiers varying
a,b,c,d, e, and f, and depicted the values of MCC and Brier
score in a scatterplot (Figure 4).

As one can notice, the balanced dataset plot (Figure 4A)
looks similar to its corresponding plot in the symmetric
case (Figure 3A): a concordant trend scaled up fromthex =y
line. The negatively imbalanced dataset plot (Figure 4B),
also, shows a trend similar to the trend of the symmetric
case (Figure 3B).

The MCC-Brier score plot of the positively imbalanced
dataset has some significant differences from the previ-
ous ones (Figure 4C). As one can notice, the scatter-
plot cloud is wider: that means that a specific value
of complBS corresponds to many values of normMCC,
although with different widths. When complBS is approx-
imately 0.3, for example, normMCC can range between
0.1 and 0.6. This scatterplot cloud is also longer than
the other plots around normMCC = 0.6: this specific value
corresponds to all the complBS between 0.625 and 0.8,
approximately.

To conclude, the plots on the negatively imbalanced
dataset (Figure 3B and Figure 4B) and the plots on the pos-
itively imbalance datasets (Figure 3C and Figure 4C) show
clearly that:

o Several values of the Brier score correspond to a huge
number of the Matthews correlation coefficients, gener-
ating ambiguous messages: cases where the Brier score
indicates very good prediction, and MCC indicates poor
prediction, and vice versa;
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A balanced dataset B negatively imbalanced dataset C

positively imbalanced dataset
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o
a

0.00 025 050 075 1.00 0.00 025 050 0.75 1.00 0.00 025 050 075 1.00
normMCC normMCG normMCC

FIGURE 4. Relationship between MCC and Brier score, with simulated classifiers using the different distributions on positives and negatives. We
report 100,000 randomly selected points representing the complementary Brier score the normalized MCC generated by Beta distribution simulated
classifiers on simulated datasets. (A) Balanced dataset: 50 positives and 50 negatives. (B) Negatively imbalanced dataset: 10 positives and

90 negatives. (C) Positively imbalanced dataset: 90 positives and 10 negatives. Simulated classification points associated to the positives: Beta(a,

b) with a and b ranging from 1 to 15. Simulated classification points associated to the negatives: Beta(c, d) for the first 70% and Beta(e, f) for the last
30%, with ¢, d, e, and f ranging from 1 to 15. normMCC = (MCC + 1)/2. compIBS = 1 - BS. The values of both normMCC and complIBS lay in the [0, 1]

interval, with worst value equal to 0 and best value equal to 1.

o Several values of the Matthews correlation coefficient
correspond to many Brier scores, generating ambiguous
messages, too: cases where the Brier score indicates very
good prediction, and MCC indicates poor prediction,
and vice versa.

In the balanced dataset (Figure 3A and Figure 4A), instead,
both Brier score and MCC show concordant trends, with
much smaller ambiguity. To each value of the Matthews
correlation coefficient, in fact, correspond a few values of the
Brier score.

1) THE AMBIGUITY WHEN THE BRIER SCORE ~ 0.25

There is a special case of the Brier score where the ambiguity
of its message, compared with MCC, is at its maximum:
when the Brier score is approximately 0.25. Consider a binary
classification tasks on a dataset with ny positive samples
and n_ negative samples. To simplify notation when using
the Brier score, label the positive class as 1 and the negative
class as 0. Let € be a real number in the interval [0, 0.5) and
suppose the output of a probabilistic classifier is 1 — ¢ for
the samples of the positive class, and 0 + ¢ for each negative
sample. Then, by binarizing the output on the two classes
0 and 1, classification is perfect, thus MCC = +1 regardless
the value of 0 < & < 0.5, while BS = &2. Thus, MCC is
always one, while the Brier score can range between 0 and
0.25 (excluded).

Symmetrically, suppose that another classifier gives 1 — ¢
as the prediction for each negative sample, and 0 + ¢ for each
positive sample. Then, in this case, MCC is always —1, while
BS = (1 — ¢)? and thus it can range between 0.25 (excluded)
and 1.

It follows that values of the Brier score very close to
0.25 can correspond to either perfect binary classification or
full misclassification, as we will show later for the use cases
BS7 and BS8.
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IV. USE CASES

After having investigated the relationships between MCC and
Cohen’s Kappa and between MCC and Brier score, here we
analyze some concrete use cases where each pair of scores
generates a discordant outcome.

