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ABSTRACT The recent experiences of extreme weather events highlight the significance of boosting the
resilience of distribution systems. In this situation, the resilience of distribution systems planning leads to
an efficient solution for protecting the system from these events via line hardening and the installation of
distributed generators (DGs). For this aim, this study presents a new two-stage stochasticmixed-integer linear
programming model (SMILP) to hedge against natural disaster uncertainty. The first stage involves making
investment decisions about line hardening and DG installation. Then, in the second stage, the dynamic
microgrids are created according to a master-slave concept with the ability of integrating distributed
generators to minimize the cost of loss of load in each uncertain outage scenario. In particular, this paper
presents an approach to select the line damage scenarios for the SMILP. In addition, the operational strategies
such as load control capability, microgrid formation and network reconfiguration are integrated into the
distribution system plans for resilience improvement in both planning and emergency response steps. The
simulation results for an IEEE 33-bus test system demonstrate the effectiveness of the proposed model in
improving disaster-induced the resilience of distribution systems.

INDEX TERMS Distribution system, two-stage stochastic programming, resilience improvement planning,
master-slave concept, microgrid formation.

NOMENCLATURE
Indices
d Block index
e Energy storage index
b, b′ Bus indices
k Microgrid index
l, l ′ Distribution line indices
m DG index
ω Scenario index
t Time index

Sets
�L Set of lines l
�L ′ Set of lines l ′ without switch
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�BMDG Set of buses connected to the master DGs
�E Set of energy storage units
�IB Set of initial buses of line l
�N, �NC Set of candidate and non-candidate

buses
�TB Set of terminal buses of line l
�K Set of formable microgrids
�B Set of loads
�M Set of DGs
�I Set of lines connected to bus b
�ω Set of scenarios

Parameters
B Limited budget
BM A sufficiently big number
cdg Capital cost ($) for installing a DG
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chl Capital cost ($) of hardening line l
clsb,t Penalty cost ($) for load shedding
CapESe Energy storage capacity
DRL,Maxj,t Maximum load control limit
E1l,E2l Electrical characteristic of line
HBb,s Binary parameter indicating bus

health
HE l,ω Binary parameter indicating line

health
MapTL i,l Parameter indicating the power of

injection to a line
pcond Conductor failure probability
Pb,t Predicted active load (kW)
Pbj,d,t,ω Load control blocks
pl Failure probability of line l
PMaxl Active power flow (kW) limits of

a line
PDG,Maxm Maximum active power (kW) limit

of a DG
ppole Failure probability of a pole
Qb,t Predicted reactive load (kvar)
QMaxl Reactive power flow (kvar) limits of

a line
QDG,Minm ,QDG,Maxm Minimum and maximum reactive

power (kvar) limits of a DG
rl, xl Resistance andreactance (pu)of line l
Ratech,max

e Maximum charge rate of energy
storage

Ratedch,max
e Maximum discharge rate of energy

storage
SOCES,initial

e Initial state of charge of energy
storage

SOCES,max
e Maximum SOC of energy storage

SOCES,min
e Minimum SOC of energy storage

VDG,set
k Voltage magnitude of buses

connected to master DGs
Vmin,Vmax Minimum and maximum voltage of

a bus
zl,s Binary parameter indicating that line

l is damaged in scenario ω
δmax Maximum limit of voltage angle
ε A small amount
ηESe Energy storage efficiency
ρω Probability of each scenario
ϕh Average occurrences of hurricanes in

a year

Variables
pLb,k,t,ω Scheduled active loads
pLCj,k,t,ω Scheduled active load control
pl,t,ω Active power flow (kW) of lines
pDGm,k,t,ω Scheduled active power of DGs

pDG,depm,b,k,t,ω Linearized active power generation
of DGs

pesche,k,t,ω Charging power of energy storage

pesdche,k,t,ω Discharging power of energy storage
ql,t,ω Reactive power flow (kvar) of lines
qDG,depm,b,k,t,s Linearized reactive power generation

