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ABSTRACT The wide use of mobile devices introduced several new services for the consumer market
which are collectively called location-based services, the name being indicative of the significance of the
consumer position. Consequently, a rich variety of positioning technologies have been adopted to provide and
enhance user location information. The mass deployment of Wi-Fi access points (APs) and the ubiquity of
the magnetic field data make them attractive candidates for indoor positioning. Additionally, the availability
of embedded magnetic and Wi-Fi sensors in smartphones helps to achieve positioning without additional
infrastructure. Even thoughWi-Fi andmagnetic field data offer complementary characteristics for enhancing
positioning accuracy, several challenges for these technologies remain unresolved. However, the lack of
publicly available datasets for the magnetic field and Wi-Fi makes it very difficult to extensively investigate
these characteristics. Also, the proposed approaches cannot be tested on common benchmark datasets to
analyze the results of the state-of-the-art approaches. To resolve these issues, this study presents a dataset
that comprises the magnetic field, Wi-Fi, and the data from the inertial measurement unit (IMU) sensors of
the smartphone including accelerometer, gyroscope, and barometer. First, the important characteristics of
both the Wi-Fi and the magnetic field that require further investigation are highlighted, and later the data
are collected. The data are collected over a longer period spanning approximately five years involving five
different smartphones used by four different users, both female, and males. Different path geometries are
followed in different multi-floor buildings which are physically separated, comprising both small and large
areas. Besides, three different orientations of the smartphone are considered for data collection covering
corridors, halls, and laboratories. The data from the stairs help to test ‘stairs up’ and ‘stairs down’ events and
approaches aiming at multi-floor positioning can be tested with the provided dataset.

INDEX TERMS Indoor positioning, smartphone sensors, magnetic field data, Wi-Fi data, inertial measure-
ment unit, benchmark dataset.

I. INTRODUCTION
Indoor positioning and localization have been an area of wide
research interest over the past few years. Precise location
information serves location-based services (LBS) and offers
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invaluable help for rescue operations during an emergency.
Although both outdoor and indoor positioning is necessary,
the indoor position becomes significantly important because
humans spend 80% to 90% of their time indoors [1]. As a
result, 70% of cellular calls and 80% of data connections
originate from indoor environments which include airports,
universities, train and bus stations, and offices, etc. [2].
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Unlike outdoor positioning where the global positioning
system (GPS) and its variants like assisted-GPS (A-GPS),
GPS-inertial navigation system (GPS-INS), and GPS with
camera provide reliable position information, the indoor envi-
ronment poses several additional challenges. GPS faces many
physical barriers to performing indoor positioning including
frequency blocking, attenuation caused by walls and roofs,
less number of visible satellites, and similar other problems.
So, the calculated position shows high error which may
be higher than the indoor area itself, especially for small
buildings.

To overcome the challenges of indoor positioning, several
positioning technologies have been proposed and adopted
for indoor environments. For example, radio frequency iden-
tification (RFID), infrared (IR) and ultrawideband (UWB)
have been adopted for indoor positioning [3]–[5]. Similarly,
Bluetooth low energy (BLE) has been a topic of interest
due to its low cost and easy implementation. However,
these technologies require installing additional sensors such
as tags or beacons to perform positioning and are called
infrastructure-based technologies collectively. On the other
hand, infrastructure-less technologies do not need additional
infrastructures, such as pedestrian dead reckoning (PDR),
Wi-Fi, and the earth’s magnetic field-based positioning. PDR
provides the relative position of a user and requires a start-
ing or previous position contrary to the Wi-Fi and magnetic
field-based positioning that have no such presumption. Wi-Fi
is categorized under the infrastructure-less category owing
to the wide deployment of Wi-Fi access points (APs) and
its ability to calculate user’s position in sparsely deployed
APs [6].

Wi-Fi positioning approaches have been investigated over
the last two decades and offer an average accuracy of 4 to
6 m [7], [8]. However, several challenges of Wi-Fi posi-
tioning remain unresolved and require further investiga-
tion. For example, the propagation losses of wireless prop-
agation cause a substantial change in the received signal
strength (RSS) and the performance of the fingerprinting
approaches is severely affected [9], [10]. Similarly, signal
absorption and shading, multipath shadowing, and dynamic
environments involving human mobility such as airports, and
shopping malls cause signal fluctuation and introduce high
positioning errors. Heterogeneity of hardware and antenna
design from various vendors and signal absorption by the
human body are also reported to influence the RSS value and
degrade positioning performance [11], [12].

Magnetic field-based positioning has emerged as a poten-
tial solution for indoor positioning due to its ubiquity,
simplicity, and offered positioning accuracy. Despite being
smooth outdoor, the magnetic field data is disturbed by the
ferromagnetic materials present in the construction material
and indoor infrastructure that leads to magnetic disturbances
also called anomalies. Such anomalies are reported to have
unique distribution in the indoor and can be leveraged to
identify various locations [13]. Smartphone embeddedmicro-
electromechanical system (MEMS) magnetometer measures

such anomalies which can be used as fingerprints. Although
magnetic field-based positioning is simple to adapt and an
effective technique for indoor positioning, it has several limi-
tations [14]. For example, smartphone heterogeneity leads to
different positioning results even with the same positioning
algorithms. Smartphone companies use the embedded mag-
netometers from various manufacturers with different noise
tolerance levels and precision which shows the difference in
the measured data. Similarly, the impact of different orien-
tations of the smartphone is not studied very well for such
approaches. However, it offers several supportive features
to enhance the Wi-Fi positioning performance. For exam-
ple, the magnetic field data tend to show long-term stability
than Wi-Fi data. Similarly, dynamic environments involving
human mobility have less influence on the magnetic field
data.

Wi-Fi and magnetic field data offer complementary fea-
tures that can help to enhance the positioning performance
of hybrid systems. However, lack of the publicly available
datasets containing both Wi-Fi and magnetic field data,
makes it very difficult to study such systems. Data collec-
tion is a laborious and time-consuming process that requires
experienced users. Already available datasets lack several of
the previously discussed characteristics. Hence, this study
provides a hybrid dataset of Wi-Fi and magnetic field data
and makes the following contributions in essence
• A detailed analysis of the existing datasets has been con-
ducted to analyze their pros and cons. Essential elements
of a hybrid dataset are outlined.

• A large dataset MagWi is presented which contains the
data for Wi-Fi and the magnetic field for indoor posi-
tioning. The data are collected over a long period of
approximately 5 years.

• Beside Wi-Fi and magnetic field, inertial measurement
unit (IMU) data are provided from the accelerometer,
motion sensors, and barometer involving four users both
males and females. Five different buildings are used for
data collection and five smartphones including Galaxy
S8, LG G6, Galaxy A8, LG 7, and Galaxy S9+ are used.

• To study the influence of the dynamic environment,
various scenarios are considered involving low to high
humanmobility at a public exhibition hall where the data
are collected from different smartphones.

• The data collection also involves various orientations of
the smartphone such as navigation, call listening, and
swinging. Apart from the data from multi-floor build-
ing, the data collection environments include stairs in
a multi-floor building, and ‘stairs up’ and ‘stairs down’
events can be tested.

