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ABSTRACT In underwater navigation systems, Global Navigation Satellite System (GNSS) information
cannot be used for navigation. The mainstream method of autonomous underwater vehicles (AUV) under-
water navigation system is Doppler Velocity Log (DVL) aided strapdown inertial navigation system (SINS).
However, because the DVL is an instrument based on Doppler frequency shift to measure velocity, it is
easily affected by the external environment. In a complex underwater environment, DVL output is easily
polluted by outliers or even interrupted. In this paper, A new integrated navigation algorithm based on deep
learning model is proposed to deal with DVL malfunctions. First, use RKF based on Mahalanobis distance
algorithm to eliminate outliers, and then train the Nonlinear AutoRegressive with eXogenous input (NARX)
model when DVL is available. When DVL is interrupted, use the NARX model to predict the output of
DVL and continue integrated navigation. The proposed NARX-RKF scheme’s effectiveness verification was
performed on the data set collected by the SINS/DVL ship-mounted experimental system. For comparison,
different methods are also compared in the experiment. Experimental results show that NARX-RKF can
effectively predict the output of DVL and is significantly better than other methods.

INDEX TERMS Strapdown inertial navigation system, DVL, integrated navigation, deep learning, NARX.

I. INTRODUCTION
High-precision, high-reliability underwater navigation and
positioning technology have vital in autonomous underwater
vehicles (AUV). It is also a critical technology of the under-
water Position, Navigation, and Timing (PNT) system [1].
Underwater navigation and positioning technology are dif-
ferent from land and air navigation and positioning systems.
Because the electromagnetic wave signal attenuates severely
after passing through the water medium, radio navigation
methods such as Global Navigation Satellite System (GNSS)
cannot be used for underwater navigation and positioning.
Therefore, the Strapdown Inertial Navigation System (SINS),
a navigation instrument that does not rely on the outside
world, is the main navigation system of AUV [2]. However,
since the essence of SINS is an integral calculation system
based on Newton’s second law, errors will accumulate over
time. In order to solve the accuracy problem of underwater
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navigation and positioning technology, other underwater
navigation methods are commonly used to assist SINS.
Common auxiliary navigation methods include geophysi-
cal navigation [3]–[5]and acoustic navigation [6]–[8]. The
research on geophysical navigation is still in its infancy
and cannot meet actual needs. On the other hand, under-
water positioning systems combining SINS and underwa-
ter acoustic systems have been extensively studied, such
as integrated navigation system based on doppler velocity
log (DVL) aided SINS [7]. SINS and external observation
navigation information can be fused to improve positioning
accuracy through information fusion technology. Traditional
information fusion has Kalman filter (KF) [9], extended
Kalman filter (EKF) [10] and other variants based on Kalman
filter. However, the DVL is active sonar, so the outputs of
DVL will also be disturbed by the external environment.
The marine environment is very complicated [11], such as
ocean current interference, seabed geological environment,
fish school effects, etc. The complexmarine environment will
cause outliers or even interruptions in the output of DVL [12].
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When the navigation sensor is interrupted, if only measures to
isolate the failed sensor are used, the INS solution error will
accumulate over time, and the navigation accuracy will drop
rapidly. Therefore, research on navigation sensor interrupt
processing methods is of great significance to ensure AUV
navigation accuracy.

There are currently twomain ideas for the strategies used to
deal with the short-term failure or interruption of navigation
sensors: One is to implement replacement when a failure
occurs through hardware redundancy [13]. The other is to
design software redundancy based on mathematical mod-
els and use mathematical models to directly replace filters
to provide correction information or replace failed sensors
to provide measurement information during the interruption
period.

The hardware redundancy method can handle short-term
failures and handle longer-term failures but requires higher
hardware costs and increases the system’s complexity. At the
same time, it is not conducive to the miniaturization of AUV.

