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ABSTRACT Distribution network is an essential part of electric power system, which however has higher
power losses than transmission system. Distribution losses directly affect the operational cost of the system.
Therefore, power loss reduction in distribution network is very important for distribution system users
and connected customers. One of the commonly used ways for reducing losses is distribution system
reconfiguration (DSR). In this process, configuration of distribution network changes by opening and closing
sectional and tie switches in order to achieve the lowest level of power losses, while the network has
to maintain its radial configuration and nodal voltage limits, and supply all connected loads. The DSR
aiming loss reduction is a complex mixed-integer optimization problem with a quadratic term of power
losses in the objective function and a set of linear and non-linear constraints. Accordingly, distribution
network researchers have dedicated their efforts to developing efficient models and methodologies in order
to find optimal solutions for loss reduction via DSR. In this paper, an efficient mathematical model for loss
minimization in distribution network reconfiguration considering the system voltage profile is presented. The
model can be solved by commercially available solvers. In the paper, the proposedmodel is applied to several
test systems and real distribution networks showing its high efficiency and effectiveness for distribution
systems reconfiguration.

INDEX TERMS Efficient mathematical model, electric power distribution systems, loss reduction, network
reconfiguration, voltage profile.

I. INTRODUCTION
Active power loss minimization [1] is important for the distri-
bution system efficiency and power quality. Changing distri-
bution system configuration by opening and closing switches,
while the network maintains its radial operation satisfying
all loads is an effective way for loss reduction and voltage
improvement [2], [3].

Distribution system reconfiguration (DSR) can be for-
mulated as a large-scale combinatorial optimization prob-
lem with constraints that can often contain nonlinearities.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chenghong Gu .

The feasible search space in DSR is typically large, noncon-
vex, and hard to explore. Hence, determining good-quality
solutions is always a challenging task. In order to cope with
this issue, distribution system researchers have dedicated
since a long time efforts to developing efficient models and
methodologies for DSR.

DRS was first formulated as a mixed-integer non-linear
optimization problem in 1975 using a branch-and-bound
(B&B) algorithm [4]. Since then, several mathematical mod-
els have been presented, e.g. Civanlar et al. [5] formulated the
DSR as a loss change estimation problem using DC load flow.
However, the accuracy of the proposed model was question-
able because it ignored the reactive current flows. In 1989,
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Shirmohammadi and Hong [6] improved this method to cal-
culate network losses change by applyingAC load flow in [6].
They introduced a heuristic algorithm to minimize the active
losses using Lagrange multipliers [6]. In order to increase
precision and decrease calculation time, Baran and Wu [7]
formulated the resistive losses in quadratic terms of active and
reactive powers using fast radial power flow. This was, how-
ever still time consuming because of the step by step branch
exchange (BE) strategy. One year later, Castro et al. [8] pre-
sented a new estimated model for the DSR problem, in which
switching proposals with negative loss change (those reduced
the power losses after reconfiguration) are selected and ones
with positive change in losses are discarded in an iterative
process. The proposed model was robust, efficient and very
simple, because only the voltage drops at the extremes of
the tie lines and the amount of transferred load were used
for evaluation of the loss change. However, this formulation
cannot be applied to large-scale reconfiguration problems.

In 1992, Nara et al. [9] presented a binary integer program-
ing formulation for the DSR by representing power losses
as quadratic terms of load and branch currents using genetic
algorithm (GA). Nevertheless, implementation of this model
on large-size distribution networks is very difficult.

Later, Chang and Kuo [10] used simplified load flow equa-
tions for the formulation of the DSR problem using simulated
annealing (SA). Although the proposed model reduces the
processing time of loss minimization, it can decrease the
quality of solutions in combinatorial DSR problems.

Lee et al. [11] presented a linear mixed-integer model for
loss minimization in DSR using linearized load flow equa-
tions. Performance indices as ratio of power losses to rated
current of each branch were defined for possible switching
combinations. In this process, a switching proposal with the
lowest performance index is selected for network reconfigu-
ration. Nonetheless, the effectiveness and efficiency of pro-
posed formulation was verified only for small test systems.

In 1995, Peponis et al. [12] presented a new model for
minimization of energy losses via network reconfiguration
and optimal installation of shunt capacitors under different
load models. The proposed loss estimation-based framework
is an efficient and simple reconfiguration model that can
find optimal switching combination using BE. The results
show that method of load formulation affects the solutions
of DSR and capacitor placement problem significantly. How-
ever, BE is a time-consuming heuristic method for network
reconfiguration.

Sarma and Rao [13] introduced a new model for network
reconfiguration, allocating distribution feeders to different
circuits, by representing network losses in terms of circuits’
currents. The status of each bus was defined by binary num-
bers, in which number 1 indicates connection between bus
and related circuit. However, presenting the losses in this
form is not easy for medium and large-sized distribution
systems.

In order to overcome the size restrictions of previously
described reconfiguration models, Sárf et al. [14] presented

a network partitioning theory to solve the DSR problem
in 1996. In this method, the distribution network was divided
into groups of buses and the power losses between these
groups were minimized. The performance of proposed model
was tested on a small-sized distribution network.

Three years later, a discrete ascent optimal program-
ming (DAOP) based model for distribution network
reconfiguration was proposed in [15]. In DAOP, the optimal
configurations with the smallest discrete increase in total
losses are selected by picking up and adding the loads as
incremental steps. However, this method takes more compu-
tational time than other reconfiguration techniques.

In 2001, Kashem et al. [16] presented a geometrical
approach to maximize losses reduction in DSR. In this
method, a circle is allocated to each loop of the network and
a loop with maximum influence on loss reduction is selected
according to its radius. Then possible branch exchanges are
investigated in selected loop by comparing the size of the
circle for every branch exchange. If the power losses are
reduced due to a branch exchange, the size of the circle
diminishes and hence the circle with smallest radius gives
configuration with maximum losses reduction. The geomet-
rical method can reduce the computing time, but determi-
nation of appropriate circles is difficult in large distribution
systems.

One year later, Arun and Aravindhababu [17] proposed an
efficient SA for network reconfiguration, aiming losses min-
imization. Although the proposed algorithm provided better
solutions for DSR compared to SA, its implementation on
large size distribution networks is hard.

In 2003, Su and Lee [18] introduced amixed-integer hybrid
differential evolution (MIHDE) algorithm for DSR formu-
lation. The model was combination of hybrid differential
evolution (HDE) and integer programing. It was proved that
MIHDE has less computational burden than SA, but its appli-
cation to large-scale DSR problems is not easy.

Two years later, Schmidt et al. [19] introduced a new
approach based on Newton power flow method to model the
DSR problem. Increase in power loss of each branch was
estimated by linear and quadratic terms of branch current
using gradient vector and the Hessian matrix. Although, the
approximations used in loss formulation improved the speed
of themethod, theymay prevent the algorithm to find accurate
solutions in large-scale distribution systems.