The rest of the paper is organized as follows. Already avail-
able public datasets are discussed and analyzed in Section II.
Important elements of bothWi-Fi and magnetic field datasets
are highlighted in Section III. The description of the data
collection process, path geometry used for data collection,
details of the smartphones and their orientations, and data
collection scenarios are provided in Section IV. Section V
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contains the structure of the dataset including both Wi-Fi
and magnetic field data. The guide on how to use the data
for positioning is described in Section VI along with several
positioning results. In the end, discussions and conclusions
are given in Section VII.

II. RELATED WORK
Despite a large number of proposed approaches and research
papers on indoor positioning and localization involving the
use of the magnetic field and Wi-Fi, publicly available
datasets are not in tandem. The available datasets are ana-
lyzed in the following sections.

A. MAGNETIC FIELD DATASETS
A large number of research papers can be found in literature
during the last few years that focus on using magnetic field
data for indoor positioning. However, the number of publicly
available datasets is only a few. For example, a large dataset
containing the magnetic field data is presented in [15]. Indoor
magnetic field anomalies are recorded using two different
smartphones including Motorola Moto Z Play and Lenovo
Phab 2 Pro. For data collection two platforms are used: a
hand-held smartphone and a wheeled robot-mounted smart-
phone. The data are collected simultaneously at the prede-
fined location points in two different buildings. The data for
various temporary interfering items are collected by placing
an industrial fan, iron cupboard, and a rack of personal com-
puters alongside the path used for data collection.

A dataset called, UJIIndoorLoc-Mag is presented in [16]
that contains the magnetic field data collected in a labora-
tory environment. Consisting of 8 corridors, the area has a
dimension of 260 m2 which is separated by bookcases and
desktop computers. Space is further divided into smaller areas
where the data are collected between starting and ending
points at each 0.1 s. Data collection involves two different
smartphones including Google Nexus 4 and LG G3, both
operating on Android 5.0. Dataset also contains the IMU
sensor data collected while the user is walking at a consistent
speed. Also, multiple users collected the data over a short
period of few days.

B. WI-FI FINGERPRINTING DATASETS
Two public datasets containing the data from Wi-Fi APs
are presented for open areas with no GPS coverage in [17].
First, the dataset is collected from four different users in a
busy open area called Bush Court in Murdoch University,
while the second dataset contains auto-generated records
from Wi-Fi APs received from users’ devices. Four smart-
phones are used for the data collection so that the impact of
smartphone heterogeneity can be investigated. PRIMO GH7I
with Android 8.1, Oppo F1 Plus with Android 6.0, and LG
G6 and Samsung S8 both operating on Android 7.0 are used
for data collection.

A Wi-Fi RSS dataset is presented in [18] to analyze the
fluctuations in RSS over a longer period. A trained pro-
fessional collected the data spanning over 15 months on

pre-defined location points. Various datasets are provided
for each month containing both training and testing data
separately. Data collection is done using Samsung Galaxy
S3 in an indoor building with several floors.

Similarly, the authors present a Wi-Fi dataset called
UTSIndoorLoc for indoor positioning in [19]. The dataset
contains Wi-Fi fingerprints from a 16 story building of
the University of Technology, Sydney. Covering an area of
approximately 44,000 m2, a total of 1,840 sample points are
provided in the dataset. It provides approximately 9,107 train-
ing samples and 387 test samples from 589 different
Wi-Fi APs.

Data collection forWi-Fi or magnetic field fingerprints is a
labor-intensive task that requires a substantial amount of time
by expert users. An alternative strategy is to involve multiple
non-professional users through an approach called crowd-
sourcing. In crowdsourcing, the data from multiple users are
collected which are later combined into one database after
necessary preprocessing and data cleansing. Following a sim-
ilar procedure, a crowdsourced Wi-Fi fingerprinting dataset
is provided by [20]. The data are collected in a five-floor
university building with a footprint of 208 × 108 m2. Eight
volunteers participated in the data collection process with
21 android devices. The data are collected along with differ-
ent directions, and the details of how the data are joined from
8 users are not provided.

C. HYBRID DATASETS FOR WI-FI AND MAGNETIC FIELD
Due to the complementary features of Wi-F- and magnetic
field data, several hybrid datasets have been presented over
the last few years that comprise both the Wi-Fi and magnetic
field data for indoor positioning.

A public dataset is introduced in [21] that contains the
magnetic field and Wi-Fi data. Sony Xperia M2 and LG
W110G Watch R is used for the data collection in an indoor
space comprising offices, corridors, and connected corridors.
Additionally, the data from IMU sensors are included as well
such as accelerometer and gyroscope. The data from the
smartwatch helps to analyze user’s various orientations and
their impact on the data. The covered area is large and the
path trajectory is complex involving several turns in different
directions. Besides, the Wi-Fi and IMU data can be used to
enhance the positioning accuracy when used with the mag-
netic field data.

A hybrid dataset is provided in [22] where the data are
collected using several technologies to enhance the accuracy
of the indoor positioning. The dataset contains the data for the
Wi-Fi, Bluetooth, and magnetic field, and Samsung Galaxy
Young GT-S5360 operating on Android 4.4.4 is used for data
collection. Thirty Wi-Fi APs and 9 Bluetooth devices are
installed in an indoor area of 465.75 m2 for data collection.
The data are collected using a client-server architecture where
the smartphone has a lightweight client application for data
collection while the storage is on the server-side. The ground
truth points for the data collection are marked by manually

77978 VOLUME 9, 2021



I. Ashraf et al.: MagWi: Benchmark Dataset for Long Term Magnetic Field and Wi-Fi Data

calculating the distance. Besides, the data collection environ-
ment is a multi-level building.

A Wi-Fi and magnetic field dataset is presented in [23]
to evaluate hybrid positioning approaches using Wi-Fi and
the magnetic field data. IMU data are also incorporated for
providing the heading direction and orientation information
of the user. The data are collected following two different
directions in corridors and intersections. A single smartphone
Google Nexus 4 operating on Android 5.0.1 is used for data
collection. Data collection time spans over 6 months to study
the time-related mutation of the magnetic field and Wi-Fi
data.

IPIN2016 tutorial dataset is an alternative to theUJIIndoor-
Loc dataset and uses comparatively smaller indoor scenarios
for positioning [24]. The data are collected in an indoor
corridor, located in the School of Engineering of the Univer-
sity of Alcala, Spain. The dataset contains both training and
testing samples separately comprising 927 and 702 records,
respectively. The data are collected for a total of 168 APs on
manually marked location points in the corridor. AP names,
RSS, basic service set identifier (BSSID), location coordi-
nates, and other important information are provided with the
dataset.

