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ABSTRACT The object detection and recognition algorithm based on the fusion of millimeter-wave radar
and high-definition video data can improve the safety of intelligent-driving vehicles effectively. However,
due to the different data modalities of millimeter-wave radar and video, how to fuse the two effectively
is the key point. The difficulty lies in the data fusion methods such as insufficient adaptability of image
distortion in data alignment and coordinate transformation and also the mismatching of information levels
of the data to be fused. To solve the problem of data fusion of millimeter wave radar and video, this paper
proposes a decision-level fusion method of millimeter-wave radar and high-definition video data based on
angular alignment. Specifically, through the joint calibration and approximate interpolation, projected to
polar coordinate system, the radar and the camera are angularly aligned in the horizontal direction. Then
objects are detected by a deep neural network model from video data, and combined with those detected by
radar to make the joint decision. Finally, object detection and recognition task based on the fusion of the two
kinds of data is completed. Theoretical analysis and experimental results indicate that the accuracy of the
algorithm based on the two data fusion is superior to that of the single detection and recognition algorithm
on the basis of millimeter-wave radar or video data.

INDEX TERMS Intelligent assisted driving, object detection and recognition, multi-sensor fusion,
millimeter-wave radar, high-definition video.

I. INTRODUCTION
Automotive driving assistance can significantly facilitate the
safety of driving and avoid traffic accidents. Up to now,
intelligent vehicles are equipped with sensors such as MMW
Radar (millimeter-wave radar), LiDAR and high-definition
cameras. With real-time analysis of these sensor data, detect-
ing and recognizing pedestrians, bicycles, motorcycles, cars
and other objects outside the car, achieves the purpose of real-
time perception of the external environment of the vehicle.
However, there are some disadvantages in perception based
on a single sensor, for example, due to the large positioning
error of the object space position based on visual perception,
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the position of the object in the real world cannot be accu-
rately estimated. The analysis based onMMWRadar data has
insufficient object classification and recognition capabilities,
etc. The method based on multi-sensor data fusion can often
obtain a more comprehensive object state estimation than a
single sensor data, and improve the credibility of the analysis
data through the information complementarity of the different
sensor data.

Most of the current research on multi-sensor fusion for
intelligent driving assistance focuses on the fusion of radar
and camera data. The main reason is that the perspective of
radar point cloud data in the horizontal and vertical directions
is easier to align with the image coordinates. There are short-
comings in radar such as high cost, susceptibility to weather
and air impurities, and inability to detect object speed. Data
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fusion based on MMWRadar and camera has high reliability
andmore extensive application scenarios. The datamodalities
of MMWRadar and camera images are quite different, which
makes it difficult to achieve effective data fusion. Most of
the existing methods achieve data alignment between MMW
Radar and camera images by projecting to real world coordi-
nates. However, image distortion has a great impact and the
mismatch of feature-level data fusion at the information level
also limits the advantages of the two sensors.

To solve the problem that the heterogeneous data of MMW
Radar and camera is difficult to fuse, this paper presents a
fusion algorithm based on MMW Radar and high-definition
video for object detection of intelligent driving assistance.
First, the MMW Radar and camera are jointly calibrated in
the polar coordinate system, and the two types of data are
aligned in the horizontal direction through approximate inter-
polation, which effectively overcomes the influence of image
distortion on coordinate transformation. The deep network
model is used to implement object detection and recognition
based on image data. With the objects detected by radar, the
decision-level data fusion task of MMW Radar and image is
fulfilled.

This paper is distinguished by the following main contri-
butions:

• Through multi-angle joint calibration, the spatial sparse
alignment of the heterogeneous data ofMMWRadar and
the camera in the common dimension is realized with
image distortion ignored.
• A neighboring approximate interpolation method is pro-

posed to achieve the spatial alignment of the heteroge-
neous data of MMW Radar and camera in the common
dimension.
• While multi-camera fusion improving the recall rate

of object detection task, the proposed method of
decision-level fusion of MMW Radar and camera data
removes false positives in the object set and improve the
accuracy.

