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ABSTRACT Affection is regarded as a new solution to coordinate task allocation problems in themulti-robot
system. In this paper, we proposed an interpretable and computational affection model based on willingness
and a new personality model named CASE to measure the heterogeneity of the robot. Emotion contagion
model is used to calculate affective interaction among robots, andwe usewillingness to quantify the impact of
affective factors on task allocation and as an important factor for task allocation. Task allocation algorithm
is designed for affective robots, and simulate the application of the affection model at task allocation by
a typical example. It displays the characteristics and novelty of affection in task allocation and to verify
the correctness, effectiveness, and novelty of affective robot task allocation algorithm. The result of the
simulation experiment shows that affective robots in multi-robot cooperation systems obtain a better solution
than rational robots and express the state of the art of task allocation for effective robots.

INDEX TERMS Affection model, emotional contagion, multi-robot system, task allocation, willingness.

I. INTRODUCTION
Affection plays a significant role in human life. Affective
computing has gained much attention. One purpose that
the robots are endowed with affection is to build soft-
ware interface that allows users to experience naturalistic
communication with the robot [1], especially in human-robot
interaction [2]. A robot is capable of recognizing emotion and
express emotion through the established emotional model.
Some research-based robots are endowed with affection in
order to study how affection is generated and act, for example,
the interplay between affection and behavior [3] or think-
ing [4]. Affection has a role among multiple robots, which
is yet to be explored.

Multi-robot system (MRS) has attracted academic and
industrial attention and is widely used in many pertinent
areas of industry and commerce such as demining [5],
pursuit-evasion [6], search and rescue [7], environmental
monitoring [8], and patrolling [9]. Multi-robot task alloca-
tion (MRTA) studies how to efficiently organize robots to
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perform the task with limited resources, which is one of
the most challenging problems of MRS [10]. The goal of
task allocation for the rational robot is to find the optimal
solution. In communities, there are some behaviors such
as cooperation and competitions among individuals. Thus,
a common problem is the conflicts between the maximiza-
tion of individual interests versus collective interests [11].
Besides, there are conflicts of interests between individuals.
The focus should be balancing the needs of an individual
and the group, and the affection will be a good solution.
Currently, the main methods for multi-robot task assignment
are behavior-based assignment methods, market mechanism
methods, group intelligence methods, linear programming-
based methods, and idle chain-based methods.

In addition, emotional recruitment-based methods for
multi-robot task assignment. Affection has a significant effect
on robot’s behaviors. It regulates the social behavior and
is a driving force of communication means [12]. Affection
renders robot and robot team more autonomous and effi-
cient [13]. Emotion is often the driving force of motivation,
whether positive or negative [14]. The affective robots task
allocation is a new combinatorial optimization problem with
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affective constraints and its goal is to find a balanced optimal
solution.

Affective robots interact with task environment and
each other. So how does the affection influence the
decision-making of task allocation, and how does it change by
the internal and external factors? We explore an interpretable
and computable affection model based on willingness for
the application of affection in robot cooperation. In this
model, New personality model named CASE measures the
heterogeneity of the robot and affection is modularized and
quantified to measure the interplay with the task environ-
ment. The modules of affection model are integrated organi-
cally to MRTA. We simulate the affective interaction among
robots. This paper systematically defines the key elements of
an effective robot model and shows the impact of external
stimuli, emotional contagion, and emotional attenuation to
affection change and affective interaction between robots.

The key contributions of this paper are:
(1) An interpretable and computational affection model is

designed for robot-robot interaction in cooperation system.
(2) the Conscientiousness, adventurousness, susceptibility,

expressiveness (CASE) personality model is employed based
on the OCAEN personality model to embody the heterogene-
ity of robots in task allocation.

(3) Emotion contagion model is used to calculate affective
interaction among robots, and we use willingness to quantify
the impact of affective factors on task allocation and as an
important factor for task allocation.

(4) The result of the simulation experiment shows that
affective robots in multi-robot cooperation systems obtain a
better solution than rational robots and express the state of the
art of task allocation for effective robots. The algorithm pro-
posed in this paper was able to reduce the total experimental
pursuit time significantly and the total gain were higher than
the IGPA algorithm.

The rest of this paper is organized as follows. Section II
reviews related work of affective computing and multi-robot
collaboration. Section III presents our proposed model and
details of affection updates including emotional attenuation,
emotional contagion, and stimulation. Section IV introduces
the algorithm of affective robot task allocation and experi-
ment scenarios and instantiates the affection model in this
scenario. Section V. discusses simulation experiments, and
Section VI. concludes.

II. RELATED WORK
A. AFFECTIVE COMPUTING
Personality is a unique overall mental disposition with lasting
and stable nature, which distinguishes the individual from
others. The OCEAN model [15]–[17] is the commonest per-
sonality models, which has five factors: Openness, Consci-
entiousness, Extroversion, Agreeableness, and Neuroticism,
where Openness describes the degree of curiosity, creativity,
and acceptance of new things; Conscientiousness reflects
the organization and reliability; Extroversion represents the

degree of interaction between the individual and the outside
world; Agreeableness describes the tendency of friendliness
of the individual to others; Neuroticism reflects the stability
of affection and the control of compulsion.

Emotion is classified and described by many models. The
discrete emotion theory states that there are several innate
basic emotions. A popular example is the six basic emo-
tions: anger, disgust, fear, happiness, sadness, and surprise
concluded by Ekman [18]. The dimension method expresses
emotion as a point in multi-dimensional space [19]. Pleasure,
Arousal, Dominance (PAD) [20] is a typical dimensional
method to describe and measure emotion state, which is
defined as a space composed of three numerical dimensions:
Pleasure, Arousal, and Dominance. The Pleasure measures
how positive or negative the emotion state is; the Arousal
indicates the degree of physiological arousal of emotion; the
Dominance denotes the subjective control degree of emo-
tion. The synthesis method divides the multi-dimensional
space into regions, which combines the basic emotion theory
and the dimensional method. The three-dimensional emotion
structure proposed by Plutchik [21] is a typical synthetic
method.