Therefore, for sensor failures, software redundancy meth-
ods based on mathematical models are more favored. With
the development of artificial intelligence technology, arti-
ficial neural networks (ANN) [14], support vector regres-
sion (SVR) [15], extreme learning machine (ELM) [16],
wavelet neural networks (WNN) [17], random forest regres-
sion (RFR) [18], ensemble learning [19] and other artifi-
cial intelligence technologies [20] have been verified and
applied in the field of navigation, integrated navigation
errors are suppressed when the observations are rejected. The
research in [20] used the adaptive neuro-fuzzy inference sys-
tem (ANFIS) to predict the attitude error to reduce the slow
convergence of the heading estimation in the traditional initial
alignment Kalman filter. Reference [14] attempts to use ANN
to completely replace geometric algorithms, that is, to use
ANN-based inertial measurement algorithms to directly gen-
erate motion states from IMU data. Although it can funda-
mentally eliminate errors caused by integration, it also loses
the important advantages of inertial navigation: short-term
accuracy and reliability. None of the above studies considered
that the inertial navigation system error is accumulated over
time, so a deep learning model based on time series can be
considered. Recurrent Neural Network (RNN) is a time series
prediction network. Dai et al. [21] used RNN to estimate the
inertial navigation error when GPS refused in ship naviga-
tion. However, most of the ships in this study are in a state
of direct sailing at a constant velocity, so the effect of the
model in other scenarios is unknown. Li et al. [22] used the
Nonlinear AutoRegressive with eXogenous input (NARX)
model to predict the DVL failure navigation output during
the SINS/DVL integrated navigation, but this network only
selected the velocity increment as the network input, which
did not allow the NARX model to learn the SINS error law
well, so the long-term error still increases rapidly when DVL
is interrupted.

In order to overcome the outliers in the observation values,
several robust Kalman filter methods have been suggested in

the literature [23]–[31]. The median-based filter proposed by
Chang and Wu [23] can make KF robust, but because it is
implemented in a block-based batch processing method, its
efficiency is not high and the real-time performance is not
good. Boncelet et al. constructed KF as a linear regression
problem and improved its robustness through M-estimation
estimation [25]. However, since observations containing out-
liers are excluded in this method, the number of other obser-
vations should not be less than the state’s dimension [27].
This has certain limitations in practical applications. Chang
proposed a robust KF method that uses the chi-square test
to detect outliers in observations, which can better eliminate
outliers [28]. we will use this method to make Kalman filter-
ing robust.

This paper focuses on a SINS/DVL integrated navigation
algorithm based on NARX and RKF. RKF based on Maha-
lanobis distance can eliminate outliers’ pollution caused by
the complex underwater environment. Use the output when
the DVL observation is valid to train the NARX model, pre-
dict the output of the DVL when the DVL fails, and perform
integrated navigation. The experimental results show that
the method proposed in this paper can effectively suppress
the pollution of outliers and effectively perform integrated
navigation when DVL fails. Moreover, compared with other
algorithms, this algorithm has better performance.

This paper’s organization structure is as follows:
Section 2 construct the state equation and filtering model
of the integrated navigation system. In Section 3, the robust
Kalman filter based on Mahalanobis distance algorithm
are derived. In Section 4, the integrated navigation model
optimized by deep learning are derived. Section 5 use
ship-mounted experimental data to verify the proposed
method. Finally, Section 6 summarizes the proposed method
and its performance.

II. AUV INTEGRATED NAVIGATION SYSTEM MODEL
The following co-ordinate frames are used in the paper:
denote by n the navigation frame, an orthogonal reference
with east-north-up (ENU) geodetic axes, by n′ the calculating
frame, by i the inertially non-rotating frame, by b the SINS
body frame, by e the earth frame [2].

The framework of SINS/DVL integrated navigation as
shown in Fig. 1 SINS/DVL integrated navigation have two
structures: open-loop and closed-loop [4]. (a) shows the
open-loop integrated navigation structure. SINS solution the
attitude, velocity and position of the carrier in real-time.
Simultaneously, the difference between the velocity mea-
sured by DVL and the velocity calculated by SINS is used to
obtain the measurement of the velocity error, and the velocity
error is filtered by Kalman Filter. The attitude error, veloc-
ity error and position error estimated by Kalman filter are
compensated to the attitude, velocity and position obtained
by SINS to get the result of open-loop integrated navigation.
(b) shows the closed-loop integrated navigation. Unlike the
open-loop integrated navigation, the velocity measured by
DVL and the velocity calculated by SINS is processed by
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FIGURE 1. The structure of SINS/DVL.