II. RELATED WORK
The data fusion of radar and video images can be divided into
pixel-level, feature-level and decision-level fusion according
to the degree of abstraction of the information [1]. The posi-
tion detection results of space objects can be obtained directly
by MMW Radar, which are distributed in the horizontal
dimension, which is unlikely to achieve pixel-level fusion
with image data. Feature-level fusion processes sensor data
by extracting features (such as edges, shapes, regions, dis-
tances, etc.) and then fusion processing. MMW Radar data,
which can directly provide the detection result of the object,
cannot achieve feature-level fusion with image data. The
only feasible method to implement the fusion of radar and
video image data is to analyze the image features combined
with radar detection result, and implement the decision-level
fusion of the optimal decision based on certain criteria and
decision credibility.

Object detection is one of the most fundamental and chal-
lenges in computer vision [2]. Traditional digital image pro-
cessing is a typical method before 2012, such as V-J [3], [4],
HOG [5], DPM [6], etc. After 2012, Deep Learning (DL) rep-
resented by Convolutional Neural Networks (CNN) has grad-
ually become the mainstream method. Performing the task
of object detection by deep learning can be divided into two
technical routes: two-stage networks and single-stage ones.
The two-stage networks are represented by RCNN [7]–[9],
and the single-stage ones are represented by YOLO [10]–[13]
and SSD [14], RetinaNet [15], etc. Considering that intel-
ligent driving assistance has extremely high-speed require-
ments for object detection algorithms, most of strategies use
single-stage algorithms with efficiency advantages. Espe-
cially the newly appeared YOLO V5 algorithm performs
best in terms of efficiency and performance balance, which
is more suitable for object detection in intelligent driving
assistance.

Since point cloud data is similar in distribution to the
observation angle of video images, most researches on object
detection based on LiDAR data mostly instead of radar.
Many scholars have successively proposed similar image
object detection algorithms [16]–[21], as well as Voxel-
Net [22], BirdNet [23], PointNet [24], [25], StarNet [26] and
other object detection models for point cloud data. However,
LiDAR has a large amount of output data, a high price, but
poor adaptability in weather. Applied in assisted driving, this
paper focuses on the data fusion of camera and MMW Radar
instead of LiDAR considering the cost issue and the limited
resources of edge computing. Unlike LiDAR, MMW Radar
generally does not provide point cloud data, but directly offers
the relative position and relative speed of the object. With
poor accuracy of object recognition, most of MMW Radar
cannot achieve object classification.

In terms of MMW Radar and image data fusion, whether
the two can be aligned in the dimensions of time and space is
the key to data fusion. The data output rate of mainstream
MMW Radar is 20fps, and the image data of the camera
is 25∼30fps. The time difference between the two is less
than 40ms, which meets the requirements of time alignment.
Spatial alignment can be achieved through calibration, and
data correspondence conversion can be realized through coor-
dinate transformation.

Zhai et al. [27] projected the positions of the objects
detected by radar to the image data through joint calibration,
and proposed a method to generate the area of interest of
the objects in radar data, which completed obstacle detection
based on the fusion of MMW Radar and camera images
data. However, the algorithm has visualized radar information
only by aligning with the image position, and the image
information is not fully extracted and utilized without object
detection work. Similarly, Zhiqiang et al. [28] first selected
the objects using radar data, then established the area of
interest based on the image processing method and judged
whether it was a vehicle obstacle, and implemented obstacle
detection through information fusion based on joint Kalman
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filtering. Bi et al. [29] used coordinate transformation to
map radar object information to image data, and then used
HOG and SVM classifiers to detect the sliding window based
on the radar data and the dynamic area generated by the
sliding window, and implemented object recognition through
matching. Zhaowei et al. [30] established a multi-sensor-
based coordinate transformation model, mapped the depth
information given by the radar to the image data, extracted the
gradient histogram of the region of interest, and used SVM
to achieve pedestrian detection. Lisheng et al. [31] also used
coordinate transformation to project radar data on the image
data to form a region of interest, and used image processing
methods to reduce interference points. However, this method
only extracts the characteristics of the taillights of the vehicle
without object recognition and can only be applied at night.
The above fusion strategies all use the spatial information
in the radar data to reduce a lot of interference for image
feature analysis, but the image data analysis is generally not
deep enough, and the object recognition performance is not
satisfactory.