In these use cases, we consider the values of TP, TN,
FP, and FN resulting from binary classifications when the
threshold 7 that discriminates between positive predictions
and negative predictions equals 0.5, which is a cut-off com-
monly employed in machine learning and computational
statistics. Some studies use alternative cut-off thresholds,
through a phase called reclassification [100]; although inter-
esting, the analysis of this topic goes beyond the scope of the
present study.

A. MCC AND COHEN's KAPPA USE CASES

As mentioned earlier, MCC and « generate a concordant
response in the [0, 4-1] quarter, while they might have discor-
dant values in the [—1, 0] area of the plot of all the possible
values.

To this end, we found six use cases where the classifier had
no true positive and no true negative, and the value of MCC
was —1 (K1, K2, K3, K5, and K6 in Table 1).

In K1, for example, MCC equals to —1, while « equals to
0. In this case, the two rates generate a discordant message:
the Matthews correlation coefficient states that the classifier
made a prediction that is the opposite of the ground truth,
while Cohen’s « states it was similar to random guessing.
Checking the confusion matrix, we can see that TP, FP, and
TN are all zero, and therefore we can confirm that the classi-
fication was perfectly wrong. In this case, MCC gave a more
informative and truthful response than Cohen’s Kappa.

The use cases K2 and K3 show a trend similar to K1: MCC
is still -1, but « equals to —0.22 and —0.471, respectively.
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TABLE 1. Use cases for MCC and Cohen’s Kappa. MCC: Matthews correlation coefficient (Equation 1). «: Cohen’s Kappa (Equation 2). MCC and « have
worst value equal to -1 and best value equal to +1. A(MCC, «): absolute difference between MCC and «. TP: true positives. TN: true negatives. FP: false

positives. FN: false negatives. Threshold cut-off for predictions: = = 0.5.

usecase | TP FN FP TN | MCC kK  AMCC, k)
K1 0 100 0 0 | —-1.000 0.000 1.000
K2 0 9 10 0| -1.000 -0.220 0.780
K3 0 80 20 0| -1.000 -0.471 0.529
K4 0 70 30 0| -1.000 -0.724 0.276
K5 0 60 40 0| -1.000 -0.923 0.077
K6 0 50 50 0| -1.000 -1.000 0.000
K7 27 45 1 27| +0.339 +0.229 0.110
K8 40 45 1 14 | +0.293 +0.183 0.110
K9 20 59 1 20| +0.206 +0.102 0.103
K10 15 69 1 15 | +0.116 +0.043 0.073
K11 90 1 9 0| -0.031 -0.018 0.013
K12 5 70 6 19| -0.240 -0.094 0.146
K13 47 3 45 5| 40.074 +0.040 0.034
K14 10 40 4 46 | +0.173 +0.120 0.053
K15 9 1 89 1| -0.190 -0.018 0.172
K16 2 9 1 88 | +0.313 +0.250 0.063
K17 30 40 0 30| +0.429 +0.310 0.118

Again, MCC suggests perfect wrong prediction, while « sug-
gests a prediction similar to random guessing. In these two
use cases, there are many FN and FP, but true negatives and
true positives are zero, so we can conclude that this prediction
was totally wrong, and not similar to random guessing. Also
in these two cases, we can state that MCC gave a more
informative response than Cohen’s Kappa.

In the use cases K5 and K6, instead, we can observe
concordant values for MCC and «, both at —1 or close to it.
Cohen’s Kappa “reaches”” MCC, by confirming its message
of perfect wrong classification. The absence of true positives
and true negatives, also in these cases, suggests that the
prediction was wrongly trained to recognize data instances,
rather than behave like random guessing.

As previously observed, the largest differences between
MCC and Kappa are quite likely to be found when FP and
FN are very different, as for instance in the cases K12 and
K15 (Table 1). If both MCC and « are positive, the difference
A(MCC, k) is smaller than 0.12 (for example, in the use case
K17).

We have MCC = -1.0 if TP = 0 and TN = 0, regard-
less of the values of FP and FN (for example, the K1 and
K6 cases Table 1). But if TP = 0 and TN = 0, Kappa may
produce values between 0.0 and —1.0. For example, we have
Kappa = 0 if either FP = 0 or FN = 0 as in case K1, and we
have Kappa = —1.0 if and only if FP = FN as in case K6.