Kalman filtering in real-time and compensated to SINS in
real-time so that the attitude, velocity and position output
by SINS are both passed the best estimate result. As shown
in (a), if the DVL velocity needs to be converted from the
b-frame to the velocity under the n-frame, SINS is required
to provide the attitude transfer matrix. In the open-loopmode,
the attitude of SINS is not compensated in time, so the error
of Cn

b provided is relatively large. Therefore, we use the
closed-loop integrated navigation mode.

A. ERROR MODEL OF SINS
Due to underwater vehicles’ low maneuverability require-
ments, it is assumed that the attitude error angle in the naviga-
tion solution process is small (satisfying sin θ ≈ θ ), and the
initial misalignment angle is small. Therefore, establishing a
linear errormodel can still describe the error characteristics of
the SINS more accurately. Establish the linear error equation
of SINS as [2]

Velocity error equation

δV̇
n
= −φn × f n + δVn

×
(
2ωnie + ω

n
en
)

+Vn
×
(
2δωnie + δω

n
en
)
+∇

n (1)

Position error equation

δL̇ =
δVN
R+ h

−
VN

(R+ h)2
δh (2)

δλ̇ =
secL
R+ h

δVE +
VE secL tanL

R+ h
δL−

VE secL

(R+ h)2
δh (3)

Attitude error equation

φ̇
n
= φn × ωnin + δω

n
in − ε

n (4)

where δVn denotes the velocity error, δL denotes the latitude
error, δλ denotes the longitude error, φn denotes the attitude
error angle vector, f n is the representation of the specific force
output by the accelerometer in the n-frame, ωnie is the turn
rate of the Earth expressed in the n-frame, ωnen is the turn
rate of the n-frame with respect to the Earth-fixed frame, the
transport rate.∇n is the projection of the accelerometer biased
in the n-frame,VN is the north velocity,VE is the east velocity,
εn is the projection of gyro drift under the n frame, R is the
radius of the Earth, L is the local latitude and h the height
above ground.

According to the SINS error equations, as mentioned
above, the attitude error, velocity error, position error, gyro
error, and accelerometer error are selected as the state vari-
ables. Since the altitude channel on inertial navigation system
is unstable, and the measurement error of DVL up velocity is
relatively large, we ignore the altitude channel. The altitude
can be accurately measured by the depth gauge. The state
quantity that ignores the altitude channel is selected, as shown
below.

XSINS =
[
δL δλ δVE δVN φE φN . . .

φU εx εy εz ∇x ∇y ∇z
]

(5)

Establish the state equation of SINS system as

ẊSINS = 8SINSXSINS +WSINS (6)

where 8SINS denotes the state transition matrix. WSINS
denotes the system noise, which is the Gaussian white noise.
The definition of 8SINS is described in [7].

B. ERROR MODEL OF DVL
According to the working principle of DVL, themeasurement
errors mainly include velocity offset error δVd , drift angle
error δφ and scale coefficient error δC . δVd and δφ are
expressed by a first-order Markov process, and the corre-
sponding error equation is shown as

δV̇d = −βdδVd + wd
δϕ̇ = −βφδϕ + wφ
δĊ = 0

(7)

where β−1d and β−1φ are the correlation time of the first-order
Markov process of δVd and δφ respectively; wd and wφ are
the Gauss white noise of δVd and δφ respectively, δC is a
random constant.

Select velocity offset error δVd , drift angle error δφ, scale
coefficient error δC as the state quantity, then the DVL state
vector as

XDVL =
[
δVd δϕ δC

]
(8)
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Establish the state equation of the DVL system as

ẊDVL = 8DVLXDVL +WDVL (9)

where state transition matrix 8DVL = diag
(
−βd ,−βφ, 0

)
,

WDVL is the Gauss white noise.