In the case of object detection and recognition based on
video image data, it can complete the decision-level data
fusion with radar. Yuan et al. [32] implemented vehicle
objects detection by searching for vehicle shadows, and then
converted the radar data to the image coordinate system to
verify the matching relationship. With insufficient accuracy
in searching for vehicle objects, radar data is weak in object
recognition, and it is difficult to integrate the advantages
of the two types of data to improve the overall recognition
performance. Aziz et al. [33] proposed a method of using
3D-CNN+LSTM to do MIMO radar data analysis, using
YOLO algorithm to implement image object detection, and
then using projection transformation to achieve result fusion.
Because MIMO radar provides two-dimensional spatial data,
it can implement object detection through convolutional neu-
ral networks. However, MIMO radar is difficult to implement
joint calibration of image data, and fusion is prone to devia-
tion in the decision-making stage, and the fusion calculation
is large.

Nobis et al. [34] presented a fusion architecture of radar
and video data based on deep learning object detection. The
radar data is processed into independent channels that match
the image data, and fused with the image RGB channel data,
and the object detection and recognition is achieved through
the deep learning model. But, it adds noise to the image data
through usingmulti-period radar data, and this fusion strategy
destroys the time alignment of the two sensor data.

Mures,an et al. [37] proposed a multimodality fusion
framework which can flexibly accomplish both object detec-
tion and end-to-end driving policy for prediction of steering
angle and speed. It had some enlightenment for the het-
erogeneous data fusion of MMW Radar and camera, but
had no further discussion. Nie et al. [38] proposed a fusion
architecture by applying a combination of two types of sensor
data fusion methods [37] (a model-based approach using the
Unscented Kalman Filter and a data-driven approach using

a single-layer perceptron) to combine three-focus camera,
LiDAR, and millimeter wave radar for data fusion. For the
data fusion of millimeter-wave radar, it initially considered
the mapping relationship of the object position in the polar
coordinate system, but lacked the explanation of the method
of spatial alignment, and did not pay attention to the image
distortion and the noise of MMW Radar data.

In summary, although lots of scholars have done a lot of
work and made some progress in the fusion of radar and
image data, there are still many problems to be solved. The
core issue is how to implement effective joint calibration and
how to overcome the impact of image distortion.

III. MULTI-SENSOR FUSION-BASED OBJECT DETECTION
AND RECOGNITION
In this paper, we propose an object detection and recognition
method that fuses the information of MMW Radar and video
data. Specifically, the camera and MMW Radar are jointly
calibrated with multiple key points to achieve spatial align-
ment, and such two types of data are transformed into polar
coordinates. We combine the visual perception algorithm and
the object spatial position detection information of MMW
Radar to achieve multi-sensor data fusion at strategy-level,
that is also a model-based fusion [37], thereby improving
the accuracy of object detection and recognition. The fusion
algorithm framework is shown in Figure 1.

FIGURE 1. The framework of millimeter wave radar and image data
fusion algorithm. The data of millimeter wave radar is an object set which
is similar to image’s detection result.

The joint calibration of image and MMW Radar data
requires the spatial alignment between them, i.e., the image
pixel data and radar data in the coordinate system are one-
to-one correspondence. First, the radar can only provide the
object detection results in the horizontal direction while the
image pixels are distributed in the horizontal (X-axis) and
vertical (Y-axis) dimensions. Hence, the radar data and the
image can only be aligned in the horizontal direction. Sec-
ondly, the image data lacks depth information, and there is no
polar diameter value in the polar coordinate system, so only
polar angles are aligned.

In the common viewing range of the camera and MMW
Radar, uniformly spaced angles are used for joint calibration.
Leveraging the data form of polar angle and polar diameter
from the MMW Radar, the horizontal pixel coordinates of
the image are acquired through the look-up table to obtain
the angle range, and the polar angle is calculated through
interpolation. Compared with coordinate transformation, the
comprehensive look-up table and interpolation algorithm is
more efficient.
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After the spatial alignment between the two types of data
is accomplished, the object detection and recognition results
based on the image and radar data are matched and fused in
space, and the final results are comprehensively analyzed to
improve the performance of object detection and recognition.

The proposed method avoids the complicated calculation
of transforming from the image coordinate system to the
world coordinate system. Through joint calibration, the image
coordinates are directly mapped to the coordinate system
matching the radar data. The proposed method can adapt
to different types of cameras and can effectively overcome
the differences in camera optical properties and images.
In addition, in order to take both the view range and image
resolution into account, the intelligent auxiliary drive system
usually deploys multiple cameras at the same time, such as
normal, wide-angle, telephoto, etc. The proposed algorithm
in this paper is compatible with multiple cameras, which
realizes effective data fusion of multi-channel video and
MMW Radar.