Individual’s emotion is changed by internal and exter-
nal influences, spreads between individuals and impacts on
the performance of individuals. The process that individu-
als spread emotions to each other during their interaction
is defined as emotional contagion [22]. In the process of
interaction, individuals catch emotions from others through
expressions, gestures, and language in real-world or social
media [23], and express their own emotion, thus impact on
their own and other individuals’ emotional changes [24].
Bosse et al. [25], [26] established an emotional absorption
model based on emotional interaction. The model consid-
ered emotion as an attribute of a group, emphasized the
emotional interplay between members, and was simulated
in a multi-agent community. Then the emotional contagion
in the group was formalized and simulated, and the compu-
tational model was applied to the team collaboration [27].
Liu and Jin et al. [28] proposed the emotional contagion
model in crowd scenes, studied the behavior of individuals
under the influence of emotion, and emphasized the posi-
tive effect of managers on emotional contagion in crowded
people. In our previous work [29] the emotional contagion
was introduced into the task allocation of affective robot
and validated the rationality and validity of the model by
simulation experiments.

External stimulation is also one of the main causes of
affection change. External stimuli cause individual affection
change, and different types and intensities of stimuli may
cause different changes in affection under the influence of
different personalities. In previous work [30], a maximum
similarity matching affectionmodel was proposed to simulate
the transfer of emotion state under the influence of stimula-
tion by hidden Markov model (HMM) [31], the process of
stimulation is elaborated in detail but the generation of stimuli
is not mentioned.
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B. MULTI-ROBOT TASK ALLOCATION
Task allocation is an essential research to the multi-robot
cooperative system that is an allocation of subtasks in the
system to an appropriate robot or robot alliance according to
certain rules. Current multi-robot task assignments are based
on three main areas:

1) Single-Task Robot (ST) vs. Multi-Task Robot (MT).
ST means that each robot can perform at most one task,

while MT is that some robots can perform multiple tasks at
the same time.

2) Single-Robot task (SR) vs. Multi-Robot task (MR).
SR means that each task requires only one robot to com-

plete, while MRmeans that some tasks require more than one
robot to complete.

3) Immediate assignment (IA) vs. Extended assignment
(TE): IA is the immediate assignment of tasks to robots based
on the information available about robots, tasks, and the
environment, without planning for future assignments. TE,
on the other hand, has more available information, such as
the set of all tasks to be assigned or a model of how to obtain
the tasks.

The main issue addressed in this paper is ST-MR-IA.
Gerkey and Mataric [32] defined MRTA as there are given
some robots and tasks. Each robot is capable of executing
one task and each task requires one robot. The objective is to
assign robots to tasks in such a way so that maximized overall
performance can be achieved. There are many restrictions
in task allocation, such as networks, energy, communication,
real-time, and dynamic environment [33]–[35], and robots are
mostly heterogeneous [36]–[38], which greatly increase the
complexity of MRAT. Task allocation is an important foun-
dation for efficient collaboration of robots, and its importance
increases with the increase of system size and complexity.

Task allocation algorithm can be divided into centralized
and distributed method according to the management mode.
In centralized task allocation, there is a central control unit,
which is responsible for centralized planning such as task
release and robot recruitment. The auction algorithm [39]
is a typical centralized allocation method. We [40] have
applied a contract-based method to assign tasks, and a virtual
central administrator is in charge of collecting task informa-
tion, inviting bids, and authorizing contracts. Das et al. [41]
proposed a market-based multiple tightly couple multi-robot
tasks allocation algorithm simultaneously, which makes mul-
tiple tasks allocated at the same time and makes robots
more evenly distributed to the team. In distributed task
allocation, robots allocate task without central control unit.
They make decision autonomously according to the real-
time circumstance and communication with each other,
for example, threshold response [42], swarm intelligence
method [43], [44], and neural network method [45], [46].
Wang et al. [44] allocated the robots with a high cooper-
ation intention by the modified particle swarm optimiza-
tion (PSO) alliance generation algorithm to generate the
pursuit alliance. Sun et al. [45] proposed a self-organizing

algorithm based on self-organizing map neural network and
integrated task allocation into the training process of the
network. Lee [47] proposed a resource-based task alloca-
tion algorithm for multi-robot system enables the robots
to reduce unnecessary wastage of time and resources dur-
ing the mission. Mayya et al. [48] designed a decentralized
mechanism to allocate tasks to each robot by using the spa-
tial interactions that occurs when the robots move in the
domain. Pang et al. [49] introduced the traffic flow density
and the amount of obstacle avoidance together to build a
task allocation model for adjusting the number of work-
ing robots autonomously in a swarm of foraging robots.
Wei et al. [50] proposed a two-step scheme consisting of task
partitioning and autonomous task allocation to overcome
the difficulties of the bootstrapping problem and deception.
Li et al. [51], [52] analyze a two-stage game in which lead-
ership group members contribute before following the group
and propose an accurate metric, leadership, to characterize
key leaders. Then an efficient dynamic system is used to
ensure that the cluster configuration converges to an optimal
state. The distributed task allocation method is used widely
because it is more practical, robust, and real-time.

III. AFFECTION MODEL BASED ON WILLINGNESS
Our proposed affection model, as shown in Fig.1, includes
three components (personality, emotion, and willingness) and
three relations (emotional attenuation, emotional contagion,
and stimulation). Personality, emotion, and willingness are
the fundamental components of the affection model. The
relations update the states of affection.

FIGURE 1. The affection model of the robot in task allocation which
includes three components which are personality, emotion, and
willingness and three relations include emotional attenuation, emotional
contagion, and stimulation.

Personality is a long-term and stable psychological dispo-
sition and characters and is the main factor of distinguishing
individuals from others. Personality decides the overall trend
of affection changes.

Emotion contains mood and sentiment, and the difference
is the objective it directs at. The mood is the robot’s inter-
nal state of mind, which is directed at the robot itself. The
sentiment is a series of feelings for task objective, which
is directed at task objective. A robot can concurrently hold
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different sentiments for each task. Emotion is influenced by
personality and external factors.

Willingness is proposed for multi-robot task allocation,
which estimates the degree of the desire of the affective robot
to a task objective. It is calculated from robot’s sentiment for
the task objective. A key point of this model is associating the
affective factors with rational task environment. The change
of willingness reflects the influence of task environment on
affection change.