Finally, consider occurring whenever a low value for
Kappa and MCC is matched by an high agreement (accu-
racy) [53]-[55], as in the use cases K11 and K16: in these
cases the low values of MCC and Kappa are welcomed,
since the binary classification is far from being perfect. For-
mal proofs of these properties can be found in a study by
Warrens [57].
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We can therefore conclude the analysis of these use cases
stating that MCC and « generate similar and concordant
positive scores, but they can generate discordant negative
scores, on the same confusion matrices. When MCC and
Cohen’s Kappa generate negative discordant scores, the value
produced by MCC is more reliable and informative of the real
status of the corresponding confusion matrix.

B. MCC AND BRIER SCORE USE CASES

As mentioned earlier, we took advantage of Beta distributions
to produce simulated classifiers to use to generate values of
MCC and Brier score.

From all the possible classifiers generated earlier for the
scatterplots (Figure 3 and Figure 4), we selected the ones with
the highest difference between normMCC and compIBS as
use cases to analyze here. We reported the parameters and
quantitative characteristics of these use cases in Table 2 and
Table 3.

We reported these differences as A(c, n) in Table 4. As one
can notice, the Brier score (BS) generate discordant values
from MCC for six presented use cases BS1, BS2, BS3, BS4,
BSS5, and BS6. The Matthews correlation coefficient ranges
from —0.843 to —0.73, indicating a poor prediction perfor-
mance close to a perfectly wrong prediction, where the classi-
fier almost completely confused positives with negatives. On
the contrary, the values of the Brier score range from 0.414 to
0.486 interval, indicating quite a slightly good prediction. The
perfect value for the Brier score would be zero. To highlight
these differences, we represent them as barplots in Figure 5.

Another interesting aspect to notice is that the binary Brier
score (binaryBS) results are concordant with MCC, having
values very close to 1 that indicate poor performance, and in
contrast with the original Brier score values.
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TABLE 2. Use cases BS1, BS2, and BS3: score distributions used for the three simulated classifiers and summary statistics for the datasets. We listed
the Beta distributions generated for the ground truth positives and negatives, in the three use cases BS1, BS2, and BS3. For example, we associated the

real values generated by Beta(9, 15) to the BS1 positive data instances.

BS1 BS2 BS3

ground truth balanced negatively imbalanced positively imbalanced
positives  Beta(9, 15) Beta(6, 15) Beta(7,15)
negatives  Beta(15, 8) Beta(15, 8) Beta(15,7)

# positives 5,000 9,000 1,000

# negatives 5,000 1,000 9,000

% positives 50% 90% 10%
% negatives 50% 10% 90%

TABLE 3. Use cases BS4, BS5, and BS6: score distributions used for the three simulated classifiers and summary statistics for the datasets. We listed
the Beta distributions generated for the ground truth positives and negatives, in the three use cases BS4, BS5, and BS6. For example, we associated the

real values generated by Beta(9, 15) to the BS4 positive data instances.

BS4 BS5 BS6

ground truth balanced negatively imbalanced positively imbalanced
positives Beta(9,15) Beta(7,15) Beta(7,15)
negatives Beta(9, 15) for first 70%  Beta(8, 14) for first 70%  Beta(7, 15) for first 70%

Beta(12, 7) for last 30%

Beta(15, 8) for last 30%

Beta(14, 6) for last 30%

# positives 50 90 10
# negatives 50 10 90
% positives 50% 90% 10%
% negatives 50% 10% 90%
normMCC and complBS comparison
1.00 -
0.75-
rates
[%]
5 0.50 - complBS
g
. normMCC
0.25-
0.00- I | | | ] ]
balanced neg imbal pos imbal balanced neg imbal pos imbal
BS1 BS2 BS3 BS4 BS5 BS6

cases

FIGURE 5. Results of MCC and Brier score for the BS1, BS2, BS3, BS4, BS5, and BS6 use cases. normMCC = (MCC + 1)/2.
complBS = 1 - BS. The values of both normMCC and complIBS lay in the [0, 1] interval, with worst value equal to 0 and best value equal

to 1. We reported the details of these use cases in Table 4.