C. MEASUREMENT EQUATIONS OF SINS/DVL
When DVL and SINS perform integrated navigation, the dif-
ference between the velocity ṽnSINS measured by SINS and
the projection of the velocity ṽbDVL measured by DVL on the
n-frame is selected as the observation.

The SINS/DVL measurement equation is shown as

Żv = ṽnSINS − C
n′
b v

b
DVL = ṽnSINS − C

n′
n C

n
bv
b
DVL

= HvX + V v (10)

where Hv is measurement matrix, V v is measurement noise
vector. Under the condition of small linear misalignment
angle, Cn′

n = (I − φ×).
Choose east velocity error δvE and north velocity error δvN

as observations

zv =
[
δvE
δvN

]
=

[
ṽnSINS − (I − φ×)C

n
bv
b
DVL

]
2×3

=

[
ṽnSINS − C

n
bv
b
DVL −

(
Cn
bv
b
DVL

)
× φ

]
2×3

=

[
ṽnSINS − v

n
SINS −

(
Cn
bv
b
DVL

)
× φ

]
2×3

=

[
δvn −

(
Cn
bv
b
DVL

)
× φ

]
2×3

(11)

Substituting Cn′
b for Cn

b can get the measurement matrix
Hv as

Hv =

[
02×2, I2×2,

[
−Cn′

b v
b
DVL×

]
2×3

,02×6

]
(12)

where
[
−Cn′

b v
b
DVL×

]
2×3

denotes the first two rows of matrix[
−Cn′

b v
b
DVL×

]
.

III. ROBUST KALMAN FILTER
A. STANDARD KALMAN FILTER
The discrete random linear model can be described as follows{

Xk = 8k|k−1Xk−1 +W k−1

Zk = HkXk + V k
(13)

where Xk is the state vector, 8k|k−1 is the state transition
matrix, W k−1 is the system process noise, Zk is the obser-
vation vector, Hk is the measurement matrix, V k is the mea-
surement noise vector. The system process noise W k−1 and
the measurement noise V k are independent Gaussian white
noises with time-varying mean, and the covariance is Q and
R respectively.
The Kalman filter process is as follows

X̂k|k−1 = 8k|k−1 X̂k−1 (14)

Pk|k−1 = 8k|k−1Pk−18T
k|k−1 + Q̂k−1 (15)

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + R
)−1

(16)

X̂k = X̂k|k−1 + Kk

(
Zk −Hk X̂k|k−1

)
(17)

Pk = (I − KkHk)Pk|k−1 (18)

B. ROBUST KALMAN FILTER
It can be seen from the update equation (17) of X̂k that when
outliers is received, Zk will be polluted. This will lead to inac-
curate X̂k estimates. To identify the outliers, the Mahalanobis
distance algorithm expression considering the observation
innovation at time k is as follows [28]:

M2
k = (

√
(Zk − Ẑk|k−1 )T (Pee,k|k−1 )−1(Zk − Ẑk|k−1 ))2

= µTk (Pzz,k|k−1 + R)
−1µk (19)

where Mk is the Mahalanobis distance, Pzz,k|k−1 =

HkPk|k−1HT
k , Zk is the value of the observation.

To further realize the robustness of KF, an expansion fac-
tor λk is introduced. When the innovation is abnormal, the
measurement noise covariance is expanded; on the contrary,
when the innovation is normal, λk = 1.
If its Mahalanobis distance satisfies M2

k > χ2
n,α , z̃k

will be marked as an abnormal observation. Simultaneously,
an expansion factor λk is introduced to expand the measure-
ment noise covariance matrix R, namely

R̃k = λkR (20)

Substituting (20) into (19) can get:

ϑk = M2
k = µ

T
k (P̃ ẑk|k−1 )

−1µk

= µTk (Pzz,k|k−1 + R̃k )
−1µk

= µTk (Pzz,k|k−1 + λkR)
−1µk = χ

2
n,α (21)