A. SPATIAL ALIGNMENT OF MULTI-SENSOR DATA
Considering the linear propagation properties of electromag-
netic waves and light through the air, theMMWRadar and the
camera have a consistent view of the real world, despite the
fact that they work on different principles, and that external
information enters the sensor by converging on a single point.

The working coverage angle of the millimeter wave radar
and the camera is shown in Figure 2. Both sensors have a
similar signal input field of view. The MMW Radar uses the
horizontal plane to estimate the reflected signal angle, known
as the (AoA). The coverage of the camera lens is called Field
of View (FOV). Objects at the same angle will be obscured
by objects with a small polar diameter against objects with a
large polar diameter. The resolution of the raw data received
by the sensor actually reflects the ability to resolve real-world
angles.

The image pixel positions can be mapped back to angular
positions, and the MMW Radar data contains angular infor-
mation about the objects. Thus, the polar coordinates can be
used as a reference to achieve spatial alignment of the two
kinds of data.

FIGURE 2. Schematic diagram of the working coverage angle of the MMW
Radar and camera. The angle of arrival (AoA) of short-range radar(SRR) is
θr which we concern about.

B. JOINT CALIBRATION ALGORITHM OF IMAGE AND
RADAR DATA
Image data generally suffers frommirror image distortion and
tangential distortion [34]. The real-world industry often cor-
rects for distortion through algorithms to improve the imaging
of the camera. Considering that most intelligent assisted driv-
ing includes a variety of camera types such as telephoto and
wide-angle, it is difficult for aberrated and corrected images
to be accurately mapped back to the objective world’s angular
coordinates through theoretical calculations. However, for
both distorted and corrected images, the angular coordinates
of objects in the camera’s field of view that are located at the
same polar angle are always the same. Therefore, the image
pixel coordinates can be matched with the objective angle
coordinates through calibration.

The camera lens and the MMW Radar receiver are placed
in the same reference vertical line to ensure that the field of
view origins of the multiple sensors coincide. N positions are
calibrated in even angular intervals in front of the sensor via
a protractor, and the camera and radar are calibrated at the
same time through the radar corner reflector data.

The camera is fixed to the radar and the camera’s vertical
view needs to cover the radar view in the light of the larger
vertical view for the camera than radar. A schematic overhead
view of the joint calibration is shown in Figure 3. The marked
position is used to place the radar corner reflector to realize
the joint calibration of multiple sensors.

The joint calibration starts with aligning the 0◦ positions of
all sensors, as shown in Figure 4. The visualization of the data
from the radar and the image enables a fine adjustment of the
camera and radar positions. It ensures that the central pixel
of the image coincides with the radar corner reflector support
bar and that the 0◦ coordinate line of the radar coincides with
the signal position of the corner reflector.

Considering the different FOV ranges of different types
of cameras, generally the horizontal view is smaller than the
MMW Radar, and the calibration range needs to be selected
as the overlap of the two, i.e., the horizontal view range of the
camera. If the horizontal view of the camera is larger than the
MMW Radar, such as fisheye cameras, the radar view range
can be selected for calibration.

Without loss of generality, an even number (N ) of equal
angle regions is selected in the horizontal direction, giving a
total of N + 1 calibration positions for the horizontal view
of the image. By placing the radar angle reflector at the
calibration position, the set of radar calibration angles can be
defined as:

� = {α1, α2, . . . , αN , αN+1} (1)

Determining the image pixel positions of the radar corner
reflector support rod, the set of horizontal positions of the
camera calibration pixels can be defined as:

X = {x1, x2, . . . , xN , xN+1} (2)
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FIGURE 3. Schematic diagram of joint calibration. We set several key
angles to calibrate camera and radar simultaneously.

where the X axis coordinate origin is defined at the center of
the image, i.e., xN

2 +1
= 0. The X coordinate on the left is

negative and the right is positive.
Define the horizontal view of the camera as θv and the

image resolution asH×W , whereH is the number of vertical
pixels and W is the number of horizontal pixels, then the
following is obtained.{

θv = αN+1 − α1

W = xN+1 − x1
(3)

Since the elements in X and � correspond one-to-one,
the X coordinate of any pixel can be determined by the
look-up table method to determine its angular range, and the
X coordinate transformation of the pixel uses correlation to
perform approximate linear interpolation.