In order to reduce the number of power flows and sub-
sequent computing time of reconfiguration models, in 2006,
Gomes et al. [20] formulated the DSR as an optimal power
flow (OPF) problem using sensitivity analysis. Using this for-
mulation, Raju and Bijwe [21] presented active power losses
as linear terms of loss sensitivity to the branch impedances
in 2008. The candidate branches for network reconfiguration
were ranked based on their loss sensitivity. In the first stage,
all switches were considered to be closed and the candi-
date ones with minimum loss increase were opened one-by-
one. In the second stage, the best switching proposals were
selected by BE method.
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One year later, Khodr et al. [22] modeled the DSR using
Benders decomposition (BD) in general algebraic model-
ing system (GAMS) [23]. First, possible radial topologies
for network reconfiguration were determined by minimiz-
ing quadratic objective function of losses considering line
flow limits. Then, OPF was run to assess the feasibility of
the obtained solutions. Although the computational results
presented by [20], [21], and [22] demonstrated the effective-
ness and robustness of the proposed methodologies, the effi-
ciency of the proposed models degrades with the increase of
non-linear terms.

In 2010, Wu et al. [24] mentioned that lower power losses
and better load balancing can be achieved by considering
distributed generation (DG) in DSR. In 2011, for the first
time, the harmony search algorithm (HSA) was employed to
solve the DSR problem by [25]. The HSA is a new meta-
heuristic algorithm with less parameters and easier imple-
mentation compared to SA and GA. However, determination
of the penalty coefficients of fitness function is relatively hard
in HSA.

One year later, Lavorato et al. [26] presented a new formu-
lation for the DSR problem with a new radiality constraint.
The main contribution was to find optimal radial topologies
without any transfer nodes (buses without generation and
demand) at ends of them. In other words, transfer nodes
should be connected to the network via at least two branches
or must be isolated. However, this kind of modeling just
increases computational time without other gains.

Jabr et al. [27] formulated the DSR problem using mixed-
integer non-linear programming (MINLP). The network
losses were represented in quadratic and mutual terms of
nodal voltage magnitudes. The results showed that solutions
obtained by MINLP are the same with those obtained by
mixed-integer linear programing (MILP). Nevertheless, writ-
ing the nonlinear power flow equations in terms of quadratic
constraints requires additional mathematical efforts.

Later, Taylor and Hover [28] modeled DSR by quadratic
programming (QP) and quadratically constrained program-
ming (QCP) as a convex problem. In QCP based model,
an inequality constraint describing the relationship of max-
imum complex power with its quadratic terms (active and
reactive powers) was added to the problem constraints. The
results indicated that performances of QP and QCP are better
than the models formulated by BD.

Llorens-Iborra et al. [29] presented a MILP model that
approximates power losses by a piecewise linear function.
Although, the proposed linear model can be easily solved
by commercial optimization solvers, the approximations used
may degrade its performance when solving highly non-linear
combinatory DSR problems.

In 2013, Ferdavani et al. [30] improved model of [21] by
using neighbour-chain updating process (NCUP) rather than
BE. It means, in the second stage, each open switch of the
proposed topologywith its best neighbourhood switches were
updated by NCUP. The results revealed notable improvement
in solutions of [21].

Two years later, Ahmadi and Martí [31] modeled the radi-
ality constraint of the DSR as a spanning tree optimization
problem using graph theory. The minimum spanning tree
problem was solved by optimizing weighted sum of the edge
connecting vertexes of original graph to those of its dual
graph. This formulation decreased the reconfiguration time of
planar networks, it cannot however be applied to non-planar
distribution systems. Planar networks are systems that have
planar graphs, i.e. their graphs can be drawn in a way that no
edges cross each other. [32] and [33] presented simple linear
current flow equations to minimize losses by approximating
the quadratic terms of real and reactive current flows in the
objective function with linear terms.

Hijazi and Thiébaux [34] developed a binary convexmodel
for the DSR problem, in which binary variables related to
status of switches (on-off) were efficiently embedded in the
problem formulation. The simulation results confirmed that
the proposed approach was faster than models presented
by [27] and [28] for large-scale distribution systems. Never-
theless, the computational burden for medium-size distribu-
tion networks was higher than QCP-based models [28].

In 2016, Haghighat and Zeng [35] proposed a robust MILP
model for reconfiguration of distribution systems under load
variations and uncertainty. However, piecewise linear approx-
imations used in the MILP model can reduce accuracy of the
solutions. Moreover, high complexity of applied two-stage
reconfiguration algorithm has decreased possibility of model
implementation in real reconfiguration applications.

On year later, Khorshid-Ghazani et al. [36] included
protection concepts in DSR formulation. In the proposed
approach, operational constraints of protective devices were
considered in the objective function as penalty terms. The
results declared that DSR without considering coordination
among over-current relays, reclosers, and fuses cannot be
realistic.

In 2018, Mishr and Swarup [37] formulated DSR for smart
distribution networks using multi agent systems (MAS). The
optimal topology was identified based on interaction among
agents of generator (substations and DG units), demand (load
points), and bus (nodes) through their communication. The
proposed approach can maximize the network serviceability
when small load changes occur during continuousmonitoring
of demand conditions.

Recently, Jahani et al. [38] modeled DSR problem includ-
ing demand response (DR) in order to enhance the network
reliability and reduce power losses. The results showed that
the reliability of system is improved via DSR and DR pro-
gram. Later, Yang et al. [39] formulated distribution net-
work reconfiguration in presence of power flow controllers.
It was shown that flexible DC device (FDD) improves DSR
solutions by adjusting line power flows in coordination with
switching scenarios.

More recently, Azizivahed et al. [40] presented dynamic
DSR problem in presence of renewable energy resources
and energy storage systems (EESs). The proposed strat-
egy is useful to find the appropriate switching operations,
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the best schedules for charging and discharging of batteries,
and optimal outputs of generators. However, the solutions
were obtained from the distribution companies (DISCOs)
point of view. In order to reduce the computational time
of multi-objective DSR problems, Wang et al. [41] pro-
posed a chaos disturbed beetle antennae search (CDBAS)
algorithm. Grey target decision-making technology was
used to adopt CDBAS for multi-objective frameworks.
The results confirmed better performance of the proposed
methodology compared to other reconfiguration methods for
multi-objective DSR applications.

This paper presents an efficient mathematical formulation
for DSR that is simple to implement and is characterized by
high precision and short computational time. The robustness
and effectiveness of the model is tested in different types of
distribution systems using CPLEX in AMPL. In contrast to
the previous methods that were tested in specific networks,
the proposed formulation proves efficient and effective for
reconfiguration of all kinds of distribution systems (planar
or non-planar) with different sizes (from small to very large
distribution networks), several substation buses, and many
transfer nodes. Accordingly, the objectives of current study
are:

1) To present efficient formulation for DSR that can be
implemented easily by available optimization tools and
classic methods.

2) To introduce an exact mathematical model for network
reconfiguration without any estimation.

3) To reduce processing time of DSR calculations.
4) To guarantee connectivity of proposed radial

topologies.

In addition, the article aims to serve as a good reference
for future reconfiguration works because it includes many
different kinds of test systems that are used to compare the
proposed framework regarding losses, voltage profile, and
execution times. In summary, the paper presents an efficient
DSRmodel that satisfies radiality constraints for every distri-
bution network with the following key characteristics:

• Its formulation is simple and can be solved by linear
commercial solvers.

• It requires short computing times without introduc-
ing approximations, linearizations, decompositions, and
complexities.