of DGs
socESe,k,t,ω SOC of energy storage
vb,k,t,ω Bus voltage magnitude
zpl,t,ω Active power equality constraint slack

variables
zql,t,ω Reactive power equality constraint

slack variables
δb,k,t,ω Bus voltage angles
1PLCj,k,t,ω Difference between scheduled and

deployed load control
1PDGm,k,t,ω Difference between scheduled and

output power of DGs
γb,k,ω,m Linearization variable
γ ESe,k,t,ω Status of energy storage
σ Lj,d,t,ω Scheduled block for the load controls

Binary variables
Yl 1 if distribution line l is hardened; 0

otherwise
Zm 1 if a back-up DG m is installed; 0

otherwise
ZEMm,b 1 if a back-up DG m is placedat bus b;

0 otherwise
αb,k,ω Binary variable indicating that bus b

belongs to microgrid k
βl,ω 1 if line is active; 0 otherwise
βl,k,ω 1 if line in microgrid k is active; 0

otherwise
λk,ω Fictional flows on the distribution

line l
ξ
(1)
b,b′,l,k,ω Binary variable for microgrid

formation
ξ
(2)
b′,k,ω Fictional supply of master DG

Abbreviations
SOC State of charge
ES Energy storage
DR Demand response
DG Distributed generator
IGDT Information gap decision theory
SMILP Stochastic mixed-integer linear

programming

I. INTRODUCTION
Extreme weather conditions in recent years have resulted
in long and widespread electricity service interruptions with
enormous economic losses [1]. For example, Hurricane Har-
vey resulted in power interruptions that affected several mil-
lion customers in Texas for 14 days [2]. Unfortunately, it has
been predicted that the frequency and intensity of extreme
weather events such as floods and hurricanes are expected
to rise as a result of climate change [3]. Therefore, in order
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to improve the resilience of distribution systems, three types
of strategies including planning, pre-natural disasters actions,
and operational can be adopted [4]. Improving the resilience
of electricity distribution systems against extreme weather
events through planning measures has been a critical issue for
power network operations. The additional investment in dis-
tribution network resilience can reduce additional operational
costs due to extreme weather events. In this regard, hardening
vulnerable distribution lines and installing distributed genera-
tors (DGs) are effective defensive measures taken by utilities
for resilience improvement.

Hardening distribution lines with stronger materials can
reduce their vulnerability to natural disasters, thereby
enabling them to supply the critical loads [5], [6]. In addi-
tion, during extreme weather events, such as a hurricane,
because of the probability of losing the main grid, the con-
trollable generators can supply power for the critical loads
and form self-supplied microgrids to increase load restora-
tion capabilities after an extreme weather event [7], [8].
Therefore, the development of a resilient distribution system
planning model for the optimal design of planning measures
can considerably decrease the negative impacts of natural
disasters.

Evidently, the resilient distribution system planning issue
is related to a high level of uncertainty. Information gap deci-
sion theory (IGDT) and robust and stochastic optimization
frameworks are already utilized as three types of uncertainty
modeling to tackle this challenge. In [9], a strategy based
on IGDT technique was introduced to facilitate decision
making for distribution system planners upon the occurrence
of natural disasters. In [10], a tri-level planner-disaster-risk-
averse-planner model was introduced for planning in inte-
grated natural gas and power networks exposed to extreme
disasters. That work utilizes IGDT optimization technique to
improve the resilience of the integrated system under extreme
events. In [11], a multi-scenario two-stage distributively
robust planning model was presented to hedge against ran-
dom offensive resources of natural disasters and line outage
uncertainties. In the first stage, the distribution system is pro-
tected from natural disasters through pre-planned distributed
generation allocation and line hardening. Also, microgrid
formation and network reconfiguration are employed to
enhance the operational resilience of distribution systems in
the second stage. In [12], a planning-attack-reconfiguration
optimization model was proposed to enhance the resilience
of distribution systems and fight against natural disasters.
In [6], a tri-level optimal hardening model was presented to
improve the resilience of distribution systems in the face of
malicious attacks. However, the IGDT technique and robust
optimization can be overly conservative and computation-
ally cumbersome in resilient distribution system planning.
Stochastic programming, as an effective means for uncer-
tainty handling, generates representative scenarios for line
damage modeling. In [13], a stochastic programming model
was proposed to allocate limited budget to the hardening of
distribution networks. In [14], a two-stage stochastic mixed