(21) can be transformed into a nonlinear problem for solv-
ing λk , as shown in (22).

f (λk ) = µTk (Pzz,k|k−1 + λk R̂k )
−1µk − χ

2
n,α (22)

where λk can be solved by the Newton iteration method.
Therefore, the relationship between λk (i + 1) and λk (i) can
be expressed as:

λk (i+ 1) = λk (i)+
ϑk (i)− χ2

n,α

µTk (P̃Ẑk|k−1 (i))
−1R̂k (P̃Ẑk|k−1 (i))

−1µk

(23)

where P̃ ẑk|k−1 (i) = Pzz,k|k−1 + λk (i)R, and the initial
value of λk (i) is λk (0) = 1. When the evaluation index
meets ϑk (i) ≤ χ2

n,α , the iteration is terminated. In this
paper, the probability parameter α is set be 0.99, this to say
the efficiency of robust filtering method is 99%, and the
value of 2-degree-of-freedom Chi-square distribution χ2

2,0.99
is 9.2 [28].
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IV. DEEP LEARNING MODEL
A. RECURRENT NEURAL NETWORK
Recurrent Neural Network (RNN) is a neural network that can
process time-series information. RNNwas first applied to the
field of natural grammar processing, and with the promotion
of deep learning, it was applied to the field of load forecasting
of power systems. The structure consists of an input layer,
a hidden layer, and an output layer in the traditional neural
network model. The hidden layer from the input layer to
the output layer is unidirectional, and the nodes between the
hidden layers are not connected. Normal neural networks usu-
ally cannot be used to process sequence data. The sequence
output by the RNN at the current moment will be associated
with the sequence output at the previous moment; that is,
the network will remember the previous sequence and apply
it to the current sequence. In RNN, the nodes between hidden
layers are no longer unconnected but connected, and the input
of the hidden layer includes the output of the input layer and
the output of the previously hidden layer [32], [33].

There are many types of RNNs. The most basic recurrent
neural network includes an input layer, a hidden layer, and an
output layer, as shown in Fig. 2.

FIGURE 2. The basic structure of RNN.

In Fig. 2. xt is the input vector, which is the value of the
input layer, St is the value of the hidden layer. Wsx is the
weight matrix from the input layer to the hidden layer, Ot
is the value of the output layer. Wos is the weight from the
hidden layer to the output layer matrix. The value s of the
hidden layer of the cyclic neural network depends not only
on the current input x, but also on the value s of the last
hidden layer. The weight matrix Wss is the last value of the
hidden layer as the weight of this input. If the Wss circle is
removed, RNN becomes the most common fully connected
neural network.

B. NARX
Nonlinear AutoRegressive with eXogenous input (NARX)
with external output is another type of neural network suit-
able for nonlinear systems and time series prediction. NARX

FIGURE 3. The basic structure of NARX.

network is a dynamic neural network, which contains mul-
tiple layers of cyclic feedback. Fig. 3 shows the structure of
NARX [34], [35].

According to the Fig. 3, the relationship between the input
sequence x (t) and output sequence y (t) of NARX can be
obtained as shown in the formula

y (t + 1) = f
[
x (t) , · · · , x (t − dx) ; y (t) , · · · , y

(
t − dy

)]
(24)

where dx and dy are input delay and output delay respectively.
Substituting the NARX model parameters into (24) can

get (25).

y (t + 1) = fo

[
bo +

Nh∑
h=1

who · fh

(
bh +

dx∑
i=0

wihx (t − i)

+

dy∑
r=0

wrhy (n− r)

 (25)

where wih, wrh and who are the weights, where i =
1, 2, · · · , dx ; r = 1, 2, · · · , dy; h = 1, 2, · · · ,Nh, fh (·) and
fo (·) are the activation functions of the hidden layer and the
output layer, respectively. bh and bo are the bias of the hidden
unit and output unit respectively.