Emotional attenuation is modeled according to the emo-
tional intensity third law (emotional intensity attenuation
law), which is that emotion attenuate over time. Emotional
contagion represents that the emotional interaction between
robots and changes the mood. Stimulation comes from the
external environment, which can be divided into object, event,
and action stimulation according to sources. Object stimula-
tion originates from the entities that interact with the robot,
which impact the sentiment. Event stimulation and action
stimulation impact the mood.

A. THE KEY FACTORS OF AFFECTION MODEL
1) PERSONALITY
Personality is robot’s inherent characteristic, which embodies
the heterogeneity and diversity of robot in the community.
Personality determines the overall behavioral and ideological
tendency of an individual. For example, a bold robot is more
likely to perform a risk task than a cautious one. The OCEAN
model is most widely used to describe personality, which is
expressed as:

perocean = [o, c, e, a, n] (3.1)

where o, c, e, a, n are openness-intellect, conscientiousness,
extroversion, agreeableness, and neuroticism respectively,
o, c, e, a, n ∈ [−1, 1].

Our affection model, however, aims at multi-robot coop-
eration. The OCEAN model is of good versatility but not
well meets the requirement of task allocation. Thus, we pro-
pose the CASE model to represent the personality of robots
in cooperation system. The model consists of four charac-
teristics: Conscientiousness, Adventurousness, Susceptibil-
ity, Expressiveness, which directly influence task allocation.
Conscientiousness describes the responsibility of a robot for
completing the task and show cautious, dutiful, and orga-
nized; Adventurousness determines the acceptance of a robot
for high risk and high reward tasks; Susceptibility reflects
the ability of a robot to be influenced by others’ emotions;
and Expressiveness describes the ability of a robot to express
its own emotions. Therefore, the personality of cooperating
affective robot is expressed as:

percase = [con, adv, sus, exp] (3.2)

where con, adv, sus and exp denote conscientiousness, adven-
turousness, susceptibility, and expressiveness respectively.
con, adv, sus, exp ∈ [0, 1]. percase represents the CASE per-
sonality of robots in task allocation.

Considering compatibility and further expansion, the
OCEAN model is still involved in emotional computing
because of its versatility. Therefore, the transfer from CASE
model to OCEAN model is necessary, so that the personality
model not only meets the requirements of task allocation but
also is convenient for affective computing.

Conscientiousness has a specific description of the
OCEANmodel, so the conscientiousness in the CASE model
corresponds to that in the OCEAN model. Adventurousness
is used to measure the acceptance of individual to the risky
task, which is related to the openness, extroversion, agree-
ableness, and neuroticism in OCEAN model, high adven-
turousness corresponds to high openness, high extroversion,
high neuroticism and low agreeableness. Susceptibility and
expressiveness of individuals are related to openness, extro-
version, and agreeableness in the OCEAN model. High sus-
ceptibility corresponds to high openness, low extroversion,
and high agreeableness. High expressiveness corresponds to
high agreeableness and high extroversion.

According to the above analysis, the transfer matrix from
CASE personality model to OCEAN model is obtained:

Mper =


0 1 0 0 −1
1 0 1 −1 1
1 0 −1 1 0
0 0 1 1 0


where Mper is the transfer matrix. The personality of task
allocation can be mapped to OCEAN personality model by
this transfer matrix:

perocean = Norm
(
percase ∗Mper

)
(3.3)

where percase is CASE personality in task allocation, which
intuitively reflects the influence of personality on task allo-
cation; Norm is the normalized function in [−1,1]. perocean
describes personality in the OCEAN model.

2) EMOTION
In this work, emotion is described by the discrete emotion
method:

emot = [e1, e2, . . . , eN ] (3.4)

where emot is the emotional state (mood or sentiment) at
time t , N is the number of basic emotion kind, ei is the
intensity of basic emotion i (i = 1, 2, . . . ,N ), ei ∈ [0, 1].

Moffat [53] defines that emotion is a brief, changeful, and
focused (directed at an object) disposition, while sentiment is
distinguished as a long-term, stable, and focused disposition.
Eladhari [54] creates theMindModel for characters in virtual
game worlds referring to the model settings of Moffat. Simi-
larly, we define sentiment as a brief, changeful, and focused
affection, while the mood is brief, changeful, and global. The
difference between two concepts is whether they are focused.

Mood: The mood is the internal psychological state and
changed by inherent attenuation, external stimulation, and
interaction with other individuals. The mood is represented
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as:

mood t =
[
e1m, e

2
m, . . . , e

N
m

]
(3.5)

where eim is the intensity of basic emotion i component of
mood state.

Sentiment: The sentiment is robot’s affective connection
to the task.

sent tij =
[
e1s , e

2
s , . . . , e

N
s

]
(3.6)

where sent tij is the sentiment of robot i for task j, eis is the
intensity of basic emotion i component of sentiment state.
The sentiment of the robots for a new task is initialized

by current mood state and changes in the interaction process.
The current sentiment of the robot is decided by the pre-
vious moment sentiment, the external stimuli, and inherent
attenuation.

3) WILLINGNESS
We put forward willingness to measure the desire of affective
robot to task objective, which is determined by the senti-
ment of each task objective and varies with the difficulty,
reward, and risk factors of the task. Each affective robot
has a willingness to each task objective. Robot decides to
perform a task or not mainly based on the willingness, and
willingness is also impacted by stimuli in task environment,
thereby the effective combination of affection model and task
environment is realized.

Positive affection produces a greater willingness. There-
fore, a model that represents the positive and negative aspects
of emotion is necessary to calculate willingness. PAD model
meets the requirement properly, where the dimension of plea-
sure can be used to show the positive and negative property
of emotion (values range from −1 to 1). Suppose there are m
tasks, the willingness of a robot i is:

Wi = {wi1,wi2, . . .wim}

wij = sent ij ∗MEP ∗
[
λp, λa, λd

]T (3.7)

where wij denotes the willingness of robot i for task j, sent ij
denotes the sentiment of robot i for task j;MEP is the transfer
matrix from basic emotion to PAD space [30], λp, λa, λd are
the weights corresponding to three dimensions of PAD space,
λp + λa + λd = 1, and are set as 0.7, 0.1, 0.2 following [40].