D. LIMITATIONS OF EXISTING DATASETS
Although a large number of separate datasets are publicly
available for Wi-Fi and magnetic field data, as well as, hybrid
datasets for the same, they lack in several aspects. First,
magnetic field datasets often involve using single or at most
two devices which shows their inability to investigate device
heterogeneity. For example, [15] provides the magnetic field
data of two smartphones while [22], [23] provide the data
using only one smartphone. The availability of a large range
of smartphone companies including Samsung, iPhone, LG,
Huawei, and Nokia necessitate a dataset containing the data
from more number of smartphones. Second, the use of fixed
orientation of the smartphone is the predominant way of data
collection for the magnetic field data as large variations are
observed when changing smartphone orientations. None of
the publicly available magnetic field datasets use more than
one orientation for the data collection. For the most part,
the smartphone is held in front of the user’s body to collect
the data where the user is allowed to change the directions
but not the smartphone orientation. Thirdly, for the Wi-Fi
data, the impact of long-term fluctuations in RSS is not
studied very well. Although the data of 15 months is provided
in [18], the data are collected using a single smartphone,
i.e., Galaxy S3. The influence of various smartphones on
RSS fluctuation over time is not covered. Fourthly, Wi-Fi
has been investigated for almost two decades and it provides
a solution for multi-floor indoor positioning, the datasets
do not cover different scenarios for multi-floor environ-
ments. For example, uneven floors pose a great challenge for
multi-floor Wi-Fi positioning, however, none of the available
datasets provide the Wi-Fi data for such environments to test
the Wi-Fi positioning approaches. Last but most important,

dynamic environments with human mobility cause problems
and reduce the positioning performance ofWi-Fi positioning.
Similarly, for magnetic field data, the height of the user,
walking speed of the user, and temporal indoor changes are
important aspects of the positioning which are not covered in
the existing datasets.

III. IMPORTANT ELEMENTS OF INDOOR POSITIONING
DATASETS
Magnetic field and Wi-Fi data have different characteristics
that are regarded as important for indoor positioning. The
characteristics that can influence indoor positioning accuracy
are highlighted here.

A. CHARACTERISTICS OF MAGNETIC FIELD DATA FOR
INDOOR POSITIONING
The magnetic field data can be denoted by two represen-
tations: using magnetic x, y, and z or F , D, and I , where
x, y, and z represent the North, East and vertical values of
the magnetic field while F , D, and I show the total mag-
netic intensity, declination and inclination of the magnetic
field, respectively [25]. The inclination and declination in
the 2nd representations are angles that are very sensitive to
the attitude of the device and conventionally not used for
positioning. The elements in the first representation change
with the orientation of the smartphone and are not very well
studied. Figure 1 shows the magnetic field data for different
orientations of the smartphone including phone in the pocket,
call listening, and phone swinging. Two orientations are con-
sidered for the phone in the pocket mode where the phone
is put in an upside-down position with a camera at the top
and an opposite position with the camera at the bottom. The
objective of these orientations is to show that even a single
orientation can have multiple sub-orientations that affect the
magnetic field data.

Ideally, the navigation mode is used where the user holds
the smartphone in front of his body with the smartphone
LCD facing upward. In this orientation, the y-axis is direct-
ing towards the user’s moving direction. The user moves in
various directions with the smartphone’s fixed orientation.
To increase accuracy and reduce preprocessing the frame of
reference should be always aligned with the global coor-
dinates, however, this is not very practical for real-world
positioning scenarios. Existing datasets are collected with a
fixed orientation and lack the diversity of orientation.

Despite its long-term stability, the magnetic field data is
mutated over time and the world magnetic model is revised
every five years to tackle the mutation [26]. Studies involving
long-termmagnetic field data confirm that themutation of the
magnetic field data is slower than theWi-Fi signals [27]–[30].
Similarly, the materials used in man-made constructions
affect the magnetic field data differently. This effect depends
on the type and quantity of the ferromagnetic materials.
Consequently, the nature of the indoor environment and its
settings like the place of electric doors, elevators, vending
machines, and electric cupboards, etc. interfere with the
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FIGURE 1. The magnetic field data for different orientations, (a) Total magnetic field intensity F , (b) Magnetic x component, (c)
Magnet y component, and (d) Magnetic z component.

magnetic data and offer different distribution of the
magnetic field data. To analyze the performance of
the magnetic field-based indoor positioning approaches,
the dataset should contain data from different types of
buildings.

One of the bigger challenges of magnetic field-based posi-
tioning is to cope with smartphone heterogeneity. In the
majority of the cases, positioning approaches utilize a sin-
gle smartphone for performance evaluation which does not
show the capability of the approach to work seamlessly
with various smartphones. Smartphone heterogeneity poses
two challenges: the attitude of the smartphone magnetometer
and the diversity of the magnetometer. Various smartphone
companies use IMU sensors from different manufacturers
even for the different models of the same product line. The
embedded magnetometers have different levels of sensitivity
and noise tolerance and result in different magnetic field
values even for the same location. Even though the indoor
infrastructure, as well as, human mobility is the same, varia-
tions can easily be observed. A sample for this phenomenon
of the magnetic field data is shown in Figure 2 which shows
the data collected at the same location using four different
smartphones.

The presence of magnetometers from different manufac-
turers and their different models tends to show different
magnetic field data even when the data are collected for the
same location from various smartphones. This leads to dif-
ferent positioning accuracy even while the same positioning
approach is used. Device calibration helps to minimize the
change in the magnetic field readings from the same device
where calibration is achieved by moving the smartphone
making a shape like a digit 8 along three axis [31]. Besides,
offset value [32] and sequential measurements [33] have been
used for the same purpose as well. However, the major-
ity of the existing datasets do not provide the sequential
measurements to test the positioning approaches. Similarly,
the datasets provide the magnetic field data collected from a
single user which is not appropriate to analyze the impact of
the user’s height on the positioning accuracy.

B. IMPORTANT CHARACTERISTICS OF WI-FI DATA FOR
INDOOR POSITIONING
Wi-Fi indoor positioning has been investigated for almost two
decades now, yet it has several challenging and unresolved
problems. For example, the direction of the smartphone at the
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FIGURE 2. Diverse attitude of Galaxy S9+, Galaxy S8, LG G7, and Galaxy A8 smartphones at the same location, (a) Total magnetic
field intensity F , (b) Magnetic x component, (c) Magnet y component, and (d) Magnetic z component.

time of data collection can potentially influence the collected
RSS value. The change in the RSS value may occur because
changing the direction can make a line of sight (LOS) AP to
be a non-line of sight (NLOS) AP. Figure 3 shows the RSS
values collected while the smartphone is placed on the table
and following different directions. It indicates that even when
there is no human mobility and the smartphone is placed on
the table, different scans show different RSS values.