• The model is general and applicable for reconfiguration
of both planar and non-planar distribution networks.

• It is implemented in several test systems exhibiting a
superior performance. The different kinds of distribution
networks can be used as test cases for future studies
regarding DSR.

II. MATHEMATICAL FORMULATION
The problem is the determination of the switch status of
branches (open or close) to minimize network losses (PLoss)
under technical constraints concerning bus voltage limits.
Assuming the network is represented as pairs of receiving

FIGURE 1. Basic representation of the network.

and sending buses connected by distribution lines, as shown
in Fig. 1, the DSR problem for balanced distribution networks
can be formulated by (1) to (10).

Min PLoss =
∑
ij∈�l

PLij (1)

subject to:

PSi +
n∑

k=1

Pki =
n∑
j=1

Pij +
n∑
j=1

PLij + P
D
i (2)

Qsi +
n∑

k=1

Qki =
n∑
j=1

Qij +
n∑
j=1

QLij + Q
D
i (3)

∣∣Vj∣∣2 − |Vi|2 = 2
(
RijPij + XijQij

)
−

(
R2ij + X

2
ij

) ∣∣Iij∣∣2 + bij (4)∣∣Sij∣∣2 = P2ij + Q
2
ij (5)∣∣Sij∣∣ = ∣∣Vj∣∣ ∣∣Iij∣∣ (6)∑

ij∈�l

yij = n− 1 (7)

Vmin ≤ |Vi| ≤ Vmax (8)

0 ≤
∣∣Iij∣∣ ≤ Imax

ij yij (9)

−M
(
1− yij

)
≤ bij ≤ M

(
1− yij

)
(10)

�l is the set of branches and n is the number of buses
(nodes). PLij and Q

L
ij are the active and reactive power losses

in branch ij. Sij, Pij, and Qij, are complex, active, and reactive
power flows on branch ij, respectively. |Vi|, Vmin, and Vmax
are the voltage magnitude at bus i, and its minimum and
maximum limits. PSi , Q

S
i , P

D
i , and Q

D
i are active and reactive

powers of substation and load demands at bus i, respectively.
It should be noted that |Iij| and Imaxij are current flow mag-
nitude and maximum current of branch ij. Rij and Xij are the
resistance and reactance of branch ij, respectively. Finally, bij
is a variable for representing theKirchhoff voltage law (KVL)
in the loop formed by branch ij and yij is a binary variable of
the switch status of branch ij (0 for open and 1 for closed
switches).

Equations (2) and (3) express nodal active and reactive
power balances (Kirchhoff’s current law, KCL). Equation (4)
describes that net summation of voltage drops of all
branches in a planar loop, which has to be equal to
zero (KVL). In this equation, bij will be zero, when switch
of branch ij is closed (KVL must be established) and will
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be a real number for open branches (KVL is not necessary).
Equation (5) represents the relationship between complex
power of each branch and its active and reactive components.
Also, (6) represents the complex power in terms of nodal
voltages and branch currents. Equation (7) indicates radiality
constraint. Accordingly, the total number of branches under
operation (total number of closed switches) has to be equal
to the total number of buses minus one (according to graph
theory). Constraints (8) and (9) show voltage and current
limits, respectively. It should be mentioned that (8) provides
an acceptable voltage level for network buses in order to
compensate voltage drop. (10) makes sure that the value of bij
will be zero, if the switch of branch ij is closed (yij = 1) and
a real number between M and –M, when the corresponding
branch is disconnected (yij = 0). In order to determine the
value of M , let’s consider that the switch of branch ij is
open. From (9), it is obtained that |Iij| will be zero because
of yij = 0, and therefore Pij = Qij = 0 due to (5) and (6).
Thus, the maximum value of M is V 2

max–V
2
min because bij =

|Vj|2 − |Vi|2 (4) and the maximum difference between lower
and upper voltage limits (8).

A. PROPOSED MIXED-INTEGER NONE-LINEAR
PROGRAMMING (MINLP) MODEL
The model described by (1) to (10) can be used for recon-
figuration of distribution systems with one substation bus.
By replacing PLij = Rij|Iij|2 and QLij = Xij|Iij|2 in (1) to (3)
and equation (6) in (5), it can be seen that all equations are
described in terms of real variables |Iij|2, |Vi|2, and |Vj|2 and
binary variables yij, except of (8) and (9).
In order to extend the model to include distribution net-

works with several substation buses following formulation is
presented.

MinPLoss =
∑
ij∈�l

Rij
∣∣Iij∣∣2 (11)

subject to:

Psi +
n∑

k=1

Pki =
n∑
j=1

Pij +
n∑
j=1

Rij
∣∣Iij∣∣2 + PDi (12)

QSi +
n∑

k=1

Qki =
n∑
j=1

Qij +
n∑
j=1

Xij
∣∣Iij∣∣2 + QDi (13)

∣∣Vj∣∣2 − |Vi|2 = 2
(
RijPij + XijQij

)
−
∣∣Zij∣∣2 ∣∣Iij∣∣2 + bij (14)∣∣Vj∣∣2 ∣∣Iij∣∣2 = P2ij + Q

2
ij (15)∑

ij∈�′
yij = n− ns (16)

V 2
min ≤ |Vi|

2
≤ V 2

max (17)

0 ≤
∣∣Iij∣∣2 ≤ (Imax

ij

)2
yij (18)∣∣bij∣∣ ≤ M

(
1− yij

)
(19)

In above equations, ns and |Zij| are the number of sub-
station buses and the impedance magnitude of branch ij,
respectively.

B. PROPOSED MIXED-INTEGER CONIC
PROGRAMMING MODEL
The solution of the MINLP model presented in Section II
by classical optimization tools is not always straightfor-
ward, because of the non-convexity in problem formula-
tion (15). Furthermore, quadratic terms of the problem
variables (e.g. branch currents and nodal voltages) prevent
optimization of the model by linear commercial solvers.
In addition, radiality constraint (16) does not include transfer
nodes, while real distribution networks often contain buses
without substation or demand (transfer nodes). Moreover,
additional constraints can be included in the problem for-
mulation in order to increase the accuracy of the model and
reduce its execution time. Therefore, in order to create a
convex model that can be easily solved by mathematical and
metaheuristic techniques and optimization tools (even linear
commercial solvers), the following mixed-integer conic pro-
gramming (MICP) model is proposed. In this model, I sqrij =

|Iij|2,V
sqr
i = |Vi|2, and V

sqr
j = |Vj|2.