Willingness reflects the impact of affection on task alloca-
tion, and it varies with the change of sentiment. The change
of sentiment is determined by the personality of robot and
stimuli in task environment; therefore, the willingness is
a foremost reference for task allocation which comprehen-
sively reflects various influences.

B. AFFECTION INTERACTION AND CHANGE
Affection change mainly refers to the change of emotion,
which is under the influence of personality. The main reason
for affection change is the inherent emotional attenuation
and external emotional contagion and stimulation. Emotional
attenuation ismainly determined by the personality of a robot,

emotional contagion comes from other robots interacted with
it, stimulation generates from task objectives and the events
and actions in interaction processes. Affection change is
finally embodied through willingness and impact on task
allocation and execution.

1) EMOTIONAL ATTENUATION
The third law of emotional intensity in psychology points out
that the relationship between emotional intensity and duration
is negatively exponential. Emotional attenuation rate varies
with the personality of the individual, for example, the emo-
tion of sadness will attenuate quickly if the individual is of
optimistic personality, but attenuate relatively slowly if the
individual is of negative personality. Emotional attenuation
is represented as:

emot = emot−1 exp
(
−KtypeT

)
(3.8)

where Ktype is the attenuation rate for a type of personality
and T denotes attenuation period. emot is the emotional state
at time t .

2) EMOTIONAL CONTAGION
Suppose the mood state of the robot ri at time t is mood tj ={
et1, e

t
2, . . . , e

t
N

}
, its expressiveness is expj, and susceptibility

is susj. By emotion contagion, the amount of emotion that
robot ri receives after a period of ∇t is:

emo1tj = susj ∗ ∇t ∗ emoteamk (3.9)

where the robot ri is the member of team k, ∗ refers to the
products of a number and a vector, emoteamk denotes the team
emotion:

emoteamk =
∑

i6=j,ri∈teamk
expiconijωij∇m

ωij =
expiconij∑

ri∈teamk expiconij
(3.10)

where ∇m = mood ti − mood tj , and conij is the strength of
the connection between the robot ri and rj, conij ∈ [0, 1] ,
conij = 1 denotes there is a strong connection between them,
and conij = 0 denotes there is no connection;ωij is the weight
of robot ri in the team, which represents its influence in the
team when expressing its emotion.

According to the above formula, it can be seen that the
highly expressive robots are better at expressing their emo-
tions, and can express more emotions to team emotion.
In addition, highly susceptible robots are better at absorbing
others’ emotions and are able to absorb more emotion from
team emotion.

3) STIMULATION
The external stimulation is the one of the main cause of affec-
tion change throughout the task allocation and performance
process. Stimulation is divided into object, event, and action
stimulation according to the affection cognitive theory [55].
Object stimulation refers to the real-time impact from other
entities on the affection of the individual. For instance, a task
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objective generates an object stimulus to a robot who per-
forms this task. Object stimulation occurs in the whole pro-
cess of the task allocation and execution. Event stimulation
refers to the impact of events on an individual. For example,
in MRTA, if a robot is selected as a team leader, it will be
stimulated by a positive event stimulus. Action stimulation
refers to the stimulation of the robot’s own behavior. If a
robot fulfills the task, the action ‘‘fulfilled task’’ will produce
a positive stimulus to the robot, and a higher gain results in a
stronger stimulus. Stimulation directly impacts the change of
robots’ affection, and further impacts the change of willing-
ness. Thus, stimulation embodies the impact of the external
environment to robots’ affection.

There are many kinds of stimulus:

SV = {sv1, sv2, . . . , svK } (3.11)

where SV denotes the set of stimulus kinds, svk is a funda-
mental stimulus (k = 1, 2, . . . ,K ), which is defined as how
much degree stimulus k impact emotion:

svk = [sv1, sv2, . . . , svN ] (3.12)

where svi represents the degree this stimulus impact on the
basic emotion i and svi ∈ [0, 1].
The definition of fundamental stimulus vector can be dif-

ferent with the system requirements, and themore kinds of the
vector are defined, the more comprehensive system is, and
the more complex corresponding calculation is. Therefore,
stimulus and its calculation are versatile, which can easily
extend to other systems.

The intensity of stimulus varies with its determinants, for
example, the determinant of reward stimulation is the reward
of the task, and the higher the task rewards, the stronger the
stimulus is. The stimulus is calculated by the determinants
and fundamental stimulus vector:

Sk = st · svk (3.13)

where Sk (k = 1, 2, . . . ,K ) denotes a stimulus; st is the
strength of determinant, svk (k = 1, 2, . . . ,K ) is the corre-
sponding kind of fundamental stimulus vector. · refers to the
dot products of two vector.

Different types of stimuli impact different modules of
affection model. Object stimuli impact the sentiments of the
robot for each task objectives because they relate to task
objectives. Event and action stimuli, because generate from
the robot itself, impact on the mood state. The stimulation
process of emotion:

emot = HMM
(
percase, emot−1, S

)
(3.14)

where percase denotes personality used to calculate the limit
probability distribution of emotional state, emot−1 is the
emotional state of the previous moment; S represents a stim-
ulus. HMM is the emotion transfer model under external
stimulation [30].

IV. TASK ALLOCATION BASED ON WILLINGNESS
In the process of multi-robot task allocation and cooperation,
the influence on robot’s behaviors should not only be rational
practical factors (such as capabilities, resources, etc.), emo-
tion also plays an important role. For example, robots with
positive emotion state are more willing to perform tasks than
robots with the negative emotional state, and bold robotsmore
dare to accept high-risk tasks than cautious robots. There
are many solutions to the task allocation problem in rational
robots, but it cannot be simply applied to affective robots.
We already constructed an affection model for multi-robot
cooperation and put forward the willingness to reflect the
impact of affection on task allocation while willingness is
impacted by the external environment. Thus, we need to
design a task allocation algorithm for affective robots.

Firstly, the formalized definition of multi-robot task allo-
cation is provided as follows. In multi-robot task allocation,
there are given n robots and m tasks. Each robot performs no
more than one task and each task requires a certain number
of robots. The objective is to assign robots to tasks in such a
way so that maximized overall performance can be achieved.