integer model was proposed for protecting distribution net-
works in the face of extreme weather events. The first stage
involved the identification of the resilience-oriented design
decisions by the model. In the second stage, the mid- and
post-event system operation cost and the damage repair cost
were evaluated. In [15], a two-stage stochastic optimization
model was proposed for designing resilient distribution sys-
tems by deploying various options such as the hardening
of existing lines, installing DGs, building new lines, and
adding switches. This work considered line damage sce-
narios depending on extreme weather as a stochastic event
for assessment of the distribution system performance in
the wake of a disaster. In [16], a stochastic mixed integer
programming model was proposed to boost the resilience
of distribution systems by installing fuel-based distributed
generator. In [17], a novel planning model is proposed to
capture the effects of investment measures and uncertainties
over three stages on microgrid formation problem. According
to this model, the investment measures are defined in the first
stage. Then, the provisional microgrids are formed based on
the line outage scenarios in the second stage and the load
shedding cost in each microgrid is minimized based on the
load scenarios in the third stage. However, this work did not
consider the limited hardening budget in the planning model.
In addition, the line damage scenarios are generated based on
the worst-case event.

Moreover, the distribution systems resilience can be
improved by post-event operational strategies of load control
capability, network reconfiguration and microgrid formation.
In [18], a probabilistic method was presented to minimize
network’s aging and maximize its reliability by using the
emergency demand response program. In [19], a model was
proposed to investigate the impact of demand response on
the resilience of dynamic clustered distribution system in
operation stage. In addition, network reconfiguration is an
effective strategy to pick up critical loads after natural dis-
asters. In [20], a multi-stage stochastic optimization model
was proposed for jointly wind turbine allocation and network
reconfiguration in a multi-fault system. In [21], a bi-level
network reconfiguration model was presented to improve
the electricity distribution network resilience against severe
weather events such as hurricane.

A number of stochastic distribution system planning works
have addressed the microgrid form, resulting in an improve-
ment in the system resilience. However, none of these studies
have considered the formation of microgrids based on the
master-slave control technique with the capability of integrat-
ing DGs. Microgrid formation is one of the most effective
operational strategies for improving the resilience of distribu-
tion systems. The lessons learned from extreme events show
microgrids are an appropriate measure to improve resilience.
During the 2011 earthquake and tsunami in Japan, the Sendai
microgrid survived for two days without the upstream net-
work [22]. In [23], a two-stage optimization model was pro-
posed to optimize investment in mobile energy storage units
in the first stage and form dynamic microgrids to avoid load
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TABLE 1. Comparisons between the presented method and other existing planning methods.

shedding in the second stage. In [24], a two-stage framework
consisting of mobile emergency generator pre-positioning
and real-time allocation was proposed to restore critical loads
via the formation of multiple microgrids. References [23]
and [24] did not adopt line hardening and distributed gen-
eration allocation as investment decisions in the resilient
planningmodel. Ref. [4] presented a stochastic programming
model in order to boost the resilience planning of inte-
grated power distribution system and water distribution sys-
tem against earthquakes. In [25], a novel two-stage stochastic
optimization approach strategy was formulated to assess the
effects of investment decisions and investment uncertainties
on the performance of a distribution system both during and
after the occurrence of emergency conditions. This work
presented a hybrid stochastic process and deterministic causal
structure to accommodate the correlations of various uncer-
tainties. In [26], a two stage stochastic optimization model
was introduced to enhance the resilience of the distribution
system by using a social welfare index. This work obtained
the operation state of the distribution equipment through a
comparison of the failure probability of components with
a uniform random number. These works did not consider
the master-slave distributed generator concept and distributed
energy resources in the resilient distribution system planning
model. Comparisons between the presented method and other
existing planning methods for the resilience of distribution
systems improvement is presented in Table 1, which includes
Power Flow (PF), resilience measures, uncertainty modeling
and operational strategies.