C. NARX MODEL OF INTEGRATED NAVIGATION SYSTEM
According to the analysis of [21], the navigation parameters
are coupled with each other, and the sensor bias is closely
related to the external environment and motion state. SINS
error changes have specific laws, and the navigation status
error has a strong correlationwith historical information. This
is consistent with the characteristics of the time series fore-
casting model, so we use the time series forecasting model to
predict the output of DVL. The inherent error model of the
inertial device can be obtained by training a neural network.
We propose a prediction model based on the NARX network.
When the DVL output velocity information is normal, the
information obtained by the SINS solution and the DVL
output information can be used to train the model.
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FIGURE 4. The Structure of NARX.

The integrated navigation model optimized by NARX is
shown in Fig. 4. Among them, Fig. 4. (a) is the training
mode of the model when DVL is available. We use a set of
inertial measurement units (IMU) measured inertial data for
a two-channel solution. In other words, the SINS outputs two
sets of independent data through the solution of two inde-
pendent channels. SINS channel 1 is a closed-loop integrated
navigation solution, which uses the velocity measured by
DVL and the navigation information solved by channel 1 to
perform RKF in real-time, and real-time feedback compensa-
tion to channel 1. SINS channel 2 is a pure inertial solution.
After the initial navigation information is given, the solution
depends entirely on the IMU’s inertial data. In the training
mode, the input sequence of the NARX network selects the
attitude increment 1φ, position increment 1p and velocity
increment 1v obtained by the SINS channel 2 solution. The
input sequence is

[
1φk 1pk 1vk

]
. The target sequence of

the NARX network is the velocity under the b-frame output
by DVL. We use Adam optimization algorithm [36] to train
the model.

Fig. 4 (b) shows the prediction mode when DVL is inter-
rupted. The DVL output is predicted through the trained
NARX network. When predicting, the input of NARX is the
attitude increment 1φ, position increment 1p and velocity
increment 1v obtained by SINS channel 2 pure inertia solu-
tion. Since it has been fully trained, the velocity of DVL
output, that is, the AUV’s velocity in the b-frame, can be
predicted by the NARX network. Using the predicted veloc-
ity, RKF can be performed with the velocity obtained by the
closed-loop integrated navigation of SINS channel 1 to obtain
the estimation error and correct the navigation information

TABLE 1. Hyperparameters.

TABLE 2. Instruments and specifications.

obtained by SINS channel 1. At the same time, real-time
feedback to channel 1 navigation information and perform
the next solution.

The hyperparameters used in this model are shown in
TABLE 1.

V. EXPERIMENT STUDYS
The experimental data is collected through a set of the ship-
mounted experimental system, including SINS and DVL, and
a GPS receiver with a single antenna installed. The specifica-
tions of the IMU and DVL used in the experimental system
are shown in Table 2.

Using the velocity and position information received by
the GPS receiver, integrated with the data output by SINS,
can generate reference attitude, velocity and position, which
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FIGURE 5. The output of DVL.

FIGURE 6. Experimental trajectory.

can be used as the benchmark for this experiment. The
ship-mounted experimental was carried out in the Yangtze
River. The experimental process was designed as follows:
when the experimental system is turned on, the experimental
ship remains moored for about 15 minutes; then, the experi-
mental ship sails out and moves for about 6 hours.

A section of 9000s ship-mounted measured data is selected
for the semi-physical simulation experiment verification of
the model proposed in this paper. The selected data includes
the gyroscope and accelerometer’s raw data, the velocity data
output by the DVL, the corresponding attitude reference,
velocity reference and position reference. The velocity data
output byDVL as shown in Fig. 5.When using the data output
by DVL, due to the misalignment angle between the DVL and
the SINS mounting frame, it needs to be corrected. The data
used in this semi-physical simulation experiment has been
corrected.

Perform integrated navigation calculation on SINS and
DVL data of 9000s, and the obtained trajectory is shown as
the green line in Fig. 6. When DVL does not fail, this track
is the normal integrated navigation track. Simultaneously,
the reference trajectory obtained by SINS/GPS integrated
navigation is shown as the red line in Fig. 6.

FIGURE 7. Prediction of vb
DVL.