The set of robots is defined as R = {R1,R2, . . . ,Rn},
Ri denotes the robot i and is represented as a triad,
Ri = 〈Info,Cap,Cost〉, where:

— Info represents the identity information of robot, includ-
ing ID, type, personality;

— Cap represents the set of capabilities of the robot, such
as velocity, the range of the sensor;

— Cost represents the set of cost of robot work, such as
energy consumption, communication bandwidth, etc.

The set of tasks is defined as T = {T1,T2, . . . ,Tm},
Tj denotes the task j and is represented as a triad, Tj =
〈Info,Req,Rew〉, where:

— Info represents the basic information of the task, such
as position, type;

— Req represents the requirement of performing the task,
that is the requirement of capabilities of robots;

— Rew represents the reward of fulfilling the task.

A. TASK ALLOCATION
In a task allocation, robots with the same task objective
compose a team, and the number of teams is decided by the
number of task objectives. To organize the limited resources
effectively to complete the task [56], a leader should be cho-
sen from the robot team. The personality of a leader should
be confident, outgoing and expressive. Leadership is defined
as the basis for the choice of leader, which is related to the
robot’s personality and the current emotion state.

Definition Leadership depends on the individual’s mood,
susceptibility, and expressiveness.

leadership = mood ∗ λ·sus−exp (4-1)

where λ is the coefficient vector,
λ =

[
λ1 . . . λi . . . λN

]T
, λi ∈ [0, 1]; sus and exp are

susceptibility and expressiveness, respectively. · refers to the
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FIGURE 2. The flow chart of the selection of the team leader.

dot products of two vector. ∗ refers to the products of a
number and a vector.

So, the leader of each team should be selected firstly, who
then recruits members. 1) The algorithm for selecting a team
leader, and the flow chart as shown in Fig. 2.

Step1: Object stimuli are generated from task objectives,
and impact all robots. According to robot’s affection
impacted by simulation, each robot calculates infor-
mation required by task allocation, such as willing-
ness and leadership, and then send this information
to other robots.

Step2: Each robot forms a global willingness matrix and a
leadership list combining others information.

Step3: Choose robots with the highest leadership ability as
the leader candidate, the number of leaders equal to
tasks.

Step4: According to the principle of maximum willing-
ness, allocate the task to each leader by Hungarian
algorithm [57] and form a task allocation matrix of
leader. If each leader’s willingness to its task is higher
than the threshold, continue; otherwise, if there is a
willingness of candidate is lower, whose leadership
in the list is set to 0, to Step3.

Step5: Leader candidates send candidate message to all
robots. Each robot compares these messages with its
own allocation matrix, if allocation results are same
the robot will agree with the candidate as a leader;
otherwise, the robot will resend the message.

Step6: If all robots agree that all candidates become leaders,
the leader allocation is finished; otherwise, turn to
Step2.

Algorithm 1 Selecting Team Leader
(1) Input robot set R = {R1,R2, . . . ,Rn} and task set T =
(2) {T1,T2, . . . ,Tm}
(3) Output leader allocation matrix L
(4) Begin
(5) Compute robots’ emo after stimulation using (3.9)
(6) Compute robots’W using (3.2)
(7) Compute leadership using (4.1)
(8) while (L == NULL)
(9) Select m leaders from robots with maximum
(10) leadership
(11) L← allocate m tasks to m leaders by

Hungarian
(12) algorithm
(13) for j← 1: m
(14) if leader(j) ·W (j) < threshold
(15) leadership(leader(j))← 0
(16) L← NULL
(17) return L
(18) end

FIGURE 3. The flow chart of the selection of collaborators.

2) The algorithm of recruiting members, and the flow chart
as shown in Fig. 3.
Step1: Each robot sets the column of all leaders in the

willingness matrix as the maximum value to prevent
reselection;

Step2: Each robot selects the maximum value from its will-
ingness to all tasks, then automatically joins the cor-
responding team of the task.

Step3: If all teams meet the task performing requirement,
the task allocation is finished. Otherwise, the leader
who is short of cooperators sends a notice to other
leaders.

Step4: Each leader with enough cooperators discharges
the least willingness member while ensures that
its team’s total capacity meets the task performing
requirement. The leader who is short of cooper-
ators selects cooperators with the maximum will-
ingness from free robots until the task performing
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Algorithm 2 Recruiting Members
(1) Input robot set R = {R1,R2, . . . ,Rn} and task set

T = {T1,T2, . . . ,Tm}
(2) Output allocation matrix A
(3) Begin
(4) for j← 1: m
(5) leader(j).W (j) =MAXIMUM
(6) for i← 1: n
(7) j← the index of the maximum

willingness of robot i
(8) if Ri.W (j) > threshold
(9) A (i, j)← 1, R← R− Ri //robot i

join the team j
(10) while((∃Tk)

∑
Rl∈teamk Capl < Reqk )

(11) for j← 1: m
(12) i← the index of the minimum

willingness robot in team j
(13) if

∑
Rl∈teamj

Capl −Ca pi > Re qj
(14) A (i, j)← 0, R← R+ Ri

//discharges the robot
(15) for j← 1: m
(16) while(

∑
Rl∈teamj Capl < Reqj)

(17) if R == NULL//team capability
is insufficient but there

(18) are no free robots
(19) return NULL
(20) for i← 1: length(R)
(21) if Ri.W (j) > threshold
(22) A (i, j)← 1, R← R− Ri
(23) return A
(24) end

requirement is met. The rest of free robots rejoined
the original team. If the task performing requirement
is still not satisfied, task allocation fails.

B. TASK REALLOCATION
When a team fulfills the task, the emotional state of the team
members will be enhanced positively. Then their willingness
may be higher than other robots who are performing tasks,
it will lead to reallocate tasks. In addition, during the process
of performing tasks, the robot will quit the team when its
willingness drops below the threshold because of emotional
attenuation. If the team unable to fulfill the task because being
short of capacity, it will lead to reallocate tasks. Frequent
reallocations will reduce pursuit efficiency, we can reduce the
frequency of task reallocation by adjusting the willingness
threshold.