For aberrated images, where the degree of distortion varies
continuously, the angle at which a single pixel is located
can be defined as the pixel angular density ρ, and then the
angular density of a pixel at any location is near to its adjacent
location. The polar angle corresponding to a pixel can be set
as:

αx =

∫ x

0
ρ(x)dx (4)

Given the unknown nature of image distortion and aber-
ration correction, ρ(x) can be calculated by interpolating

FIGURE 4. Joint calibration of 0◦ position. The green vertical line in
(a) means the middle of the image which corresponds to 0◦. The line
must be aligned with the angle reflector. In (b) the green point lying on 0◦

is the signal reflected from the angle reflector.

the pixels in this region using the angular density of the
neighboring region pixels. When xn−1 < x < xn, it meets
that

αx = αn−1 +

∫ xn

xn−1
ρn(x)dx (5)

Define the angular interval between the calibration points
is 1α. Then,

ρn =
1α

xn+1 − xn
(6)

Assuming that the angular density of pixels within
(xn−1, xn] varies uniformly, then

ρn(x) = ρn−1 +
ρn+1 − ρn−1

xn+1 − xn
(x − xn) (7)

In particular, the left and right edges of the image meet that

ρ1(x) = ρ1 +
ρ2 − ρ1

x2 − x1
(x − x1) (8)

ρN (x) = ρN−1 +
ρN − ρN−1

xn+1 − xn
(x − xn) (9)

Substituting equation (7) into equation (5) enables the
transformation from X-coordinate to angular coordinate of
any pixel.
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FIGURE 5. The structure of YOLOv5: the overview of YOLOv5 according to the open source code and description.

The approximate coordinate mapping algorithm, based on
table look-up and interpolation, is well suited to a wide
range of image distortions and distortion-corrected images.
To improve the accuracy of the coordinate transformation,
it is sufficient to reduce the calibration position interval and
set more calibration points.

C. IMAGE DATA-BASED OBJECT DETECTION AND
RECOGNITION
The object detection and recognition algorithm in this paper
uses the single-stage YOLO V5 [9]–[12], whose network
structure framework is shown in Figure 5.

The YOLOV5 network includes 4 main substructures,
namely convBnLeaky, bottleneck, bottleneckCSP, and SPP,
which can be used as a predefined substructure and used
in the entire network. The network substructure is shown
in Figure 6.

The input of the network model is a single frame of
video data, and the detection and recognition results of the
objects in the screen can be obtained by performing an infer-
ence operation. After the model is trained, it can realize the
dynamic real-time detection and recognition of pedestrians,
motor vehicles, non-motor vehicles and other objects. The
algorithm supports parallel object detection and recognition
of multiple video data. The video frame data of multiple
cameras are combined into a batch data input model. The
object detection results of all images can be obtained by

performing one inference. Simultaneous analysis of multiple
channels of video data will consume more video memory, but
will not affect the inference speed.

D. JOINT CALIBRATION ALGORITHM OF IMAGE AND
RADAR DATA
Object detection can be achieved based on both video and
radar data. Between them, the object perception ability based
on video data is stronger. Especially in the case of multiple
cameras’ cooperative sensing, the detection and recognition
performance has reached a high level. Due to the lack of
spatial location information, the result of video perception
is difficult to support the judgment of whether the object
is valid. Based on this, the decision will affect the vehicle.
Therefore, it is necessary to integrate radar detection results
for decision fusion. The fusion strategy framework is shown
in Figure 7.

If multiple camera models are used, the integration
between video sensing data should be prioritized. Generally
multi-vision cameras have achieved view center alignment
between cameras and different camera data can be mapped
to the field of view by image alignment algorithms, which
are not described in detail due to space constraints.

Object detection and recognition results based on multiple
image data can be mapped to the same image coordinate
system. Duplicate objects are filtered out by non-maximum
suppression, and the final results is the union of all detection
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FIGURE 6. The structures of YOLOv5 substructures.