Similar to the data collected from different directions,
the orientation of the smartphone has a substantial impact
on the collected RSS. Since the direction of the smartphone
is changed with the orientation, the RSS value is changed,
even when the user and the position of the user are not
changed. To illustrate this characteristic, Wi-Fi data are col-
lected using three different orientations of the smartphone.
For this purpose, the ‘navigation’, ‘phone in the pocket’, and
‘phone swinging’ modes are used. Figure 4 shows the Wi-Fi
APs that are visible at the location of data collection and
their RSS value. It appears that the collected RSS values
for visible Wi-Fi APs are not the same for all orientations.
Even though the same smartphone is used to collect the data
for the same indoor location, the RSS value varies from one

orientation to another. The data are collected over a short
period of 10 minutes, so the RSS values are not influenced
by time. Moreover, AP-7 is not visible in ‘phone swinging’
orientation and assigned an RSS value of −1 for illustration.
Wi-Fi data are collected at a sampling rate of 1 Hz. The
frequency of independent scans of the Wi-Fi environment
depends on hardware response so it varies from mobile to
mobile. Latest mobile devices like Samsung Note 9 scans
WiFi signal at less than 1Hz, whereas earlier mobile take
2 to 3 seconds and sometimes even more due to the hardware
response to the mobile OS. However, it is also seen that multi-
ple same scans are returned by the mobile within a particular
scan frequency so in that case the time stamp associated with
each scan helps to avoid repetitive RSS values. A threshold is
defined as that if the time difference between two consecutive
scans is less than 1Hz andRSS difference is zero that scanwill
be ignored.

Apart from the impact of smartphone orientations, a large
range of smartphone models influences the collected RSS
value significantly. Wi-Fi hardware and software configura-
tions of different smartphones lead to RSS fluctuations. Sim-
ilarly, the antenna design found in different smartphones also
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FIGURE 3. Visible APs with received signal strength from Galaxy S8 smartphone, (a) Smartphone direction to North, (b) Smartphone directing to
West, (c) Directing towards East, and (d) Towards South direction. ‘WINLab’ AP is placed in the West direction from the place of data collection using
WiFi Analyzer application [34].

FIGURE 4. Visible Wi-Fi access points and their RSS values. RSS values are
shown positive for better illustration. A value of −1 indicates that the AP
is not found during the scanning.

affects the RSS value [11]. The impact of various chipsets
installed in a smartphone is analyzed in [12] which states
that different chipsets in heterogeneous models affect the per-
formance of Wi-Fi positioning. In addition to the RSS fluc-
tuation, the number of detected APs may be different when
different smartphones are used for scanning. To corroborate
these findings, Wi-Fi data are collected using four different
smartphones including Galaxy S8, Galaxy S9+, LG G7, and
Galaxy A8.

Figure 5 shows the RSS values of 10 Wi-Fi APs with good
RSS values using Galaxy S8 smartphones. The APs found in
the S8 scan are searched in the scans from other smartphones
and their associated RSS values are recorded if the AP is
found, otherwise, an RSS of −1 is assigned to the missing
AP. For better illustration in the bar graph, RSS values are
displayed as +ve quantities. Figure 5 indicates that the RSS

values are not the same for all the smartphones used to collect
the data. Moreover, one AP from the Galaxy A8 scan is
missing in the LG G7 scan while three APs are missing in the
Galaxy S9+ scans. Studies indicate that the RSS values are
influenced by the change in the smartphones, our experiments
confirm these findings [35], [36]. Owing to the impact of
device heterogeneity, the Wi-Fi dataset should contain the
Wi-Fi data from several different smartphones to analyze
the performance of the state-of-the-art indoor positioning
approaches. However, the majority of the existing datasets
contain the data from a single smartphone and do not fulfill
the requirement of device heterogeneity.

One of the most important issues of Wi-Fi positioning
is the influence of dynamic indoor environments such as a
change in the indoor infrastructure due to placing or removing
furniture or cupboards. Even the doors opening and closing
lead to RSS fluctuations which cause positioning degradation
[37], [38]. Human mobility has a strong impact on the col-
lected RSS value. For example, Wi-Fi data collected with
user standing is less noisy than the data collected while walk-
ing [39]. The human body is reported to influence the propa-
gation of wireless signals and fluctuation in RSS value [40].
The fluctuation in the RSS values has a strong relationship
with the distance of the human body from APs, as well
as, the number of humans present in that environment [41].
Because of these findings, an important characteristic of the
Wi-Fi dataset is to consider several indoor environments with
different levels of human mobility so that the performance
of the Wi-Fi positioning approaches can be evaluated exten-
sively. Existing publicly available Wi-Fi datasets do not pro-
vide the data for indoor dynamic conditions and traditionally
the data are collected inside university campuses that do not
involve substantial human activity. So, it is highly desirable
to collect the Wi-Fi data at a public indoor place like an
exhibition hall where human mobility of various levels can
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FIGURE 5. Wi-Fi APs and the RSS values using different smartphones. A value of −1 indicates that the AP is not found in the scan. RSS
value is shown +ve for better illustration.

TABLE 1. A brief overview of existing publicly available datasets.

be recorded. The dimensions (area) of the place used for
data collection are also significant, as the positioning in small
indoor areas tends to show higher positioning performance.

Environmental dynamics is another point to be considered
for Wi-Fi data as RSS-based Wi-Fi positioning is vulnera-
ble to various weather conditions. Different weather condi-
tions are reported to introduce attenuation for wireless signal
propagation which affects the positioning performance [42].
Change in the temperature is also associated with the change
in the measured RSS value which creates problems for
fingerprint-based Wi-Fi solutions [43]. The data collected in
the winter and summer will help to investigate the influence
of both temperature and time. Wi-Fi signals are depleted over
time and the positioning performance is high if the training
and test data are collected over a short duration. The higher
the gap between the training and test data is, the higher
the chances are that the positioning performance will be
poor [44], [45]. A brief comparison of existing datasets is
provided in Table 1 considering the above-discussed ele-
ments of the magnetic field andWi-Fi data concerning indoor
positioning.

IV. DATA COLLECTION PROCESS FOR HYBRID DATASET
Multiple smartphones are used to collect the data from several
different buildings involving multiple users to overcome the
limitations of the existing datasets. Similarly, the data are

collected with various orientations so that the analysis of the
impact of orientation can be done using the dataset. Data
collection is carried out during different times of each year,
however, most of the data are collected from October to
December and June to August at least once every year.

A. DATA COLLECTION USING HETERGOENEOUS
SMARTPHONES
Since smartphone heterogeneity is one of the major problems
for both Wi-Fi and magnetic field data, several smartphones
from different companies are used to collect the data. Five
smartphones are used for this purpose, which has different
software and hardware specifications, as shown in Table 2.
Specifications of the smartphones are given because the ven-
dors, as well as, the models of various sensors from the same
vendor are different.

B. USE OF DIFFERENT ORIENTATIONS FOR DATA
COLLECTION
Owing to the influence of smartphone orientation on the
magnetic field and Wi-Fi data, the data are collected using
multiple orientations so that its impact on the positioning
accuracy can be studied. For this purpose, this study considers
the three most commonly used orientations of the smartphone
including ‘navigation’, ‘call listening’, and ‘phone swinging’.
Navigation is widely used where the phone is held in the hand
in front of the user’s body approximately at navel height.
The user moves in different directions but does not change
the orientation of the smartphone. An illustration of this
orientation is given in Figure 6.

Call listening is yet another common orientation used by
phone users. In this orientation, the smartphone is placed
beside the year facing upside down direction with the camera
at the top of the smartphone. The screen of the smartphone
is facing the user’s face and the phone is tilted approxi-
mately 45 degrees clockwise. Although this orientation is
not frequently used with magnetic field-based positioning,
it is quite helpful to formulate positioning approaches for
real-world situations. The details for magnetic field x, y, and
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TABLE 2. Names and descriptions of smartphone sensors used to collect the magnetic field data.