V. SIMULATION EXPERIMENT
Multi-robot pursuit-evasion [6] is a typical task allocation
scene and in this work is used to simulate our affective
model and algorithm. On an unbounded two-dimensional
continuous plane, there are some evaders (task objectives)

and pursuers (affective robot), all evaders and pursuers could
appear in any coordinate and move in any direction with a
default step size. Pursuers have a global view so that they can
directly allocate task without searching [58]. Each pursuer
selects an evader through task allocation as the task objective,
and pursuers with the same task objective constitute a team.
The evader is captured successfully on the requirement that
the distance between the evader and pursuers is less than the
default capture radius r and the total capacity of pursuers is
greater than that of the evader. The pursuer who fulfills a
pursuit task could continue to chase other evaders until all
evaders are captured.

The set of evaders is defined as E = {E1,E2, . . . ,Em},
Ei denotes the evader i and is a triad, Ei = 〈pos, cap, rew〉,
where:

— pos represents the position of evader in the
two-dimensional pursuit scene pos = (x, y);
— cap represents evader’s capacity. The greater the capac-

ity, the higher the risk is, and the more difficult the task is;
— rew represents the reward of a successful capture.
The set of pursuers is defined as P = {P1,P2, . . . ,Pn},

Pi denotes the pursuer i and is a five-tuple, Pi =

〈per, emo, pos, cap, cost〉, where:
— per represents the personality of pursuer;
— emo represents the emotion state;
— pos stands for the location of the pursuer;
— cap stands for the capacity;
— cost represents the cost of the pursuer for performing

the task.
Definition fsuc is the judgment condition of successful

pursuing, fsuc = 1 is success, fsuc = 0 is fail:

fsuc =

{
1, ∃ disij < r
0, ∀ disij > r

(5-1)

where disij represents the distance from the j-th evader to the
i-th pursuer in the corresponding team; r is the default capture
radius. If there is a distance from the pursuer to the evader to
reach the default capture radius, the evader is captured. The
pursuit-evasion strategy is virtual force field [40], [58]

A. PARAMETER SETTING
The speed of pursuer and evader is set as 5 and 3 respectively,
and the capture radius is 0.8. The basic emotion is Fear,
Anger, and Joy, so both mood and sentiment are triad, corre-
spondingly the stimulus is a triad. According to the previous
work [30], [40], the transfer matrix from basic emotion to
PAD space is:

MEP =

−0.64 0.60 −0.43
−0.51 0.59 0.25
0.40 0.20 0.15


The type and value of fundamental stimulus vector in this

example are defined as Table 1, and compute instances of
stimulus are as follows.
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TABLE 1. Fundamental stimulus vector.

1) OBJECT STIMULUS
The distance stimulation generated by the pursuit objective
is:

S.disij =

{
Norm(

∣∣disij − ξ ∣∣) · svfar , disij > ξ

Norm(
∣∣disij − ξ ∣∣) · svnear , disij < ξ

(5-2)

disij =
√(

xi − xj
)2
+
(
yi − yj

)2 (5-3)

where S.disij represents the distance stimulus to pursuer i
from evader j; ξ denotes the distance threshold, the stimu-
lus is positive when the distance is less than the threshold,
otherwise it is negative; Norm is the normalized function
ranged within [0,1]; · refers to the dot products of two vec-
tor. The nearer the distance between pursuer and evader is,
the stronger the positive stimulus is, so that the pursuer’s
willingness is higher. Similarly, the farther the distance is,
the stronger the negative stimulus is.

The reward of task objective will produce a reward stim-
ulus for robots, which is related to evader’s reward and pur-
suer’s cost:

S.gainij = Norm(gainij) · svgain (5-4)

gainij = rewi − costj (5-5)

where S.gainij is the reward stimulus to pursuer i from
evader j; Norm is the normalized function rangedwithin [0,1].
gainij denotes the gain of pursuer i fulfilling the task (captur-
ing evader j); rewi denotes the reward of a successful capture
of robot i; costj denotes the cost of the pursuer for performing
the task of robot i.; svgain is a fundamental stimulus, which is
defined as how much degree stimulus gain impact emotion.
Thus, the higher the reward of task objective is, the more
positive the reward stimulus is, and the higher the willingness
of pursuer is.

Similarly, the risk of task objective will produce a negative
risk stimulus to the pursuer robot that is related to the capa-
bility of pursuer and evader:

S.riskij = Norm(riskij) · svrisk (5-6)

riskij = capj − capi (5-7)

where svrisk is a fundamental stimulus, which is defined as
how much degree stimulus risk impact emotion; Norm is the

normalized function ranged within [0,1]; capj denotes the
capacity of robot j; capi denotes the capacity of evader i.

2) EVENT STIMULUS
When a robot is selected as a leader, there is a leader stimulus
generated, and the actual stimulus is the same as that of
fundamental stimulus vector.

3) ACTION STIMULUS
When an evader is captured, the pursuers in corresponding
pursuit team will be stimulated by a positive action stimulus,
and the intensity of stimulus is proportional to the gain of
fulfilling the task.

S.captureij = Norm(gainij) · svcapture (5-8)

where svcapture defined as how much degree stimulus evader
was captured impact emotion.

Generally, the objective function of the pursuit-evasion
problem is minimizing time and maximizing gains. In this
work, because the pursuer is affective, we need tomeasure the
rationality of allocation results under the premise of pursuit
gains, which is whether the allocated task is suitable for
robot’s personality and emotional state.

S = max(
∑

i∈pursuer

∑
j∈evader

(S.disij + S.gainij

+ S.riskij + S.captureij)) (5-9)

B. THE PROCESSING OF AFFECTIVE COMPUTING
IN TASK ALLOCATION
In this experiment, we show the process of affective comput-
ing in once task allocation.

1) INITIALIZING SCENE
There are 4 pursuers and 2 evaders, and their initial attributes
are given randomly as shown in Fig.4 and Tables 2 and 3.

FIGURE 4. The initial positions of pursuers and evaders.

TABLE 2. The initial attributes of evaders.
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TABLE 3. The initial attributes of pursuers.

2) OBJECT STIMULATION
Each evader produces an object stimulus to pursuer which
affects the sentiment of pursuer and further changes will-
ingness (Table 4). Taking pursuer 3 as an example, before
stimulation, the sentiment of pursuer 3 is initialized by its
mood state:

sent =
[
0.17 0.11 0.64
0.17 0.11 0.64

]

TABLE 4. Sentiment and willingness after object stimulation.