Min PLoss =
∑
ij∈�′

RijI
sqr
ij (20)

subject to:

PSi +
n∑

k=1

Pki =
n∑
j=1

Pij +
n∑
j=1

RijI
sqr
ij + P

D
i (21)

QSi +
n∑

k=1

Qki =
n∑
j=1

Qij +
n∑
j=1

XijI
sqr
ij + Q

D
i (22)

V sqr
j − V

sqr
i = 2

(
RijPij + XijQij

)
−
∣∣Zij∣∣2 I sqrij + bij (23)

yij = βij + βji (24)
n∑
j=1

βij = 1 (25)

βij = 0 ∀i ∈ �s,∀ij ∈ �l (26)

βji = 0 ∀j ∈ �s,∀ij ∈ �l (27)

Pmax
ij = VmaxImax

ij (28)

Qmax
ij = VmaxImax

ij (29)

V sqr
j I sqrij ≥ P2ij + Q

2
ij (30)

V 2
min ≤ V sqr

i ≤ V 2
max (31)

0 ≤ I sqrij ≤

(
Imax
ij

)2
yij (32)∣∣bij∣∣ ≤ (V 2

max − V
2
min

) (
1− yij

)
(33)∣∣Pij∣∣ ≤ Pmax

ij yij (34)∣∣Qij∣∣ ≤ Qmax
ij yij (35)
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�s is the set of substation buses. Pmaxij andQmaxij are the maxi-

mum active and reactive powers of branch ij, respectively and
βij is the binary variable to show direction of power flow in
branch ij.
Equations (24) to (27) impose the radiality constraint on

DSR problem. This set of equations helps to find optimal
radial topologies in every distribution system (both small and
large networks, with one or several substations, and with or
without transfer nodes) much faster than (16). These equa-
tions also maintain the connectivity of the network during
reconfiguration better than (16) (i.e., none of buses is iso-
lated from the network during optimization process). Also,
(34) and (35) show that active and reactive power flows
of branches should be limited by their maximum values.
Although equations (31) and (32) provide these conditions,
constraints (34) and (35) improve computing time and quality
of solutions.

III. SOLUTION METHOD
The proposed mathematical formulation is aMINLP problem
including binary variables yij and βij, real variables Pij, Qij,
PSi , Q

S
i , I

sqr
ij , V sqr

i , and bij, a linear objective function (20),
linear constraints (21)–(29), (31)–(35), and convex nonlinear
restriction (30). The problem can be solved using analytical
methods, heuristic techniques, and metaheuristic algorithms.
It should be noted that heuristics and metaheuristics cannot
guarantee the global optimum.

Classic methods, based onmathematical programming, are
widely used to solve the DSR problem. Linear mathematical
problems with a linear objective function and constraints
can be solved by linear programing. Linear programming
is particularly important, because a wide variety of prob-
lems can be modeled as linear, and because there are fast
and reliable methods for solving linear problems even with
thousands of variables and constraints. The ideas of linear
programming are also important for analyzing and solving
not linear mathematical programming problems. Nonlinear
programing is used for optimization of nonlinear objective
functions, subject to nonlinear constraints. Solving such a
problem is harder, though not impossible. Integer program-
ming is used to solve objective and constraint functions of
real, binary and integer variables. Solving the problem by
integer programming is much harder than linear and nonlin-
ear programming. For this purpose, AMPL as an algebraic
modeling language has been designed for mathematical pro-
gramming. The AMPL is a powerful optimization tool that
can be used efficiently to solve the proposed MICP problem.
This problem can be optimized by linear or non-liner solvers
of AMPL. However, linear solvers can are more efficient than
nonlinear ones, because of the linear nature of the problem.
One of the most efficient linear solvers of AMPL is CPLEX.
Therefore, the proposed distribution network reconfiguration
problem is solved by CPLEX in AMPL. In order to highlight
the model accuracy and verify the results of AMPL, decimal
codification GA (DCGA) presented in [42] was adopted for
solving proposed DSR problem in addition to CPLEX.

IV. NUMERICAL RESULTS AND CASE STUDIES
The proposed model was applied to several test systems using
CPLEX and the results were compared with DCGA and
solutions obtained by other formulations and methodologies,
such as heuristic methods [30], [43]–[50], simulated anneal-
ing (SA) [51]–[54], tabu search (TS) [55], [56], modified
TS (MTS) [57], genetic algorithms (GAs) [24], [52], [53],
[58]–[73] (e.g. refined GA (RGA) [61], fuzzy GA
(FGA) [62], binary GA (BGA) [63], GA based on Matroid
theory (GAMT) [66], and SOReco [67]), particle swarm
optimization (PSO) [74]–[79], plant growth simulation
(PGS) [80], [81], ant colony optimization (ACO) [24],
[52], [53], [82]–[86], harmony search algorithm (HSA)
[25], [53], and honey bee mating optimization (HBMO) [53],
[79], [87], [88]. In order to provide an accurate and broad
comparison between performance of the proposed model and
that of most existing reconfiguration alternatives, the results
are discussed based on static load values. To confirm effec-
tiveness of the proposed methodology for real applications,
the reconfiguration results for variable load amounts have
been given in Appendix. The results of Appendix show
high efficiency of the proposed model for reconfiguration of
practical distribution networks under load variations.

A. CASE 1: 7-BUS DISTRIBUTION NETWORK
Figure 2 shows the test system with six branches (closed
switches) and one loop (tie line). All data related to this
system are given in [89]. The base power is 1 MVA and the
nominal voltage is 12.66 kV. The maximum current capacity
(Imaxij ) of each branch was considered to be 500 A.

FIGURE 2. The 7-bus test system [89].

The results of the proposed model, such as open switches
(branches), active power losses (kW), and computing time (s)
are listed in Table 1. Voltage profiles of the system before and
after reconfiguration are illustrated in Fig. 3. In addition, volt-
age profiles after reconfiguration by the optimal switching
operation by the proposed model and of the reconfiguration
proposed by [89] are shown in Fig. 4. Moreover, the opti-
mization process of power losses in GA is represented by
Fig. 5. This figure confirms the accuracy of solutions found
by proposed model.

As shown in Table 1, the active power losses obtained by
the proposed model are much lower than the ones obtained
by the method of [89].

From Fig. 3, it can be seen that bus voltages are increased
by reconfiguration, because the voltage drop on distribution
lines is decreased. It should be noted that the minimum
voltage at bus 5 is increased from 0.9946 p.u. to 0.9981 p.u.
after reconfiguration.
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TABLE 1. Numerical results for case 1.

FIGURE 3. The voltage profile before and after reconfiguration of the
7-bus test system by the proposed model.

FIGURE 4. The voltage profile after reconfiguration of the 7-bus test
system compared to model of [89].

FIGURE 5. Power losses versus GA iterations for case 1.

As shown in Fig. 4, the MICP model improves signifi-
cantly the voltage profile compared to the model of [89].
Figure 5 demonstrates that DCGA can find the optimal
switching proposal after three iterations.

B. CASE 2: 12-BUS DISTRIBUTION NETWORK
This model represents an actual system, part of the distribu-
tion network of Baghdad city in Iraq (AL-MansoorNo.11). Its

FIGURE 6. Distribution network of AL-Mansoor No.11.

TABLE 2. Numerical results for case 2.

FIGURE 7. The voltage profile before and after reconfiguration of the
12-bus test system by the proposed model.

single line diagram is shown in Fig. 6. The feeder is connected
to the AL-Mansoor substation, which has a nominal (base)
voltage of 11.1 kV and a capacity of 2250 kVA. The relevant
data have been given in [90]. The maximum current capacity
of each branch is assumed to be 500 A. There are two tie
line switches and 13 branches in this network. The results
obtained by the proposedmethod are provided in Table 2. The
voltage profiles before reconfiguration (base case) and after
reconfiguration by the proposed optimal switching method
are shown in Fig. 7 and the respective results obtained by [90]
are depicted in Fig. 8. The minimization process of power
losses is given in Fig. 9.