Use the first 70% of the 9000s ship-mounted measured
data as the training set, fit the model, and adjust the network
weight. The last 30% is used as a test set to evaluate the
model’s generalization ability and confirm the actual predic-
tive ability of the network. In other words, use the first 70%
of the SINS output and DVL output to train the deep learning
model. In the last 30% of the data, the DVL interruption is
simulated, and the DVL output is predicted through the deep
learning model through the SINS output data and integrated
navigation is performed.

The DVL output is shown in Fig. 5, and you can see that
there are multiple outliers with an amplitude of -35m/s. This
shows that DVL is susceptible to outliers when working in
underwater integrated navigation.

We consider two different situations to verify the effective-
ness of the proposed algorithm.

(1) Preprocess the DVL data first, and eliminate the out-
liers of the DVL data. Only assume that the last 30% are
DVL interruptions to verify the NARX predictive model’s
effectiveness.

(2) Do not preprocess the outliers of the DVL data, and
assume that the last 30% are DVL interrupts to verify the
effectiveness of the proposed NARX-RKF.

A. PERFORMANCE COMPARISON WHEN DVL
MALFUNCTIONS
The experimental results of situation 1, as shown in
Figs. 7-12. In this experiment, we eliminate outliers in
advance and only verified the predictive ability of the NARX
model when DVL is interrupted. Fig. 7 shows the DVL output
predicted by the NARX model when the DVL interrupt is
simulated. In the figure, blue is the real velocity of DVL
output. However, at 6301 seconds, we interrupt DVL. That is
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FIGURE 8. Comparison of prediction effect of vn
DVL.

FIGURE 9. Comparison of prediction effect of Yaw.

to say, we assume that data from 6301 seconds to 9000 sec-
onds cannot be obtained through DVL. The red curve is
the DVL output predicted by the NARXmodel. The next step
of integrated navigation can be carried out by the predicted
velocity.

Using the predicted v̂bDVL and the attitude obtained through
the closed-loop integrated navigation, v̂bDVL can be converted
into v̂nDVL . Fig. 8 is the East velocity and North velocity of

FIGURE 10. Prediction of position error relative to SINS/DVL reference
position.

FIGURE 11. Prediction of position error relative to SINS/GPS reference
position.

vn. The green curve is the reference velocity obtained by
using SINS/GPS integrated navigation, and the blue curve is
the velocity obtained by the model proposed in this paper.
The Li-scheme curve is the method proposed in the [22],
we are using the same deep learning model, but the structure
of the integrated navigation algorithm is different, sowemake
a comparison. It can be seen from the figure that the method
proposed in this paper has a higher prediction accuracy for
velocity than the method in [22].

Fig. 9 is the yaw obtained by using the predicted velocity
for integrated navigation solution. It can be seen that the
attitude obtained by the NARX-RKF method is much more
accurate than the method in [22], and it is very close to the
reference value.

In the last 2700s, if the DVL works normally and the
position obtained by the SINS/DVL integrated navigation is
used as the reference value, a comparison can be made. The
position calculated by pure inertia, the position predicted by
the method [22], and the position predicted by NARX-RKF
proposed in this paper are compared with the reference value.
The position error obtained is shown in Fig. 10. In prac-
tice, if the AUV has no position observation, when DVL is
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FIGURE 12. Trajectories obtained by integrated navigation of different methods.

interrupted, only pure inertial calculation can be performed.
The error of pure inertial solution accumulates rapidly over
time, as shown by the red curve in Fig. 10. Using NARX-RKF
to predict the carrier velocity output by DVL and then per-
forming integrated navigation, the error is greatly reduced
compared to the pure inertial solution. Compared with pure
inertial solution, NARX-RKF improves its position accuracy
by 96.27%. Compared with the model in [22], its position
accuracy is improved by 80.70%.