To pursuer 3, evader 1 is far and evader 2 is near (Fig.4),
so the distance stimulus of evader 1 and evader 2 is:

S.dis =
[
0.30 0 0
0 0 0.88

]
.

The reward stimulus and risk stimulus are:

S.rew=
[
0 0 0.50
0 0 0.43

]
, S.risk=

[
0.27 0.20 0
0.13 0.10 0

]
.

After the object stimulation, the sentiment is:

sent =
[
0.23 0.05 0.73
0.03 0.01 0.96

]
.

And the willingness is calculated based on sentiment:

W = {0.32, 0.85} .

The willingness matrix is:

MW =

[
0.66 0.59 0.32 0.42
0.56 0.39 0.85 0.58

]
3) TASK ALLOCATION
Willingness matrix is the main reference for task allocation.
The first stage of task allocation is selecting leader based on
leadership as Table 5.

Pursuer 1 and pursuer 2 are selected as leaders because of
their greatest leaderships. The allocation result is calculated

TABLE 5. Leadership list.

by Hungarian algorithm based on the willingness matrix:
the evader 1 is allocated to pursuer 1, and the evader 2 is
allocated to pursuer 2. Both leaders are stimulated by an event
stimulus—-be a leader S.beleader =

[
0 0.3 0.5

]
, their

mood states change as Table 6.

TABLE 6. The mood of leaders before / after the event stimulation.

The second stage of task allocation is selecting team mem-
bers according to the principle of maximum willingness,
finally obtain an allocation matrix:

MA =

[
1 0 0 1
0 1 1 0

]
That is, the pursuit team members of evader 1 and

evader 2 are {1, 4} and {2, 3} respectively.

4) EMOTIONAL CONTAGION
After successful allocation, emotional contagion occurs
among the members of each task team. According to the
personality of pursuers in Table 2, in team 1 the susceptibility
and expressiveness of pursuer 1 is [ sus exp ] =

[
0.69 0.72

]
and the pursuer 4 is [ sus exp ] =

[
0.57 0.19

]
.

After emotional contagion, in Table 7, the intensity of
mood of pursuer 4 increase because of very low expressive-
ness. Correspondingly, the intensity of mood of pursuer 1
decrease due to its expressiveness is high and pursuer 4
express too little emotion.

TABLE 7. The mood of pursuers before / after emotional contagion.

C. IMPACT OF SIMULATION OF TASK ALLOCATION
In this experiment, we verify the impact of external stim-
ulation on task allocation using action stimulation as an
example. The time performance and allocation result of this
algorithm are compared with instantaneous greedy optimal
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auction algorithm for rational robots and multi-robot pursuit
task allocation algorithm based on emotional cooperation
factor [40].

In order to highlight the impact of stimulation, there is
no emotional contagion. Emotional attenuation is an inherent
property of affection, that is emotional intensity decreases
over time. In addition, pursuers’ personalities are identical,
so personalities have the same influences on stimulation and
emotional attenuation.

There are 9 pursuers and 3 evaders shown as Fig. 5. After
the first task allocation, there are also twice reallocation in
pursuit process because evaders are captured in sequence.

FIGURE 5. Chase scenes in which robots are reassigned tasks.

In Fig.5, task allocation of rational robots only relates to
objective factors such as distance and reward. Each time
allocation result of each pursuers is always its optimal choice,
that is the nearest evader.

The pursuit process of the algorithm based on emotional
cooperation factor is shown in Fig.6(a), allocation result of
affective robots differs from rational robots because affective
pursuer is not always choosing their optimal choice. But this
algorithm did not thorough consider external stimulus, thus
its allocation results is not flexible enough. For example,
at the second reallocation the pursuit team of evader 1(orange
dotted lines) — pursuer 1, pursuer 7, and pursuer 9— is same
as the first reallocation (green dotted lines), but not choose the
pursuers on the left-hand side to round up the evader, because
pursuers of the team are still the most appropriate (maximum
net income) of pursuing evader 1.

In Fig.6(b), we systematically consider external stimulus in
task allocation and pursuit process. Taking the action stimulus
as example, when the evader 2 is captured, pursuers of this
team (purple dotted lines)—pursuer 2, pursuer 7, and pursuer
8— are stimulated by a positive action stimulus, so that their
emotional states are lifted (Table 8).

Then at the second reallocation for the evader 1, the will-
ingness matrix is:

Mw = [0.83, 0.82, 0.73, 0.62, 0.75, 0.82, 0.89, 0.84, 0.73]

FIGURE 6. The comparison of pursuit process.

TABLE 8. The emotion of pursuit team members before / after capturing
evader 2.

Pursuer 7 and pursuer 8 replace pursuer 5 and pursuer 6 as
the member of pursuit team (green dotted lines) because of
their higher willingness. At this time, the pursuer 8 is near
evader 1(Fig.6(c)), and the pursuit process is accelerated.

D. EMOTIONAL CONTAGION
This experiment shows the effect of emotional contagion on
task allocation. There are 3 pursuers and 1 evader and their
attributes are shown in Table 9. There is no stimulation, but
the attenuation rate is 0.89.

TABLE 9. The attributes of pursuers.
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FIGURE 7. The comparison of pursuit process.

FIGURE 8. The pursuit process under (a) no emotional contagion;
(b) emotional contagion.

Pursuer 1 is of positive emotion and stronger expressive-
ness. Pursuer 2 and pursuer 3 are of negative emotion and
stronger susceptibility.

Pursuers’ initial willingness are w1 = 0.96, w2 = 0.09,
w3 = 0.22. If there is no emotional contagion (Fig.8(a)), all
pursuers’ willingness decrease because of emotional atten-
uation, and the lowest willingness (pursuer 2) firstly drops
below the threshold (set as 0.02) which leads to reallocation
or failure to pursuit as shown in Fig.9(a). Pursuer 2 and
pursuer 3 will give up because their emotions are down too
low, which will result reallocation or the failure of pursuit.

In Fig.8(b), pursuer 1 expresses its positive emotion to
pursuer 2 and pursuer 3 and the latter two willingness are
driven by pursuer 1, so that the pursuit process has not been
interrupted because of low willingness (Fig.9(b)).