From Table 2, it can be seen that the proposed model and
DCGA were able to reduce active power losses by 47.84%
compared to the model used in [90]. Also, the proposed
reconfiguration framework could reach the optimal solution
much faster than model presented in [90]. Figure 9 shows
that GA approaches the optimal configuration after three
iterations.
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FIGURE 8. The voltage profile after reconfiguration of the 12-bus test
system by the proposed model compared to the model of [90].

FIGURE 9. Power losses versus GA iterations for case 2.

Moreover, Fig. 7 and 8 show that the system voltage is
improved considerably after reconfiguration by the proposed
model compared to the base case and the model presented
in [90] (e.g. the minimum voltage of the system at bus 7 has
been increased from 0.9966 p.u. to 0.9992 p.u. after reconfig-
uration). Accordingly, it can be concluded that the proposed
MICPmodel is more efficient than approach presented in [90]
and faster than GA.

C. CASE 3: 16-BUS DISTRIBUTION NETWORK
A three-feeder 23 kV distribution system including
13 sectional switches (branches) and three tie lines is shown
in Fig. 10.

FIGURE 10. The 16-bus test system [91].

All data, such as resistance and reactance of branches,
and nodal active and reactive demands are reported in [91].

TABLE 3. Numerical results after reconfiguration for case 3.

The base power is 10 MVA and the maximum currents of
branches 11, 16, and 18 are considered 500 A, 500 A, and
300 A, respectively, while those of all other branches 250 A.
The proposed model was applied to the 16-bus distribution
network and results in comparison with alternative methods
are presented in Table 3. It should be noted that the computing
time of some alternative methods has not been reported.
Therefore, the models are ranked in related tables, according
to power losses, then computational time, and afterward date
of their publications.

The active power losses of the original network (base case)
are 511.4 kW. The models proposed in [5], [8], and [14]
do not provide the optimal switching scenario (17,19,26),
in contrast to other approaches and the proposed model.
It is shown that the proposed strategy provides optimal solu-
tion in shorter computing time compared to other reconfig-
uration methodologies. The profiles of bus voltages before
and after reconfiguration using the proposed optimal switch-
ing operation (17,19,26) and the configurations proposed
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FIGURE 11. The voltage profile before and after reconfiguration of the
16-bus test system by the proposed model.

FIGURE 12. The voltage profile after reconfiguration of the 16-bus test
system by the proposed model compared to the models of [5], [8],
and [14].

FIGURE 13. Power losses versus GA iterations for case 3.

by [5], [8], and [14] (15,17,26) are shown in Figs 11 and 12.
Figure 13 illustrates losses change during DCGA run.

Figure 11 shows the improvement in power quality after
reconfiguration and the increase in minimum voltage at
bus 12 from 0.9693 p.u. to 0.9716 p.u. Also, Fig. 12 indicates
that the proposed framework and other approaches, which
could find the optimal configuration, improve the voltage pro-
file compared to the models in [5], [8], and [14]. Moreover,
Fig. 13 confirms that the optimal solution suggested by the
proposed model is obtained by GA after 35 iterations.

D. CASE 4: 28-BUS DISTRIBUTION NETWORK
This real electrical grid is part of the electrical power distri-
bution system in the city of Koprivnica, Croatia. It consists of
28 buses, one transformer substation of 110/35 kV, two trans-
former substations of 35/10 kV, 22 loads, and 27 distribution
lines. A graph representation of the Koprivnica distribution

FIGURE 14. Distribution system of Koprivnica [92].

TABLE 4. Numerical results for case 4.

FIGURE 15. The voltage profile before and after reconfiguration of the
28-bus test system.

FIGURE 16. Power losses versus GA iterations for case 4.

system is shown in Fig. 14 and its data are available in [92].
Lines and transformers that connect nodes are represented as
edges in the graph. Full lines represent distribution branches
that are switched on, while dotted lines represent distribution
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FIGURE 17. The 30-bus test system.

TABLE 5. Numerical results for case 5.

FIGURE 18. The voltage profile before and after reconfiguration of the 30-bus test system
by the proposed model.

branches that are switched off. The maximum current of all
branches is 500 A. The results are shown in Table 4 and
Figs 15 and 16.

Table 4 shows that the proposed model can reach the
optimal switching proposal as the method presented in [92]
but with less computing time than GA, in which the same
solutions were found by DCGA after 88 iterations (accord-
ing to Fig. 16). Also, the shape of the voltage curve gets
more flat after reconfiguration (please see Fig. 15). This

happens by filling the valleys and shaving the peaks of
voltage profile of buses 5 to 17 and increasing the voltage
level of buses 18 to 28. The worst voltage belongs to bus 19
(0.9151 p.u.) that its value is increased by 0.022 (p.u.).

E. CASE 5: 30-BUS DISTRIBUTION NETWORK
The diagram of this test system with six tie lines and 28 nor-
mal branches is shown in Fig. 17 and its data are listed in [93].
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TABLE 6. Numerical results for case 6.

FIGURE 19. Power losses versus GA iterations for case 5.

The nominal values are 1 MVA and 18.6 kV. The results
of the proposed technique are shown in Table 5 and Fig. 18.
Figure 19 indicates that GA obtains the optimal solu-
tion after 141 iterations. The worst voltage magnitudes
before and after reconfiguration appear at buses 29 and 14,
respectively.

Figure 18 demonstrates an improvement in voltage profile
after reconfiguration. According to Table 5, it can be seen that
the proposed reconfiguration model reach less losses than the
model presented in [93]. Also, the convergence speed of the
proposed model is higher than DCGA.

F. CASE 6: 33-BUS DISTRIBUTION NETWORK
The system shown in Fig. 20, includes two feeder substa-
tions with three 12.66 kV laterals, five tie switches, and 32
normal branches. The data of this test system are available

in [7]. The MVA and kV base are 1 and 12.66, respec-
tively. The voltage of the substation bus (node 0) is assumed
1 per unit. The maximum current flow of each branch is
500 A. The proposed formulation was applied to this test
system and the results are listed in Table 6. The voltage
profiles of the system before and after reconfiguration are
illustrated in Fig. 21. Figure 22 shows the voltage profiles
of the optimal configuration (optimal switching arrangement)
found by theMICPmodel and other proposed formulations of
Table 6. Also, the convergence process of GA is represented
in Fig. 23.

According to Table 6, the proposed reconfiguration strat-
egy could find the accurate solution faster than other methods
except of [28], [47], and [81]. It can be seen that performance
of model presented by [28] significantly degrades with size
of distribution network compared to the proposed model
(please refer to Table 12). Also, there is no guarantee for
finding optimal solution in large systems by heuristic [47] and
metaheuristic [81] methods (please see Case 14).

Figures 21 and 22 show that the optimal config-
uration presented by the proposed model and other
approaches (7,9,14,32,37), as well as switching scenarios
proposed by [25], [53], [66] (7,10,14,36,37) and [6], [83]
(7,10,14,32,37) improve the voltage profile much better than
configurations found by [7], [19], [43], [63]. Due to Fig. 23,
it can be said that DCGA converges to the optimal solution
after 169 iterations.