To address the above shortcomings, this paper proposes a
novel stochastic planning model with the operational strate-
gies such as microgrid formation and load control capability
to reduce the load interruptions when the main grid is avail-
able. To sum up, the key contributions of the proposedmethod
are as follows:
• A novel linear two-stage stochastic process is presented
for resilient distribution system planning considering
line damage uncertainty; thus, this method can increase
the strength of infrastructure and enable self-healing
operation.

• The planning measures and the operational strategies
such as microgrid formation, load control capability

and network reconfiguration are integrated with line
damage uncertainty over two stages to enhance the
distribution systems resilience. To the best of our knowl-
edge, the impact of the master-slave technique and
load control capability on resilient distribution system
planning has not been considered in previous works.
Therefore, a comprehensive formulation based on a
master-slave method with the ability of integrating
DGs is presented to model the microgrid formation
problem.

• In the second stage of the proposed model, the self-
healing operation can reduce the outage propagation in
the distribution network until sectionalizers disconnect
the lines. This method sectionalizes the distribution
network into multiple self-supplied microgrids to min-
imize the load shedding costs while maintaining radial
topologies.

The remainder of the paper is organized as follows.
Section II describes in detail the two-stage stochastic model
for resilient planning of distribution systems and line dam-
age modeling of extreme weather events. The simulation
data are presented in Section III, and Section IV concludes
the paper.

II. PROBLEM FORMULATION
Fig. 1 shows the framework proposed for improving the
resilient planning of a distribution system. Prior to solving
the SMILP model, the line outage uncertainty is modeled as
a stochastic process. Afterward, a set of scenarios represent-
ing the realization of line outage uncertainty is generated.
Then, in the first step, investment decisions such as DG
installation and line hardening are made based on a certain
budget. In the second step, dynamic microgrids are formed
and then the system operation cost in term of optimal load
shedding is minimized in each uncertain outage scenario.
In fact, the post-event operational strategies are integrated
into pre-event network planning for resilience improvement
in both planning and operation steps. In the next step, the
two-stage stochastic model is solved utilizing available soft-
ware packages. The simulation results of the model assist the
utilities to decide about hardening their distribution networks
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FIGURE 1. Framework for the resilient planning of a distribution system.

and allocating new back-up DGs with optimal investment and
restoration costs.

In the following, the two-stage stochastic framework for
the planning model under uncertainty is formulated; which
consists of the first-stage problem considering DG allocation
and line hardening in Section A; the second-stage problem
considering microgrids formation, network reconfiguration,
and distributed energy resources in Section B; and the uncer-
tainty modeling in Section C.

A. DISTRIBUTION SYSTEM PLANNING MODEL
In this section, the objective function minimizes the invest-
ment cost in the first stage and the expectation of load shed-
ding cost under line damage scenarios in the second stage,
shown in (1). It is worth mentioning that the load shedding
cost is used to assess the distribution system performance
during extreme events, and this index has beenwidely utilized
to evaluate the resilience of the distribution system [27], [28].
With a certain budget, a distribution system planner makes a
scheme to allocate resources in order to improve the resilience
of distribution systems. In this study, lines hardening and DG
installation are considered as investment measures. There-
fore, the budget constraint (2) indicates that the total invest-
ment cannot exceed a limited budget. Moreover, the binary
variable ZEMm,b is used to represent whether the DG m is
installed at bus b in the planning stage. Constraint (3) shows
that the bus inappropriate for DG allocation must be set to
zero. Equation (4) represents that merely the DG allocated
in the planning stage may be installed at the candidate bus.
A maximum of one DG is located in each bus, as shown in
constraint (5). Equation (6) indicates that each DG can be

allocated to only one bus.