FIGURE 6. Illustration of the navigation orientation of the smartphone.

z axis are provided in Figure 7. The angle of the smartphone
is an approximation and may change with different users
depending on their style of attending the phone call.

The third orientation considered for data collection is the
phone swinging in the hand of the user while walking. It may
also involve data collectionwhile the user is standing however
the orientation of the smartphone is the same. This orientation
is complex than those of navigation and call listening and not
used frequently for the magnetic field data or Wi-Fi-based
positioning because the generated data contains noise and
positioning performance is affected. Figure 8 shows the mag-
netic field axes for this orientation. As shown in the figure,
there is a movement window for this orientation, so when the

FIGURE 7. Call listening orientation of the smartphone with magnetic
field axes.

phone is swung the generated magnetic field data changes
with it. It makes the data preprocessing difficult and affects
the performance of the positioning accuracy. The purpose of
this orientation is to provide the data so that more complex
real-life scenarios can be tested for positioning. The selected
orientations are used when collecting the data from different
smartphones.

C. PATH TRAJECTORY AND SPATIAL DIVERSITY USED FOR
DATA COLLECTION
Path trajectory is an important aspect to collect magnetic field
and Wi-Fi data. So, different path trajectories are defined
involving both simple straight paths, as well as, complex

77984 VOLUME 9, 2021



I. Ashraf et al.: MagWi: Benchmark Dataset for Long Term Magnetic Field and Wi-Fi Data

FIGURE 8. Axes of the smartphone for phone swinging orientation.

paths involving multiple turns in all directions. In addi-
tion, different buildings are used to collect the data wherein
each building has different data collection scenarios. Also,
the dimension of each building concerning the available area
for positioning is different. Depending on the path length
used, data collection time varies from one building to another.
However, for static data collection where the user needs to
collect the data while standing at each ground truth location
point, approximately 25 to 30 min are required for the longest
path while the shortest path needs 15 to 18 min. For con-
tinuous data collection where the user has to walk along a
dedicated path, the longest path is covered in 2 to 2.5 min
while the shortest path needs a 1.5 to 2 min walk. The data
for longer periods are collected from a single user (User
2) using Galaxy S8 and LG G6 especially. For the most part,
the data collection time is 25 to 45 minutes and the time of
the day varies for different data collection campaigns. Fol-
lowing the norms of the datasets, the collected data are trans-
formed into a standard format where the original SSIDs and
BSSIDs are replaced. For SSIDs, wireless access points (e.g.,
WAP123) are used while original BSSIDs are changed with
randomly generated unique BSSIDs of the same format and
length.

This study selected five buildings with different indoor
infrastructure and different deployments of Wi-Fi APs. Sim-
ilarly, the number of available Wi-Fi APs is also different.
Five buildings include information technology (IT), computer
science (CS), electrical engineering (EE), regional innovation
center (RIC), and business & economics (BE) department
building. For each building, the path followed for data collec-
tion is different concerning the space available for position-
ing. Figures 9a, 9b, and 9c show the paths followed for IT
building scenarios 1 and 2 and CS building, respectively. The
green and yellow circles on the map indicate the starting and

ending points of the data collection, respectively, while the
arrows indicate the walking direction of the data collectors.
The data are collected at manually marked location points
located in a grid form.

The Wi-Fi data can be collected at 2 to 5 m to reduce the
data collection time, however, this study considers the data
collection at high resolution and selects a distance of 1 m
for data collection. The same procedure is followed in other
buildings as shown in Figure 10. The purpose of following
multiple scenarios is to provide the data for both simple
and complex paths involving multiple turns so that the per-
formance of the state-of-the-art positioning approaches can
be evaluated. Similarly, the data collection buildings have
different sizes, indoor settings, and Wi-Fi APs which makes
it easier to analyze the influence of these factors on the
positioning performance.

One major challenge for Wi-Fi-based floor identification
schemes is the uneven structure of floors in some buildings
which includes ramps or a few steps on a floor. In such
structures, the floor is not changed, however, due to the up
and down level of the floor, the performance of the floor
identification approaches is affected. Unfortunately, existing
Wi-Fi datasets do no provide the Wi-Fi data for such floor
structures and the performance of the floor identification
algorithm cannot be determined appropriately. This study
collects the data for uneven floor structure from BE building,
as shown in Figure 11.

Figure 11a shows the followed path for data collection
in BE building. The path is subdivided into two sub-paths
for better presentation and indicated as path 1 and path
2 and shown as magenta and blue circles, respectively,
in Figure 11a. Path 1 contains two descending stairs contain-
ing 8 steps each where the height of each step is 13.30 cm.
On the other hand, path 2 has three ascending stairs with 8, 5,
and 8 steps, respectively. The surveyor starts from path 1 and
follows through path 2 till the end. Path 1 and path 2 are
used to explain the path geometry; for the data collection,
both paths are connected. Lines of the same color, shown
in Figure 11b for the two paths indicate that they have the
same height. For example, the end of path 1 and the start of
path 2 which are shown in red color, has the same height.
The data are collected at manually labeled points which are
separated by 1 m. The data are collected on the 2nd floor of
the BE building with very little human mobility.

Predominantly, the Wi-Fi benchmark datasets do not con-
tain multi-floor data and the floor identification schemes
cannot be tested. To overcome this limitation, this study
considers the data collection on multiple floors of a building.
It explicitly involves the data from 3-floor buildingswhere the
data are collected for both Wi-Fi and magnetic field. Also,
the data are collected on the stairs which helps to test the
performance of stairs-related events such as ‘stairs up’, ‘stairs
down’, and floor change, etc. Figure 12 shows the structure of
stairs used for the data collection. For stairs events, the data
are collected in both directions, i.e., starting from the 3rd floor
to the 1st floor and vice versa.
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FIGURE 9. Paths used for data collection, (a) IT building scenario 1, (b) IT building scenario 2, and (c) CS engineering. Arrows on the
maps shows the walking direction of the surveyor.

D. DATA COLLECTION FOR DIFFERENT LEVELS OF HUMAN
MOBILITY
Human mobility has a significant influence on the change
in the RSS values and affects the performance of Wi-Fi
fingerprinting systems. Existing Wi-Fi benchmarks do not
provide human mobility information for the provided data.
This study considers a public exhibition hall called Starfield
COnvention and EXhibition (COEX) center situated in the
Gangnam area of Seoul, Korea. The data are collected in
a large exhibition hall with the dimension 108 × 106 m2.
Data collection for various human mobility conditions are
considered in the light of the reported results in the literature

which states that the human body changes the RSS value [52],
obstructs the signal and causes RSS variation [53] and the
higher number of people’s presence leads to large positioning
errors than the absence of people [11], [54].

Two human mobility conditions are considered for the data
collection
• Medium human mobility involving approximately 50 to
350 people present at the time of the data collection.

• High human mobility when more than 350 people are
present in the hall.