By taking a closer look to the corresponding confusion
matrices (Table 4), we can see that in all the six BS1, ...,
BS6 use cases there is a large majority of false positives
and false negatives over true positives and true negatives. In
BS1, for example, the false negatives are almost 9 times the
true positives, while the false positives are 16 times the true
negatives. In this framework, it is clear that an informative
rate would generate a negative response. MCC, in fact, pro-
duces a value of —0.84, confirming the poor ratio of pos-
itives with respect to negatives. On the contrary, the Brier
score has a value of 0.419, which is closer to 0 (perfect
prediction) than to 1 (worst prediction). Similar trends can
be observed in the other use cases (BS2, BS3, BS4, BS5,
and BS6).
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We can therefore state that the Matthews correlation coeffi-
cient produces a more capable and informative outcome than
the Brier score.

At this point, someone could rebut this statement by stating
that the confusion matrix categories are not included in the
Brier score computation, and therefore might be improper to
use them here in this comparison. Even if we know that the
Brier score does not produce and is not produced by two-class
confusion matrices with a strict cut-off threshold, we believe
that it is necessary to consider them for binary classification,
because a clear distinction between positives and negatives is
fundamental for experiment validation. In a clinical setting,
for example, rates based on two-class confusion matrix scores
must be employed when a clear distinction between healthy
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TABLE 4. Use cases for MCC and Brier score. BS: Brier score (Equation 7). binBS: binaryBS, binary Brier score (Equation 8). MCC: Matthews correlation
coefficient (Equation 1). normMCC: normalizedMCC = (MCC + 1) / 2. compIBS: complementaryBS = 1 - BS. TP: true positives. TN: true negatives. FP: false
positives. FN: false negatives. Threshold cut-off for predictions: = = 0.5. A(c, n): absolute difference between compIBS and normMCC. We described the
details of the simulated datasets and the simulated classifications BS1, B2, B3, B4, B5, and BS6 in Table 2 and Table 3.

case | TP FN FP TN | binBS complBS MCC normMCC A(c,n)
BS1 | 511 4,489 4706 294 | 0.920 0419 0.581 -0.840 0.080 0.501
BS2 18 982 8,455 545 | 0944 0.442 0.558 -0.769 0.116 0.442
BS3 | 323 8,677 962 38 | 0964 0476 0.524 -0.830 0.085 0.439
BS4 2 48 44 6| 0920 0414 0.586 -0.843 0.079 0.507
BS5 1 9 85 51 0940 0.444 0.556 -0.730 0.135 0.421
BS6 3 87 10 0] 0970 0.486 0.500 -0.862 0.069 0.446
BS7 1 4 4 1| 0800 0.251 0.749 -0.600 0.200 0.549
BS8 4 1 1 4| 0.200 0.249 0.751 +0.600 0.800 0.049

controls (negatives) and patients with disease (positives) need
to be made.

The BS ~ (.25 ambiguity. As mentioned earlier (subsub-
section III-B1), a strong discordance between the Brier score
and MCC can happen when the Brier score has values around
0.25. This situation can happen especially when the classifier
predicts values around the cut-off threshold for the confusion
matrix, that traditionally is set to 0.5 in machine learning and
statistics.

Let us consider now the use case BS7 with a dataset with
10 elements, having the following binary ground truth values:

ground truth values: (0, 0, 0, 0, 0, 1,
1, 1, 1, 1)

This dataset is perfectly balanced, with 5 negatives and
5 positives. And let us suppose that a classifier predicts the
following values for them:

BS7 predictions: (0.501, 0.501, 0.501,
0.499, 0.501, 0.499, 0.501, 0.499, 0.499,
0.499)

This classifier would get Brier score = 0.251, meaning
good outcome, and MCC = 0.6, meaning very bad perfor-
mance (Table 4).

And let us consider now the use case BSS8, with the same
ground truth dataset of BS7, but with the following predic-
tions:

BS8 predictions: (0.499, 0.499, 0.501,
0.499, 0.499, 0.499, 0.501, 0.501, 0.501,
0.501)

Regarding this performance, the value of the Brier score
would be 0.249, meaning good prediction, and the coefficient
of the Matthews correlation would be +0.6, meaning good
prediction too (Table 4).

As one can notice and as we described earlier (subsubsec-
tion III-B1), a Brier score close to 0.25 has an ambiguous
meaning: it could be associated to a prediction evaluated as
poor like in the BS7 use case, or it could be associated to a
prediction evaluated as good like in the BS8 use case.

V. CONCLUSION
Assessing binary evaluations is a key task in machine learn-
ing and computational statistics. The Matthews correlation
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coefficient (MCC), Cohen’s Kappa, and the Brier score are
three common rates employed to evaluate the predictions
made by the classifier in relation to the corresponding dataset
ground truth.