E. INFLUENCE OF PERSONALITY TO TASK ALLOCATION
This experiment shows the influence of personality to task
allocation through an eight-vs-three game (Fig.10). We com-
pare the allocation results of two pursuit scenes which differ
in whether pursuers are personalized or not, more attributes
are shown in Table 10.

The pursuit process of two scenes is shown in Fig.11. The
initial allocation results of both scenes are same, but in each
reallocation (one evader is captured) appears the difference

FIGURE 9. The pursuit process under (a) no emotional contagion;
(b) emotional contagion.

FIGURE 10. Initial position.

TABLE 10. Attributes of pursuers and evaders in both scenes.

FIGURE 11. Pursuit process under (a) no emotional contagion;
(b) emotional contagion.

between allocation results of two scene and the reason of the
difference is pursuers’ personality.

In scene 1 shown as Fig.11(a), pursuers are non-
personalized and their willingness’s changes relate to initial
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emotion and environment factors (evaders’ distances, rewards
and capabilities). Due to initial emotions are same, the allo-
cation result of scene 1 is mainly determined by environ-
ment factors. At the first reallocation (evader 3 is captured),
the willingness of pursuer 1 to evader 1 and evader 2 is
w1 =

{
0.79 0.88

}
, and the willingness of pursuer 2 is

w2 =
{
0.73 0.86

}
, both their willingnesses to evader 1 are

lower because of its higher risk and farther distance. Due to
the pursuit team of evader 1 lack of cooperators, pursuer 2 is
discharged from the pursuit team of evader 2 because of its
lower willingness to evader 2 and join the pursuit team of
evader 1.

In scene 2 shown as Fig.11(b), pursuers are person-
alized and personality is also a determinant of alloca-
tion result. Pursuer 1 is adventurous and extroverted:
per1 =

[
0.09 0.95 0.02 0.97

]
, pursuer 2 is cautious:

per2 =
[
0.85 0.20 0.61 0.54

]
. At the first reallocation,

the willingness of pursuer 1 to evader 1 and evader 2 is
w1 =

{
0.90 0.88

}
, and the willingness of pursuer 2 is w2 ={

0.48 0.86
}
. To the higher risk and reward evader 1, the

willingness of adventurous pursuer 1 is higher and cautious
pursuer 2 is lower. As a result, pursuer 1 chooses to chase
evader 1, pursuer 2 chooses to chase evader 2.

The pursuit time and gains in both scene 1 are shown
in Table 11. Under the influence of personality, the time and
gains are better in scene 2.

TABLE 11. Pursuit time and gains.

F. EXPERIMENTAL AND RESULT
This experiment was conducted to test the effectiveness of
the algorithm studied in this paper by comparing it with the
IGPA algorithm [58]. In 1200 sets of comparison experi-
ments under the same scenarios, the scene is set with a total
of 5 Pursuers, 3 Evaders. The algorithm proposed in this
paper was able to reduce the total experimental pursuit time
in 83.58% of the scenarios and the total gain of 74.75% of
the experimental pursuit teams were higher than the IGPA
algorithm, as shown in Figure 12 and Figure 13. When using
the IGPA algorithm to build pursuit teams, each robot is
self-interested and will choose to join the team with the
greatest benefit to itself, which may lead to some of the
pursuit teams being over-capable and others being under-
capable, which is not conducive to pursuit task allocation and
leads to poor experimental results. In this paper, we consider
both the emotional risk and benefit of the robot in the task
assignment stage, use the robot willingness degree as the bid
value, combine the two-step auction algorithm, consider the
overall benefit in each task assignment, assign the optimal
robot for each team, and calculate the actual emotional risk
to derive the actual net benefit after the successful pursuit,

FIGURE 12. The comparison chart of total time for pursuing team.

FIGURE 13. The comparison chart of total reward for pursuing team.

eliminating the situation that the team’s benefit is affected
because of individual benefit. Therefore, using the algorithm
in this paper can optimize the total chase time and the total
chase team revenue.

VI. CONCLUSION
This paper focuses on the impact of affection on multi-
robot cooperation, for this problem, an interpretable and com-
putable affectionmodel is proposed. Then it was detailed each
modules of the affection model and their relation and change,
subsequently calculated the willingness to reflect the effect of
affection on task allocation. The feasibility and reasonability
of the model is proved by multi-robot pursuit task allocation.
We elaborate a relatively complete theory in the interdisci-
plinary of affective computing and multi-robot cooperation,
and realize it in multi-robot pursuit task environment. Thus,
this work is of theoretical value and practical significance.
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This algorithm has good versatility and flexibility. The
versatility is embodied in the affection model. The affection
model can be viewed as a black box; the influence of affection
on cooperation can be quantified through willingness. The
internal operation process of affection model does not have to
understand while only set different kinds of external stimuli
can result in different willingness. The willingness can be
used as an important reference in most cooperative environ-
ments. Flexibility is particularly reflected in the choice of
stimulus kinds according to the system requirements.

This affection model is an evolving framework, in which
components are to be perfected. For example, the effect of
personality can be expanded to emotional contagion and emo-
tional attenuation. An optimistic individual tends to express
more positive emotion, and its attenuation rate of positive
emotion is slower than negative emotion. This affection
mechanism can be further applied to social network.

This task allocation algorithm is a centralized method and
relatively simple, because the focus of this paper is modelling
affection. On the basis of this affection model, we can explore
more efficient and appropriate task allocation algorithm com-
bined with affection. Further, task type and environment can
be changed to test the affection model,, multi-robot map
exploration.

However, the emotion model in this paper needs to be
refined. In terms of emotion infection, the degree of emo-
tion infection that occurs when two individuals communi-
cate with each other must be different, and for subsequent
extensions we defined the existence of connection strength
between two individuals. Also, emotional infection should
be influenced by personality, for example, individuals with
pessimistic personality are susceptible to negative emotional
infection, while optimistic individuals are not susceptible to
negative emotional infection. In terms of emotion attenuation,
we consider calculating the attenuation coefficient based on
personality values, so as to achieve the true sense of different
by personality. Also, since the representation of emotions in
this paper is the basic emotion method, each basic emotion
should have an attenuation coefficient, which means that the
attenuation coefficient should be a vector whose dimension
corresponds to the emotion vector. This will completely rep-
resent the different effects of personality on the decay rate of
different emotions.
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