VOLUME 9, 2021 79971



M. Mahdavi et al.: Efficient Mathematical Model for DSR Using AMPL

FIGURE 20. The 33-bus test system.

FIGURE 21. Voltage profile before and after reconfiguration of the 33-bus test system by
the proposed model.

Accordingly, it can be said that the proposed MICP model
can find the optimal switching operation accurately in an
acceptable run time.

G. CASE 7: 49-BUS DISTRIBUTION NETWORK
Figure 24 shows the single diagram of the real distribution
network of Baghdad city in Iraq. The test system is an 11 kV
network with 49 buses, five looping branches (tie lines),
48 sectionalizing switches, and six laterals. The system data
and power demand information are available in [94]. Maxi-
mum current of each branch is 500 A. The results are listed
in Table 7 and shown in Figs 25, 26, and 27.

Due to Table 7, the proposed model could find better open
switches and less power losses than [94] in shorter processing
time than GA. Also, voltage profiles shown in Fig. 26 demon-
strate better voltage profile after reconfiguration of distri-
bution network by the proposed model compared to model
of [94]. Therefore, it can be mentioned that the mathematical

formulation presented in current research is much better than
the model proposed by [94]. According to Fig. 27, GA veri-
fies accuracy of solutions presented by proposed model after
853 iterations.

H. CASE 8: 59-BUS DISTRIBUTION NETWORK
Figure 28 shows a 33 kV real distribution network. This sys-
tem is a region of the distribution network of the city of Ahvaz
in the south of Iran. The 59-bus system includes 58 normal
branches (sectionalizing switches) and five tie lines. Line and
load data for this real distribution network have been given
in [95]. Also, maximum current of each branch is 500 A.
Table 8 and Fig 29 show the simulation results after applying
the proposed model to this case study system. Convergence
process of DCGA is exhibited in Fig. 30.

Comparing the results of [95] with the switching operation
and power losses proposed by the MICP model confirms
the more accuracy of solution obtained by the proposed
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FIGURE 22. The voltage profile of the optimal configuration compared to other configurations of the 33-bus test
system.

FIGURE 23. Power losses versus GA iterations for case 6.

TABLE 7. Numerical results for case 7.

model. Also, Table 8 shows too higher convergence speed
(very shorter run time) of the proposed reconfiguration tech-
nique than that of [95] and DCGA (GA approaches the
accurate solution after 1250 iterations due to Fig. 30). Also,
Fig. 29 shows voltage improvement of the system after
reconfiguration, because of increase in voltage level of buses
8 to 59. The minimum voltage, in which was 0.9767 p.u.
at buses 56 to 58, is increased to 0.9847 p.u. at bus 59.

I. CASE 9: 69-BUS DISTRIBUTION NETWORK
This 12.66 kV radial distribution system has 69 nodes (buses),
68 normal switches, and five tie lines, as shown in Fig. 31.
Data of this system has been presented in [96]. The base
power and rated voltage are 100 MVA and 12.66 kV. The
proposed mathematical model was applied to under study

FIGURE 24. Baghdad distribution system [94].

network and the results were provided in Table 9 and
Figs 32 and 33. In order to show accuracy of the solu-
tions proposed by MICP model, the power losses reduc-
tion during optimization by GA is represented in Fig 34.
It should be noted that the network losses before reconfig-
uration were 225 kW.
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FIGURE 25. The voltage profile before and after reconfiguration of the 49-bus test system
by the proposed model.

FIGURE 26. The voltage profile after reconfiguration of the 49-bus test system by the
proposed model compared to the model of [94].

TABLE 8. Numerical results for case 8.

FIGURE 27. Power losses versus GA iterations for case 7.

For a better comparison, only voltage profiles of config-
urations (switching scenarios) which lead to the minimum
power losses (99.62 kW) are drawn in Fig. 33. The voltage

profiles of other configurations are inferior to these three
curves.

Among different models presented in Table 9, the pro-
posed approach is better, because first it converges to the
optimal solution faster than others and second it improves the
voltage profile more efficiently than all approaches except
for models mentioned in [16], [17], [36] [100], and [102].
However, the difference between the voltage curve of the
proposed model and the best one is very small. In simple
terms, only the voltage of bus 58 is increased by 0.042 p.u.
using models of [16], [17], [36] [100], and [102] compared
to the proposed technique, but the proposed model solves the
DSR problem more quickly than the fastest method among
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FIGURE 28. The 59-bus distribution system [95].

FIGURE 29. The voltage profile before and after reconfiguration of the 59-bus test system.

these approaches, i.e. [36], that could solve the problem
in 12.5 seconds.

J. CASE 10: 70-BUS DISTRIBUTION NETWORK
The tested system is an 11 kV radial distribution network
with two substations, four feeders, 70 buses, and 76 branches
(including tie lines) as shown in Fig. 35. Data for this system
are available in [104]. The nominal power of the network
is 100 kVA. Table 10 shows proposed configurations, power
loss amounts, and computing times. The active power losses
of initial network (before reconfiguration) are 227.5 kW.

Also, Figs 36 and 37 show voltage profiles before and
after network reconfiguration for different switching sce-
narios. Figure 38 illustrates power loss changes in terms
of genetic algorithm iterations. According to Fig. 36, even

FIGURE 30. Power losses versus GA iterations for case 8.

though the voltages of 21 buses (buses 2 to 12, 16 to 23,
and 68 and 69) have been decreased after reconfiguration,
voltages of 44 buses (buses 24 to 67) were increased. It means
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FIGURE 31. The 69-bus test system [96].

FIGURE 32. The voltage profile before and after reconfiguration of the 69-bus test system
by the proposed model.

FIGURE 33. The voltage profile of the optimal configuration compared to other
configurations of the 69-bus test system.

that almost 70% of voltage profile of network buses has been
improved after reconfiguration. Also, Fig. 37 shows that the
worst voltage profile is related to reconfiguration strategies
presented in [67] and [104] to [107]. Although switching
operations of GAMT [66] and [108] improve voltage profile

a little bit at 17 buses (buses 30 to 42, 45 to 49, and 61 to 64),
they degrade significantly the voltage profile at 18 buses
(buses 2 to 15, 43, 44, 50, 68, and 69) compared to the optimal
configuration proposed by the MICP, DCGA, BGA [66],
and [84].
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TABLE 9. Numerical results after reconfiguration for case 9.

FIGURE 34. Power losses versus GA iterations for case 9.

The performance of models proposed by [31] and [32] is
very similar to the MICP model from the voltage improve-
ment point of view, because they could improve half of
voltage profile of network buses and degrade half other.
Therefore, the proposed switching operation (optimal con-
figuration) can improve the voltage profile much better than
models of [67] and [104] to [107] and even better than
approaches presented by GAMT [66] and [108].

Only switching scenario of [31] and [32] can compete
with the proposed model, but the model presented in this
study is better than [31] and [32] because of less power
losses. Thus, the proposed model is more effective than
other formulations presented in Table 10 because not only it
finds the lowest power losses as much as minimum losses
found by DCGA, BGA [66], and [84], but it reaches the
optimal solution much faster than them. Also, the optimal
configuration found by MICP same as DCGA, BGA [66],
and [84] enhances the power quality as much as configuration
presented in [31] and [32] and more efficiently than other
proposed configurations.