In fact, when there is no position observation, the posi-
tioning error of SINS/DVL integrated navigation cannot be
eliminated, that is, the positioning error of SINS/DVL inte-
grated navigation is not appreciable. We believe that the GPS
accuracy is high enough, the reference position obtained by
SINS/GPS integrated navigation is the real position, and the
position error as shown in the Fig. 11. It can also be seen that
the positioning accuracy of NARX-RKF is greatly improved
compared to the pure inertial solution and the model [22].

Fig. 12. is the trajectory comparison diagram of the exper-
iment, in which the RKF curve represents the integrated
navigation result when the DVL is always normal, and the
Li-scheme is the method proposed in the [22]. It can be seen
from the figure that the trajectory of NARX-RKF is very close
to the reference trajectory. The effect of Li-scheme is worse
than NARX-RKF.

B. DVL POLLUTED BY OUTLIERS AND INTERRUPTION
Due to the complexity of the underwater environment,
we have to consider the outliers pollution when DVL is
affected by complex conditions. In order to prove the neces-
sity of improving the model’s robustness, the DVL output of
the following experiment did not preprocess the outliers, but
only corrected the constant error matrix. This represents the
output of DVL’s real underwater environment.

The experimental results are shown in Figs. 13-15.
Fig. 13 shows the prediction of DVL output using
NARX-RKF.

Two frameworks of NARX-KF andNARX-RKFwere used
for prediction. The structure and parameters of the NARX

FIGURE 13. Prediction of vb
DVL under outlier pollution.

network part of the two frameworks are exactly the same, only
the integrated navigation filter part is different.

Fig. 14 shows the velocity predicted by NARX-KF and
NARX-RKF, respectively. It can be seen from the figure that
the two models have similar velocity prediction capabilities.
It shows that even if the training data is contaminated by
outliers, it has little effect on the prediction results. Shows
that NARX is robust.

Fig. 15. is a comparison diagram of the integrated navi-
gation results. In the figure, the red curve is the reference
position. The KF and RKF curves are the results of normal
navigation using different algorithms when DVL is not inter-
rupted. It can be seen that the KF algorithm without robust-
ness diverges when it is polluted by outliers. The NARX-KF
curve and NARX-RKF curve are the positions obtained by
using NARX to predict the velocity of b-frame and using the
KF and RKF integrated navigation respectively after 6301
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FIGURE 14. The velocity predicted by different methods.

FIGURE 15. Trajectories of different methods.

seconds to simulate the DVL interruption. It can be seen that
the NARX-KF position divergence is more serious due to
outliers. NARX-RKF uses the Mahalanobis distance algo-
rithm to eliminate outliers, so the integrated navigation effect
is better.

Because the neural network initializes parameters with
random numbers, and then continuously learns to modify the

TABLE 3. ARMSE comparison.

parameters of random initialization. In order to verify the
universality of NARX-RKF and prevent the contingency of
a single experiment, we introduce Monte Carlo experiments.
In each Monte Carlo experiment, a quantitative error analysis
is performed on the two models, and the root mean square
error (RMSE) is used as the metric here.

RMSE =

√√√√1
n

n∑
t=1

(
ŷt − yt

)
(26)

Then perform 50 Monte Carlo experiments and calculate
the Average RMSE (ARMSE) of the 50 experiments.

ARMSE =
1
50

50∑
k=1

RMSEk (27)

It can be concluded from the above experimental results
that if NARX-KF is polluted by outliers during the
model training phase, it will have a great impact on the
integrated navigation results. Compared with NARX-KF,
NARX-RKF has stronger robustness and is more suitable
for integrated navigation applications in complex underwater
environments.

VI. CONCUSION
This paper proposes an algorithm for AUV integrated naviga-
tion, called NARX-RKF, to improve the navigation accuracy
of the SINS/DVL integrated navigation system when DVL
is polluted by outliers and DVL is interrupted. NARX-RKF
includes a DVL failure prediction output module based on
NARXmodel and an RKF integrated navigation loop. NARX
can use inertial navigation output information to predict the
output when DVL is interrupted, and use RKF for integrated
navigation. We verify the proposed algorithm’s effectiveness
through the data collected by the ship-mounted experimental
system and through comparison with some related work.
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