FIGURE 7. Decision fusion strategy framework based on image and MMW
Radar data. Since the data of Radar is the result of the detected objects,
it is directly aligned with the objects in the image. Based on the objects
set in image, the Radar data is used for Validation.

and recognition results, that is, the image object set in
Figure 7. Define the set of object detection and recognition
based on image data as Ov. IfM cameras are used to achieve
object detection and recognition, then it can obtain that

Ov = Ov1 ∪ Ov2 . . . ∪ OvM (10)

The position and size of the object detection and recog-
nition are mapped to the polar coordinate system through
coordinate transformation, and the viewing angle range of
each object can be obtained. In the polar coordinate system,
the image detection object set Ov and the radar detection
object set Or are aligned and fused, and the decision steps
to obtain the detection result are as follows:

Step 1: Obtain the actual location information of a
single object

For the object ovi detected based on image data, the viewing
angle range is [θ1, θ2]. Given that or ∈ Or , ϕ is the polar
angle of or . It can be obtained the radar detection object set
O′r corresponding to ovi.

O′r = {Or |ϕ ∈ [θ1, θ2]} (11)

Considering the diffraction characteristics of the radar
signal, the object within the viewing angle range may be
hollow or small in size, so there may be multiple objects with
different polar diameters in the O′r set. In addition, the radar
may misidentify a single object that is close to multiple
objects. Therefore, it is necessary to cluster O′r according to
the possible size of the object, and select the object closest
to the vehicle to match with ovi. The threshold d0 can be
set according to the actual size of the object in the real
world. We select the object ornearest with the smallest extreme
diameter value inOr ′, and filter the distant objects. Given that
(xr , yr ) is the actual radar coordinates of or , then the distance
between or and orNearest can be defined as:

d =
√
(xr − xrnearest )2 + (yr − yrnearest )2 (12)

The object set that matches ovi is:

Or ′′ = {Or ′|d < d0} (13)

Considering that Or ′′ = {o1′′, o2′′, . . . , om′′}, ρ′′ is the
polar diameter of o′′, and ϕ′′ is the polar angle of o′′.
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FIGURE 8. Examples of object analysis based on data fusion. In (a) the person sitting in the car was detected, but it is
unnecessary because the car object is more important. In (b) the person and the bicycle were all detected, but actually they
should be regarded as one object.

FIGURE 9. Input image preprocessing in YOLOv5 training procedure.
As shown in (a), after resized with the same aspect ratio, the images in
KITTY contribute fewer pixel to YOLOv5 model in contrast to normal
16:9 images shown as in (b).

If m > 0, the position data of ovi is
ρvi =

1
m

m∑
j=1

ρj
′′

ϕvi =
1
m

m∑
j=1

ϕj
′′

(14)

The relative position of ovi and the vehicle on the ground
satisfies that {

xvi = ρvi cosϕvi
yvi = ρvi sinϕvi

(15)

step2: validation of the object
For an object ovi detected on the basis of image data, which

corresponds to Or ′′ = ∅, i.e. when m = 0. It means that the
radar does not detect an object in the ovi view range, ovi should
be a false positive object.

According to the radar detection data, rules can be set for
the detection area, and the positioning and speed information

of the object in the radar data can be used to define business
rules for intelligent assisted driving. Objects outside the rules
can be regarded as invalid objects. For a single object or
detected by radar, if it does not appear in the Ov coverage
angle of view, the object does not belong to the range of object
types detected and recognized and can be considered invalid.

IV. EXPERIMENTS AND ANALYSIS
The MMW Radar and camera used in our experiments are
set up on the vehicle and face straight ahead. We adopt the
camera with a FOV of 60◦ and the MMW Radar of German
Mainland ARS 408-21.

In the experiment, the urban highway is set as the scenario
source of test data, and 455 scenes of different time and place
are extracted from the real video to evaluate the performance
of object detection and recognition based on multi-sensor
fusion method. We adopt YOLOv5 s and YOLOv5 l algo-
rithms for object detection and recognition on video image
data, which are denoted as 5s and 5l, respectively. The
pre-trained model is based on coco [35] dataset, including six
types of objects, i.e., pedestrian, bicycle, motorcycle, car, bus
and truck.

We set two thresholds, i.e., 50% and 75%, for the ProbEx-
ists of MMW Radar hardware parameters, which indicates
the object is detected when its detection signal ProbExists
exceeds the threshold.

The experimental results are shown in Table 1. Due to the
data characteristics of MMW Radar, the calculation of recall
rate and accuracy rate only consider the existence of object
but without recognition. In addition, we set the classification
accuracy as a single metric for ARS 408-21 MMW Radar.