The data are collected during an exhibition in progress
where different stalls from various companies are installed
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FIGURE 10. Paths trajectories followed for data collection, (a) EE building scenario 1, (b) EE building scenario 2, (c) RIC building
scenario 1, and (d) RIC buildings scenario 2.

in the hall. Consequently, the hall is divided into multiple
corridors and open spaces. However, there are no concrete
walls in the hall, although, few concrete pillars are there.
Due to the large size of the hall, the data collection points
are separated by 2 m. Data collection involves Wi-Fi and
magnetic field data at 228 points in the hall. An illustration of

the data collection points and the view of the exhibition stalls
are given in Figure 13.

V. STRUCTURE OF THE MagWi DATASET
MagWi is a hybrid dataset providing both the Wi-Fi and the
magnetic field data. The dataset aims to accelerate the indoor
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FIGURE 11. Data collection scenario for BE building, (a) Path followed for data collection, and (b) Details for the path and stairs.

FIGURE 12. Structure of 3 floor stairs used for data collection.

FIGURE 13. Data collection points in COEX exhibition hall.

positioning research using sensor fusion and is publicly avail-
able from the ‘IEEE Data Port’ at link1 with the digital object
identifier (DOI) https://dx.doi.org/10.21227/7g9v-6z48.

1https://ieee-dataport.org/open-access/magwi-benchmark-dataset-long-
term-magnetic-field-and-wi-fi-data-involving-heterogeneous

The dataset contains both themagnetic field andWi-Fi data
which are stored in separate folders. The data are collected
for Wi-Fi and magnetic field on the same location points
which indicates that the data in different folders correspond
to the same locations for different scenarios and users. The
hierarchical structure of the dataset is shown in Figure 14. The
MagWi contains two subfolders, one each for the magnetic
field andWi-Fi data, respectively. For the magnetic field data,
two types of data are collected: continuous data and static
data. The latter is collected at specified location points while
the surveyors stand still at manually marked location points
which are at a distance of 1 m from each other. The static
data are collected 125 to 150 data samples at the sampling
rate of 10 Hz. On the other hand, the former involves the data
collection while the surveyor walks along the chosen path
with a consistent speed between the starting and ending points
as indicated on maps given in Figures 9 to 11. The sampling
rate for continuous data is also 10 Hz. The former can be used
to make the training data/fingerprint database while the latter
aims at providing the data for various walking speeds of users.
The data for the former category can be resampled depending
upon the walking speed of the user.

Apart from two types of data for the magnetic field, the rest
of the structure is the same for both Wi-Fi and magnetic
field datasets. Figure 15 shows the structure of the magnetic
field data under MagWi. The folder and subfolder structure
are the same for static and continuous magnetic field data,
as well as, theWi-Fi data. The data for five selected buildings
are stored in separate folders for magnetic field and Wi-Fi
data, followed by the folders for three different orientation
styles. Besides ‘call listening’, ‘swinging’, and ‘navigation’,
the data for stairs are stored separately. The data for stairs is
gathered only for the IT building and contains the data for
three-floor stairs including both ‘stairs down’ and ‘stairs up’
events where ‘stairs down’ even refers to the user walking
from 3rd to 1st floor and vice versa for ‘stairs up’ event.

Three scenarios are followed for each orientation where
each scenario follows a different path geometry, as well as,
starting and ending points. Five smartphones are used for data
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FIGURE 14. Folder and subfolder structure of MagWi dataset.

collection including A8, S8, and S9+ from Samsung Galaxy
while G6 and G7 from LG. As mentioned previously, four
users participate in the data collection process and the data
for each user is stored separately. In the end, for each user,
the data are stored as Excel files with ‘.xlsx’ extension for
small data size and easy processing. The following format
is used to name the files, ‘‘IMU_IT Engineering_Scenario
1_User 2 (M-174cm)_Navigation_2018.02.20 120647.xlsx’’.

where
• IMU - indicates the inertial measurement unit data con-
taining the magnetic field, accelerometer, gyroscope,
and barometer sensor data.

• IT Engineering - the name of the building for data col-
lection.

• Scenario 1 - shows the scenario followed for data collec-
tion.

• User 2 (M-174cm) - the user who collected the data, ‘M’
refers to ‘male’ while 174 cm is the height of the user.

• 2018.02.20 120647 - shows the time stamp in
‘yyyy.mm.dd’ format followed by the time in
‘hh.mm.ss’ format.

The same format is used for magnetic field and Wi-Fi file
names except for the initial name where ‘IMU’ is replaced
with ‘WiFi’ for the Wi-Fi data, as in ‘‘WiFi_CS Engineer-
ing_Scenario 2_User 2 (M-174cm)_Navigation_2021.08.12
170502.xlsx’’. Figure 16 shows the snapshot of the Excel
sheet for the magnetic field data.

A. DETAILS OF WI-FI DATA RECORDS
Excel sheet for the Wi-Fi data contains 6 columns and the
detail of each column is as follows.

1© ‘Time’ indicates the date and time when the data are
collected using the format ‘yyyy.mm.dd hh.mm.ss’.

2© ‘X_pos’ shows the x coordinate of the location point
where the data are collected.

3© ‘Y_pos’ shows the y coordinate of the location point.
Both x and y coordinates are local coordinates and assigned

with respect to the maps shown in Figures 11 to 12, where the
top left corner indicates (1,1) for x, and y.

4© ‘SSID’ refers to the service set identifier to show the
name of the Wi-Fi AP.

5© ‘BSSID’ refers to basic service set identifier which
shows the unique address of a Wi-Fi AP. SSID may be the
same for several APs, but each AP has a unique BSSID. For
security, the original SSID and BSSID have been replaced.

6© ‘RSS’ shows the received signal strength for a particular
Wi-Fi AP. In the dataset, the Wi-Fi records are sorted for the
RSS value from highest to lowest.

B. DETAILS OF MAGNETIC FIELD DATA
Magnetic field data has 16 columns and contains the
accelerometer, gyroscope, and barometer data, in addition to
the magnetic field data.

1© ‘Time’ shows the time stampwhen the data are collected
and stores the time stamp in ‘yyyy.mm.dd hh.mm.ss’ format.

2© ‘X_pos’ refers to the local x coordinate of the location
point where the data are collected.

3© ‘Y_pos’ refers to the local y coordinate of the location
point. The x and y coordinates in the magnetic field file are
available only for the static data where the data are collected
while standing at a particular point. On the other hand, for
the continuous data, since the user collects the data while
walking, these coordinates are not recorded.

4©, 5©, 6© ‘Mag_x’, and ‘Mag_y’, ‘Mag_z’ represent the
magnetic field x, y, and z components, respectively and indi-
cates the North, West and vertical component of the magnetic
field. Using x, y, and z, total magnetic field intensity can be
calculated using

F =
√
Mag2x +Mag2y +Mag2z (1)

7©, 8©, 9© ‘Acc_x’, and ‘Acc_y’, ‘Acc_z’ represent the data
for smartphone accelerometer and show acceleration of x, y,
and z components, respectively. Total acceleration in m/s2

can be calculated using

A =
√
Acc2x + Acc2y + Acc2z (2)

10©, 11©, 12© ‘Gyro_x’, and ‘Gyro_y’, ‘Gyro_z’ refer to the
data from the gyroscope of the smartphone. The values are
given for gyroscope x, y, and z components, respectively and
the measuring unit is radian/s.