K. CASE 11: DISTRIBUTION NETWORK OF TAIWAN
POWER COMPANY (TPC)
As shown in Fig. 39, this accrual 11.4 kV network consists of
two substations, 11 feeders, 83 normal switches, and 13 tie

FIGURE 35. The 70-bus test system [104].

lines, in which its data have been presented in [18]. The
current-carrying capacity of each line (Imaxij ) is 410 A. The
power base value for this system is 10 kVA. The active power
loss of initial network is 532 kW. Table 11 and Figs 40 and 41
show the simulation results of the proposed model compared
to other reconfiguration techniques for this real test system.
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TABLE 10. Numerical results after reconfiguration for case 10.

FIGURE 36. The voltage profile before and after reconfiguration of the 70-bus test system
by the proposed model.

FIGURE 37. The voltage profile of the optimal configuration compared to other configurations of the 70-bus
test system.

Furthermore, convergence process of GA is shown in Fig. 42.
It i seen that the GA finds the optimal configuration after
4663 iterations. It should be mentioned that bus 0 represents
buses connected to the substation 1 (S/S1) and bus 84 indi-
cates buses are connected to the substation 2 (S/S2).

Table 11 confirms that the proposed model can find the
optimal configuration and the minimum active power losses

faster than other methods. Also, Fig. 40 illustrates that
the profile of bus voltages is improved significantly after
reconfiguration.

Moreover, Fig. 41 shows that the optimal configuration
introduced by the proposed methodology and other models
with the same switching scenario (7,13,34,39,42,55,62,72,
83,86,89,90,92) enhances the voltage profile and therefore
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TABLE 11. Numerical results after reconfiguration for case 11.

FIGURE 38. Power losses versus GA iterations for case 10.

network power quality better than configurations proposed
by other formulations of Table 11. These facts show higher
efficiency of the proposed model compared to other methods
for reconfiguration of the TPC system.

L. CASE 12: 119-BUS DISTRIBUTION NETWORK
This test system, as shown in Fig. 43, is an 11 kV distribution
network with three feeders, 118 lines, and 15 tie switches.
The parameters and related data of the system can be found
in [56]. The base MVA and kV are 1 and 11, respectively.
Table 12 shows the relevant results. Also, profiles of bus volt-
ages were depicted in Figs 44 and 45. It should be noted that
the active power loss of the network before reconfiguration
has been 1298 kW. Figure 46 shows that DCGA converges
to the same optimal solution found by proposed model after
2077 iterations.

Although most methods listed in Table 12, including
the proposed approach could find the minimum power
losses (869.7 kW) as well as the optimal switching scenario
(24,27,35,40,43,52,59,72,75,96,98,110,123,130,131), the
proposed MICP technique reaches the optimal solution faster
than the others except for [32]. However, formulation of the
proposed model is easier thanMILP presented in [32]. Unlike
model of [32], MICP can be directly applied to DSR problem

without any approximation and linearization of non-linear
terms of losses and power flow equations. Choosing improper
values for uncertain parameters of MILP such as number of
piecewise functions, lines slopes and each line interval on
horizontal axis decreases the model accuracy considerably.
As shown in Figs 44 and 45, the configurations of [57],
GA [25], and RGA [25] may improve the voltage profile
as effective as the optimal configuration proposed by MICP
model compared to the base case, however, their proposed
switching scenarios causes a large amount of active losses in
the network. Therefore, it can be said that the proposed recon-
figuration strategy solves the DSR problem more efficiently
than other proposed methods.

M. CASE 13: 136-BUS DISTRIBUTION NETWORK
As shown in Fig. 47, this real network is part of the Tres
Lagoas distribution system in Brazil and its data are avail-
able in [112]. It has 156 branches and 21 tie switches with
nominal voltage and nominal power of 13.8 kV and 100 kVA,
respectively. Also, the initial power losses and the maximum
current of each branch are 320.37 kWand 200A, respectively.
The proposed model was applied to this real test system
and the results were presented in Table 13. Figure 48 illus-
trates the better power quality because of nodal voltage
improvement after reconfiguration.

Because of the large number of voltage curves due
to many different switching strategies listed in Table 13,
the voltage profiles of optimal switching operation (7,35,51,
90,96,106,118,126,135,137,138,141,142,144–148, 150,151,
155) was compared to only configurations of [31] and [33]
as well as [71] and [86] (those found the closer power losses
to the minimum amount (280.19 kW)). From Table 13, it can
be seen that the proposed model can find the optimal solution
much faster than formulations which could approach the
same minimum power losses. According to Fig. 49, even
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FIGURE 39. Distribution system of TPC [18].

FIGURE 40. The voltage profile before and after reconfiguration of the TPC system by the
proposed model.

though other switching operations (configurations) could
improve the voltage profile nearly like the proposed model,
they are not as accurate and fast as the MICP formula-
tion. Figure 50 proves accuracy of the solution obtained by
the proposed model. Therefore, the proposed framework is
more efficient for reconfiguration of real large-scale dis-
tribution networks compare to other methods listed in the
table.

N. CASE 14: 203-BUS DISTRIBUTION NETWORK
In order to illustrate the effectiveness of the proposedmethod-
ology in larger systems, the proposed approach was applied
to 203-bus distribution network and results were listed

in Table 14. Also, the losses changes versus GA iterations
were drawn in Fig. 51. The initial configuration of this real
13.8 kV distribution network is shown in Fig. 52. The system
data can be found in [113]. The base power and maximum
current of branches are 1 MVA and 2000 A, respectively.
Figure 53 shows that voltage levels are decreased at buses
3 to 57 (55 buses) and then they are increased at the rest
buses compared to initial case. It means that more than 80%
of voltage profile is improved after reconfiguration. Also,
Fig. 54 indicates that performance of the proposed model is
better than DCGA and the formulation presented in [113]
from the voltage improvement point of view. The MICP
model could optimize the network losses more accurately
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FIGURE 41. The voltage profile of the optimal configuration compared to other configurations of the TPC system.

TABLE 12. Numerical results after reconfiguration for case 12.

FIGURE 42. Power losses versus GA iterations for case 11.

than [113] and GA. The results show that heuristic and meta-
heuristic algorithms cannot guarantee optimality of solutions
in large size distribution networks because of algorithm cap-
ture in local minima. Accordingly, the results analysis proves

high accuracy of the proposed method for reconfiguration of
real large distribution networks compared to model of [113]
and GA method.

V. ADVANTAGES OF PROPOSED METHODOLOGY
COMPARED TO OTHER METHODS
In this section, the main features of the model are compared
with some other important formulations to more clarify the
advantages of the proposed method.

Coding MINLP formulation of [4] by B&B algorithm is
relatively hard, while the implementation of MICP model is
easy in AMPL.

The DC load flow based formulations presented in [5]
cannot solve the DSR problem precisely because of ignorance
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FIGURE 43. The 119-bus test system.

FIGURE 44. The voltage profile before and after reconfiguration of the 119-bus test system by
the proposed model.

of reactive power component, while the MICP solves the
problem using AC load flow model.

Metaheuristic algorithms used in [17] (SA), [18]
(MIHDE), [25] (HSA), and [36] (GA) cannot guarantee
optimality of solutions in large-scale distribution networks,
while the proposed method is able to solve the DSR problem
accurately for large-sized systems.