As theMMWRadar can detect all objects within the visual
angle range, the recall rate is close to 100%. However, it also
introduces a large number of false positives, thus it is unable
to complete the task of object detection and recognition.
Through the fusion of video and radar data, the accuracy
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TABLE 1. The performance of the multi-sensor fusion algorithm for object detection and recognition.

TABLE 2. The performance of the multi-camera and MMW radar fusion algorithm for object detection and recognition.

of object detection is greatly improved, the false-positive
problem of the two types of sensors is alleviated, and the
accuracy of object recognition is also improved.

The object detection based on radar and image data fusion
is more helpful for assistant driving. For example, in our
experiments, the image detection and recognition algorithm
can simultaneously detect the vehicle and the person in the
vehicle, and the bicycle and rider respectively, which can
effectively remedy the defect that the radar "binds" two
objects into one object.

As shown in Table 1, our proposed fusion algorithm does
not improve the recall rate because most undetected objects
are distant and thus have small scales. As the MMW Radar
is poor at recognizing objects, we cannot simply add it to
the detection result set. In the experiments, we found that
birds, leaves, and remaining stuff on the ground become
the detected results of the radar, i.e., obstruction objects.
Exploiting multi-camera can effectively boost the recall rate.
By adding a telephoto camera with a FOV of 20◦, we first
fuse the detection results based on image data, and then make
comparison with the fusion results of radar and image data.
The experimental results can be found in Table 2.

As demonstrated in Table 2, the image data algorithm
based on multi-camera can boost the recall rate. The multi-
sensor fusion method also achieves an improved recall rate.
Besides, our image data algorithm is pre-trained on coco
dataset rather than the driving scenes. The performance of our

TABLE 3. The effects of YOLO v5 trained by different dataset.

approach is expected to increase when applied to real-scene
datasets. For instance, we can achieve the detection result
for the class ‘cyclist’ in KITTY dataset [36] instead of the
separated detection results, i.e., ‘pedestrian’ and ‘bicycle’.

We experimentally find that YOLOv5 achieves inferior
performance on KITTY dataset. The model also obtains a
low recall rate of 74.2% on our collected data. After detail
analysis, we find that the ratio of image width and image
height is 10:3 in KITTY dataset. For YOLOv5, the input
data is resized with equal ratio to the size of 608, which is
608 × 182 pixels in our case, leading to the lack of useful
information in many tiny objects.

In the experiments, we use the collected real-scene data.
The training set contains 6 categories, i.e. vehicle, bus,
truck, pedestrian, sitting person, and cyclists. We re-train the
YOLOv5 model and the experimental results over 455 scenes
are reported in Table 4.

Table 5 shows the results after adding a telephoto camera
and performing data fusion on the binocular camera and the
MMV Radar.
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TABLE 4. The performance of the multi-sensor fusion algorithm for object detection and recognition on our constructed dataset.

TABLE 5. The performance of the multi-camera and MMW radar fusion algorithm for object detection and recognition on our constructed dataset.

As observed from the experimental results, multi-sensor-
based data fusion algorithm outperforms all single-sensor
algorithms on object detection and recognition.

Excluding the decoding time of the video frames, the speed
of the algorithm on the target computing platform NVIDIA
Jetson TX2 based on the TensorRT framework reaches
28.17fps with batch size = 1 and 26.31bps with batch
size = 2. It is enough for real-time applications on edge
devices.

V. CONCLUSION
In this paper, an object detection and recognition algorithm
based on multi-sensor fusion for intelligent driving assis-
tance has been proposed. Specifically, on the basis of the
latest research, we took use of MMW Radar and camera to
perform coordinate transformation so as to achieve spatial
alignment of the heterogeneous data of the two in the polar
coordinate system by multi-angle joint calibration and neigh-
boring approximate interpolation. Besides, the detection and
recognition results of radar and image can be achieved at
decision-making level. The proposed method is a strong com-
petitor to any single sensor, because the experiments and
analysis showed that this approach of multi-sensor fusion has
a significant increase in the accuracy of the object detection
and recognition.

It can also use more other image-based methods instead of
YOLOv5, such as SSD [14], PPYOLO [39] etc., to improve
the effect of object detection and recognition in intelli-
gent assisted driving based on the data fusion algorithm in
this paper.
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