13©, 14©, 15© ‘Orn_x’, and ‘Orn_y’, ‘Orn_z’ shows the data
for smartphone current orientation with x, y and z axes. Both
static and continuous data record the orientation to track the
orientation of the user smartphone. For the static data, it is
used to find the user’s phone orientation for data collection.
On the other hand, for a continuous walk, it is used to track the
user’s orientation, as well as, the direction where the user is
headed. The values for ‘Gyro’ and ‘Orn’ are different because
they represent different items; the former refers to the data
from the gyroscope while the latter is obtained using the
rotation matrix, accelerometer data, and the magnetic field
data at a particular location.
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FIGURE 15. Structure of magnetic field and Wi-Fi data under MagWi dataset.

FIGURE 16. Detail of excel sheet for Wi-Fi data.

16© ‘Pressure’ shows the data for the atmospheric pressure
received for the barometer of the smartphone. The data for the
barometer is represented in hecto Pascal (hPa) and is equal to
the millibar pressure unit.

VI. USING MAGWI FOR INDOOR POSITIONING
MagWi dataset contains the data from the magnetic field
sensor, Wi-Fi, and IMU sensors. The data from such sensors
is collected to be used for sensor fusion to enhance the posi-
tioning accuracy of indoor positioning approaches. Several
experiments are performed to show the use of the MagWi
hybrid dataset.

Initially, the positioning performance of the magnetic field
data and Wi-Fi data is analyzed separately. For this purpose,
the fingerprinting approach is utilized where a fingerprinting
database is built for both the magnetic field and Wi-Fi data
separately. Let xi and yi be the x and y coordinates for a given
ground truth location point, the magnetic field fingerprint
for that location is given as {magxi ,magyi ,magzi}. Where
magx , magy, and magz represents the normalized values for
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FIGURE 17. Details of the magnetic field data records.

FIGURE 18. Positioning results using the magnetic field data alone and
magnetic field data with IMU sensors.

magnetic field components. During the data collection,
the magnetic field values are collected at a sampling rate
of 10 Hz for 15 to 20 s. During the normalization, the average
value of the collected data is calculated for the magnetic field
data at a given point. This process is repeated for all the
location points of an indoor area intended for positioning. For
the current study, these points are separated by 1 m and points
are marked by measuring the distance manually.

During the testing phase, the user collects the magnetic
field data at an unknown location point and the current

position is estimated by matching it with the pre-built finger-
print database. For matching the user data with the database,
Euclidean distance is used. The position is estimated using
k nearest neighbor (KNN) using k = 7, where the value of
k is empirical. Positioning results using the magnetic field
fingerprinting are shown in Figure 18. Results displayed
in Figure 18 are obtained by running several experiments with
a single user and single smartphone and the total number of
estimated positions is 1130. As finding the optimal value of
k is challenging, several experiments are performed to find
a suitable value of k for increasing the positioning perfor-
mance. A smaller value of k is sensitive to produce high
positioning error while a large value increases the computa-
tion time. For this purpose, experiments are carried out using
k = 3, 5, 7 to analyze the positioning accuracy. Although
conventionally k < 5 is used, in the current case, k = 7
produces good results as compared to both k = 3 and k = 5.
So, the adopted value of k for the current study is 7. For
illustration, results for magnetic field-based positioning using
KNN with k = 3, 5, 7 are shown in Figure 19.
Results are displayed for positioning using the magnetic

field data alone, as well as, the magnetic field and IMU
sensors data. For the second scenario, the data are collected
while the user is walking along the dedicated path. For each
1 s, the data from the magnetic field sensor and IMU sensors
are used for positioning. IMU sensors data are used to deter-
mine users’ state of walking and the direction of walking.
For matching the magnetic field data with the fingerprint
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FIGURE 19. Plot for positioning results with different values of k .

FIGURE 20. Positioning results using the Wi-Fi fingerprinting.

database, a second database is used where a ‘spline’ inter-
polation is used to generate the intermediate magnetic field
data between two location points. In this method, instead of
matching one value of magx , magy, and magz, a sequence
of 10 values is matched which improves the positioning
performance.

For Wi-Fi positioning, a fingerprinting approach similar
to that of magnetic field positioning is adopted. Let xi and
yi be the x and y coordinates for a given ground truth loca-
tion point, Wi-Fi fingerprint for that location can be given
as {(APi1 ,RSSi1 ), (APi2 ,RSSi2 ), . . . , (APin ,RSSin )} where n
represents total number of APs detected during the scan
and RSSi1 indicates the normalized RSS value for AP1 at
(xi, yi). During the scanning time of 15 to 20 scans, approx-
imately 10 scans are carried out for detecting Wi-Fi APs
and RSS values for each AP are normalized to make the
fingerprint database. For positioning, the KNN approach with
k = 7 is followed using the Euclidean distance measure.
Results for Wi-Fi fingerprinting-based positioning are shown
in Figure 20.

Results indicate that the positioning with the Wi-Fi data is
superior to that of the magnetic field data. The primary reason
for the higher performance of Wi-Fi is the uniqueness of

Wi-Fi fingerprints. The distribution of Wi-Fi signals is more
unique than that of the magnetic field data. The magnetic
field data distribution depends on the internal structure of a
building which interferes with the earth’s natural magnetic
field and causes anomalies. Often, the magnetic field data
fingerprints may be the same or very similar at different loca-
tions, especially in large indoor areas. Consequently, while
using alone, the positioning accuracy of the magnetic field
data is inferior to that of the Wi-Fi. Secondly, the fingerprint
vector of the magnetic field data contains only magx , magy,
and magz and may repeat for many locations. On the other
hand, at any given location, many APs are visible making the
Wi-Fi fingerprint vector several times larger which ultimately
improves the uniqueness of the Wi-Fi fingerprint.

Due to the complementary nature of Wi-Fi and the mag-
netic field data, they are often combined to achieve better
positioning performance. Several research works used Wi-Fi
data with the magnetic field data to show that positioning
accuracy is improved when magnetic field andWi-Fi data are
used together [55]–[57]. Similarly, the authors in [28] study
the behavior of Wi-Fi and the magnetic field data for indoor
positioning and confirm that Wi-Fi and magnetic field data
are complementary and improve the positioning performance
if used jointly.

To corroborate the findings of these research works,
we performed fingerprinting positioning using Wi-Fi and
magnetic field data. Initially, the Wi-Fi data are utilized to
calculate a coarse position which is later used to restrict the
search space in the magnetic field database. For this purpose,
an extended Kalman filter (EKF) is leveraged for data fusion
from IMU, WiFi, and the magnetic field. The purpose of
these experiments is to show the practical use of MagWi and
the feasibility of using the magnetic field and WiFi together
to enhance the positioning accuracy. Positioning results are
shown in Figure 21. Results prove that using Wi-Fi and the
magnetic field data, positioning accuracy is enhanced sub-
stantially. For example, the mean value for the magnetic field
data and Wi-Fi alone is 34.29 m and 12.86 m, respectively.
However, when used together, the positioning performance is
elevated with a mean value of 4.89 m; the maximum error
is reduced as well. Similarly, when WiFi, magnetic field,
and IMU data are fused, the mean error is further reduced
to 4.31 m. Using the Wi-Fi and the magnetic field data with
fingerprinting gives a positioning error of 10 m for 90%. The
positioning error at 90% is approximately 9 m when IMU
data are used along with the WiFi and magnetic field data.
When used with state-of-the-art approaches, the positioning
performance can be further improved.