In our study, we showed that MCC is more informative,
truthful, and reliable than Cohen’s Kappa and the Brier score
to this end. Cohen’s Kappa, in fact, can provide misleading
information in some particular cases, especially when true
positives and true negatives are zero. On the other side,
the Brier score can generate an ambiguous outcome when its
value is close to 0.25, which can correspond both to a very
good prediction and to a very bad prediction. The Matthews
correlation coefficient, instead, does not have these flaws.

Although generally MCC is more informative than « statis-
tic and the Brier score, there are some cases where these rates
are equally reliable. When the classifier is better than random
(MCC and « > 0) the correlation between the two metrics is
very high; the difference when using MCC or « is negligi-
ble (Figure 1). When the classifier is worse than random,
the situation is quite symmetric. Given a specific MCC value,
there is a wide range of different x values that can be used to
discriminate (Figure 1), and the same happens oppositely: for
a given k value, there are many MCC values (Figure 1). Thus,
in this situation, using MCC or « provides the same level of
reliability.

Instead, the correlation between MCC and the Brier score
is quite limited, so choosing one of the two heavily depends
on their properties (Figure 3 and Figure 4). In fact, to a
given value of MCC corresponds a quite broad range of BS
values, and vice versa, thus there is no specific situation
where MCC should not be preferred to BS. However, BS can
be useful in discriminating situations sharing the same MCC.
For instance, consider the use case with ground truth:

(0, 0o, 0, o, 0, 1, 1, 1, 1, 1).

When the predicted values are (0.499, 0.499,
0.501, 0.499, 0.499, 0.499, 0.501, 0.501,
0.501, 0.501), we have MCC = +0.6 and BS = 0.249.

If instead the predictions are (0.001, 0.001,
0.501, 0.001, 0.001, 0.499, 0.999, 0.999,
0.999, 0.999), we obtain MCC = +0.6 again, but
BS = 0.05, highlighting a different prediction with respect

VOLUME 9, 2021



D. Chicco et al.: MCC is More Informative Than Cohen’s Kappa and Brier Score

IEEE Access

to the previous case. If a machine learning practitioner had
to select a predictive algorithm by observing the predictions
in the two cases, she/he could choose the first one, because it
generated a higher Brier score than the second one.

Our results and statements about Cohen’s Kappa confirm
what was claimed by Delgado and Tibau [38] in their study:
these authors showed that if marginal probabilities are really
small, the distribution of a misclassification also affects «.
This way, worse classification results can achieve higher val-
ues of this score, which would therefore provide a misleading
outcome. The authors claim that these drawbacks of Cohen’s
Kappa can be especially dramatic in clinical perspective, and
we agree with them.

Our results and considerations regarding the Brier score
are in line with what was highlighted by Assel and col-
leagues [97], who stated that the Brier score is unsuitable in
clinical tests evaluation because it provides counter-intuitive
results in several situations. As a major example, the Brier
score will favor a test with high specificity if it is the case that
prevalence is low even when the clinical context requires high
sensitivity. Furthermore, the Brier score favours continuous
models over binary tests even if the test is proven to be more
effective. This is due to the fact that the Brier score mea-
sures the quality of prediction independently of the clinical
scenario, thus issuing a caveat for its application [97].

For the reasons described in our article, we therefore sug-
gest any machine learning practitioner to use the Matthews
correlation coefficient rather than Cohen’s Kappa or the Brier
score to assess binary classification experiments.

In the future, we plan to make additional comparative anal-
yses between the Matthews correlation coefficient and other
rates, such as the Fowlkes-Mallows index [101], the preva-
lence threshold [102], and the Jaccard index [103], [104].

LIST OF ABBREVIATIONS

AUC: area under the curve. binaryBS: binary Brier score.
BS: Brier score. complBS: complementary Brier score. DOR:
diagnostic odds ratio. FDA: USA Food and Drug Administra-
tion (FDA) agency. FN: false negatives. FP: false positives.
k: Cohen’s Kappa. MAQC/SEQC: MicroArray / Sequenc-
ing Quality Control. MCC: Matthews correlation coefficient.
normMCC: normalized Matthews correlation coefficient. PR:
precision-recall. ROC: receiver operating characteristic. TN:
true negatives. TP: true positives.
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