Estimation of power losses in [6], [8], and [19] has effec-
tively reduced accuracy of the proposed formulations in com-
parison with the MICP model.

Time-consuming point to point searching process of the
models proposed in [7] and [12] prevent their applications
to medium and large-scale distribution networks, while the
MICP model can be applied to distribution systems with any
size.

Unlike the MICP model, the formulation presented in [9]
is not efficient because of appearance of many non-feasible
(non-radial) solutions during optimization.

Simplification of load flow equations in [10] and piece-
wise linear approximations of power losses in [29], as well
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FIGURE 45. The voltage profile of the optimal configuration compared to other configurations
of the 119-bus test system.

TABLE 13. Numerical results after reconfiguration for case 13.

FIGURE 46. Power losses versus GA iterations for case 12.

as linearization of quadratic terms of objective functions
in [32] and [33] have relatively decreased processing time
of DSR problem. However, efficiency and accuracy of

formulations presented in [10], [29], [32], and [33] can
be reduced in real applications compared to the exact
(without any simplification, linearization, and approxi-
mation) MICP model. Moreover, additional mathemati-
cal efforts needs for linearization and approximations of
non-linear terms in [29], [32], and [33] in contrast to
MICP model.

Representing the DSR problem in terms of mutual
and linear circuit currents same as [13] is difficult for
medium and large size distribution systems. However, this
kind of representation is not required in the proposed
formulation.

Although maximum two load flows were needed to solve
the DSR problem in the formulation presented by [14], imple-
mentation of model of [14] has restricted to small-sized
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FIGURE 47. The 136-bus distribution system [112].

FIGURE 48. Voltage profile before and after reconfiguration of the 136-bus test
system by the proposed model.

TABLE 14. Numerical results for case 14.

distribution systems. Nonetheless, the MICP model can be
applied to every distribution network without any load flow
calculations.

The DAOP based model proposed in [15] cannot guar-
antee the optimal solutions for large distribution systems
because of its heuristic nature, while the model presented
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FIGURE 49. Voltage profile after reconfiguration compared to other proposed models for the 136-bus test system.

FIGURE 50. Power losses versus GA iterations for case 13.

FIGURE 51. Power losses versus GA iterations for case 14.

in current study has found accurate solutions in all test
systems.

Although formulations presented in [20], [21], and [30]
based on sensitivity analysis causes decrease in processing
time of DSR problem, presenting active losses sensitivity in
terms of the branch impedances makes implementation of
models proposed by [20], [21], and [30] harder than MICP
method.

The decomposition method of [22] has been applied to a
small size distribution system because of its hard implemen-
tation compared to MICP.

TABLE 15. Reconfiguration results of proposed model for each day based
on actual variable load amounts of RECT system.

The formulation of [31] cannot be applied to non-planar
networks and computational time of models presented in
[26] and [27] are much more than the proposed method.

Allocating imagery circles with different geometrical
radius to network loops in [16] is not an exact way for DSR
modeling.

Although the performance of the model presented in [34]
is better than the models of [27] and [32], its computation
time and simplicity are more and less than models proposed
in [27] and [32], respectively.
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FIGURE 52. The 203-bus distribution system.

Unlike MICP model, efficiency of mathematical formula-
tion described in [28] has been reduced with increase in size
of network.

High complexity of two-stage reconfiguration
algorithm used in [35] decreases possibility of
model implementation in real applications, while the
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FIGURE 53. Voltage profile before and after reconfiguration of the 203-bus test system by the proposed model.

FIGURE 54. The voltage profile after reconfiguration of the 203-bus test system by the proposed model compared to the
model of [113] and DCGA.

MICP model can be easily applied to practical DSR
problems.

VI. CONCLUSION
This paper presents an efficient convex mixed-integer conic
programming (MICP) model for reconfiguration of radial
distribution systems using AMPL. The model was applied
to different types of distribution networks and results were
compared to solutions obtained by decimal codification
genetic algorithm (DCGA) and other existing reconfiguration
methods.

Main properties of the proposed formulation are short com-
puting time, high precision (without any approximation and

linearization), and simple implementation. Another impor-
tant feature of MICP model is that it can be solved by every
commercial solver.

Simulation results reveal that the proposed model not only
reduces power losses effectively, but also improves the volt-
age profile of the system. Computing time of the proposed
approach is less than other reconfiguration techniques which
could find the accurate optimal solutions, except for models
of [28], [47], and [81] in small size 33-bus test system and
model of [32] in medium size TPC network. However, con-
vergence speed of MICP model is much higher than method
of [32] in all other case studies. Also processing time ofmodel
presented by [28] is much higher than proposed model in
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TABLE 16. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 1.

TABLE 17. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 2.

TABLE 18. selected configurations in each hour based on actual variable
load amounts of RECT system for case 3.

TABLE 19. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 4.

119-bus test system. The efficiency of formulations presented
in [28] and [32] has been significantly reduced in large dis-
tribution networks (119 and 136-bus test systems) compared
to the proposed model. Moreover, models of [47] and [81]
cannot guarantee optimal solutions in large size distribution
networks because of their heuristic and metaheuristic-based
formulations.

TABLE 20. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 5.

TABLE 21. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 6.

TABLE 22. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 7.

TABLE 23. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 8.

The proposed framework is an efficient and robust model
for reconfiguration of every distribution network (planar or
non-planar and small- or large-sized distribution systems)
including several transfer and substation buses. It can guar-
antee radiality of distribution network after reconfiguration
without any isolated buses and can find highly effective
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TABLE 24. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 9.

TABLE 25. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 10.

TABLE 26. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 11.

solutions in a short computing time compared to other
reconfiguration approaches proposed in the literature. More-
over, the proposed formulation is highly flexible allowing

TABLE 27. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 13.

TABLE 28. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 12.

additional constraints or considerations to be easily included
in order to increase accuracy and decrease computation
time.

VOLUME 9, 2021 79989



M. Mahdavi et al.: Efficient Mathematical Model for DSR Using AMPL

TABLE 29. Selected configurations in each hour based on actual variable
load amounts of RECT system for case 14.

APPENDIX
In order to show efficiency of the proposed formulation
for reconfiguration of distribution systems with variable
load amounts, the MICP was implemented for summer
daily load profile (containing 24 hours) of a practical
power system known as Regional Electric Company of
Tehran (RECT) [114]. The results including open switches,
daily energy losses (kWh), and computation times were listed
in Table 15.

According to Table 15, it can be said that the same con-
figurations proposed for fix load amounts (daily peak load
values) in Section IV are suggested for network reconfigura-
tion when daily load profile (hourly load levels) is consid-
ered. In this case, the power utility should reconfigure the
network every day based on radial topologies presented in
Table 15. It shows that the selected configurations mentioned
in Section IV are enough efficient for daily reconfiguration of
distribution systems. It can be seen that the considering daily
peak load amounts instead of hourly load levels is sufficient
to determine the best daily network configuration. In order
to show the efficiency of selected configurations for every

hour, the proposedMICPmodel was run for each hour and the
proposed configurations were presented in Tables 15 to 29.
The results confirm that selected configurations are the best
for 24 hours in practical systems.
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