VII. DISCUSSION AND CONCLUSION
The wide proliferation of modern smartphones accelerated
the pace of positioning research to meet the needs of
location-based services. Hence, a large number of position-
ing technologies and methods have been proposed to pro-
vide precise location information, both indoors and outdoors.
Unlike the outdoor environment where GPS can be used to
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FIGURE 21. CDF graph for positioning using the Wi-Fi and magnetic field
data.

estimate the accurate position of the user, indoor environ-
ments are complex and pose several extra challenges. Con-
sequently, several indoor positioning technologies have been
adopted like RFID, UWB, Wi-Fi, Bluetooth, and magnetic
field. Contrary to RFID, UWB, and Bluetooth that require
dedicated infrastructure for positioning, Wi-Fi and magnetic
field do not need such infrastructure. Wide deployment of
Wi-Fi APs provides the opportunity to use wireless signals
for positioning while the magnetic field is the latest adoption
of earth’s natural magnetic field for positioning which is
pervasive and does not require additional infrastructure.

Wi-Fi and the magnetic field data exhibit complementary
characteristics and can be used together to overcome the
limitations and enhance indoor positioning accuracy. How-
ever, the lack of publicly available datasets containing both
Wi-Fi andmagnetic field data limits the testing and evaluation
of the state-of-the-art indoor positioning approaches. This
research first discusses the important characteristics of Wi-Fi
and magnetic field data and then designs the strategies to
provide the data that can be used to extensively evaluate the
important aspects of these positioning technologies.

The magnetic field data has shown great potential for
indoor positioning and several important works can be found
in the literature. The earth’s magnetic field experiences dis-
turbances in the indoor environment due to ferromagnetic
materials like iron, nickel, and cobalt, etc. These distur-
bances are also called anomalies as they tend to interrupt
the direction-finding using the magnetic field and studied
for indoor positioning [13]. Due to various indoor settings
of buildings, unique magnetic field anomalies are observed
which can be used for indoor positioning, as well as, identi-
fication of particular buildings [58].

Despite possessing the potential for indoor positioning,
magnetic field-based indoor positioning is still in its infancy
and requires substantial research efforts for its practical
deployment. For this purpose, several characteristics are to
be investigated. For example, its long-term behavior is not
studied very well. Although magnetic field data shows much

lessmutation than that ofWi-Fi, smaller changes are observed
over two years in the magnetic field intensity. To adjust such
changes, the world magnetic model which determines the cal-
culation of the magnetic field value is revised after five years
to adjust for the mutation. Similarly, the magnetic field data
is more tolerant to indoor infrastructural changes. Several
experiments conducted to investigate the impact of furniture,
human mobility, and dynamic environments indicate that the
magnetic field data changes slightly. Similarly, humanmobil-
ity slightly affects the magnetic field data. However, indoor
changes involving the movement of items containing ferro-
magnetic materials like steel trolleys, or similar other objects
influence the magnetic field data and degrades the perfor-
mance of the magnetic field-based positioning approaches.

More challenging aspects of the magnetic field data are
device heterogeneity, user’s complex behavior involvingmul-
tiple smartphone orientations, and its attitude in different
kinds of buildings. Owing to a large number of different
smartphone companies and models, the embedded magne-
tometer poses a huge challenge to devise a positioning frame-
work that can provide similar positioning performance with
all the smartphones. Manufactured from different vendors,
these magnetometers possess different levels of sensitivity
and noise tolerance which leads to different magnetic field
data. MEMS sensors are inexpensive devices with limited
accuracy and the data can easily get noisy and positioning
erroneous. Device calibration can be used to overcome the
change in the data for similar model devices [59], [60]. Sim-
ilarly, the complex behavior of the user like calling, SMS
sending, or phone in pocket, etc. is a huge problem for
magnetic field-based indoor positioning. The magnetic field
data change with the smartphone orientation which requires
the transformation of the data. For transformation, smart-
phone attitude is to be tracked using the accelerometer and
the gyroscope sensor which adds additional complexity. For
fingerprint-based magnetic field positioning, data collection
is laborious and time-consuming. However, it can be reduced
using a crowdsourcing approach where multiple users collect
the data over different times which can be combined into one
database [61]–[63].

Wi-Fi-based indoor positioning is an extensively
researched domain, yet, several challenges remain unre-
solved. For example, the direction of the smartphone, as well
as, the orientation of the smartphone tend to change the
RSS of APs. During this process, LOS APs may become
NLOS which changes their RSS substantially. Smartphone
diversity and antenna specifications are also a problem for
Wi-Fi fingerprinting solutions. A more serious concern for
Wi-Fi-based positioning solutions is the dynamic indoor
environment. Doors opening and closing, temperature varia-
tions due to weather, and movements of the object all have
a large influence on the measured RSS [37], [38], [42].
Human mobility can cause signal shadowing, absorption, and
multipath with Wi-Fi-based positioning systems. Similarly,
indoor infrastructural changes adversely affect the indoor
positioning performance of Wi-Fi-based approaches. Exist-
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ing publicly available datasets do not provide Wi-Fi data to
investigate the above-mentioned issues.

Magnetic field data and Wi-Fi data possess several char-
acteristics that can compensate for the limitations of each
other and be used as a hybrid approach. For example, human
mobility that tends to cause signal shadowing, absorption,
and multipath for Wi-Fi positioning, seem to have almost no
impact on the magnetic field data. In the same way, contrary
to the adversely affected RSS due to indoor infrastructural
changes, the magnetic field data is less/not affected by such
changes. The low discernibility and the low number of ele-
ments of the magnetic field can be complemented by the
Wi-Fi position vector where tens of APs’ RSS values are
available at a given point.

Magnetic field-based indoor positioning is an emerging
paradigm that necessitates research from academia and indus-
try to investigate its shortcomings and explore its potentials.
However, several of its challenges can be eliminated or miti-
gated when used with the wi-Fi data. Due to the unavailability
of publicly available hybrid datasets containing both Wi-Fi
and magnetic field data, such aspects are not investigated
properly. This study provides the dataset in the light of dis-
cussed important characteristics for Wi-Fi and the magnetic
field data. The influence of device heterogeneity, spatial
diversification, smartphone orientation, walking speed, and
time-related mutation, can be studied using the presented
dataset as it is collected using five different smartphones over
almost five years. Similarly, the data collected from dynamic
environments involving public exhibition halls serve to study
the impact of human mobility on both wi-Fi and magnetic
field data. Besides, the data are collected in a multi-floor
environment and from uneven floor structures which is very
helpful to determine the positioning performance of hybrid
systems in multi-story buildings.
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