min
∑
l

chl × Yl +
∑
m

cdg × Zm + ϕh
∑
ω

ρωφ(ω) (1)∑
l

chl × Yl +
∑
m

cdg × Zm ≤ B (2)

ZEMm,b = 0, ∀m, b ∈ �NC (3)

ZEMm,b ≤ Zm, ∀m, b (4)∑
m∈�M

ZEMm,b′ ≤ 1, b′ = �BMDG(k) (5)∑
b′
ZEMm,b′ ≤ 1, m = �M (6)

B. OPERATIONAL STRATEGIES IN THE SECOND-STAGE
Under a given planning decision, the resilience of distribu-
tion systems is improved by post-event operational strategies
of microgrid formation, network reconfiguration, and dis-
tributed energy resources. Particularly, the objective function
of the second stage is to minimize the load shedding costs,
as depicted in (7), and this equation has been used in the
first-stage planning objective function.

φ(ω) = min
∑
k

∑
b

∑
t

clsb,t × (1− αb,k,ω)× Pb,t (7)

The network reconfiguration, microgrids formation and
distributed energy resources are integrated into the distri-
bution system planning model to increase the operational
resilience. In addition, the strategy introduced in [29] is
utilized for modeling a master-slave concept, which means
that in each formatted microgrid, only one DG as a master
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unit controls the voltage and frequency of the microgrid, and
other DGs act as slave units. According to the above expla-
nation, the topology and operational constraints are given
as follows:

1) CONNECTION CONSTRAINT
Constraint (8) indicates that each bus of the network will only
belong to either one of the formatted microgrids or none of
them. Binary variable αb,k,ω defines that if the k-th of NMGs
is chosen as the master unit and bus b belongs to microgrid
k , αb,k,ω will be 1 [17].

NMGs∑
k=1

αb,k,ω ≤ 1,∀b, ω (8)

2) ROOT BUS CONSTRAINTS
Constraints (9) and (10) represent the root bus status. One
can connect bus b in scenario ω to microgrid k only if
the k-th member of the set �BMDG is selected as the root
bus [17].

αb,k,ω ≤ αb′,k,ω, b
′
= �BMDG(k), ∀b, k, ω (9)

αb′,k,ω ≤
∑
m∈�M

ZEMm,b′ , b
′
= �BMDG(k), ∀ω (10)

3) BOUNDARY LINE CONSTRAINTS
If the two sides of a distribution line do not belong to the same
microgrid during the formation of the microgrids, the binary
variable indicating the line statusmust be set to zero, as shown
in (11). Linear methods are used to transform this equation
to the linear constraint. Hence, the equation (11) can be
linearized using Eqs. (13)–(15) [5], [7].

βl,ω ≤ αb,k,ω × αb′,k,ω, ∀b, b
′, l, k,ω (11)

βl,ω =
∑
k∈�K

βl,k,ω, ∀l,ω (12)

βl,k,ω ≤
∑
b

αb,k,ω, b =�IB(l), ∀l, k,ω (13)

βl,k,ω ≤
∑
b′
αb′,k,ω, b

′
= �TB(l), ∀l, k,ω (14)

βl,k,ω ≥
∑
b

αb,k,ω +
∑
b′
αb′,k,ω−1,

b = �IB(l), b′ = �TB(l), ∀l, k,ω (15)

4) LINE AND BUS STATUS CONSTRAINTS
Constraints (16)–(18) show the status of a line and a bus.
The functional status of lines is connected using constraint
(16) with their outage status and the line hardening variable
decision. First, in the scenario generation stage, we should
define zl,ω for all lines. Subsequently, the active status of a
line βl,ω is defined according to the first-stage binary variable
Yl and the uncertainty realization. Constraints (17) and (18)
are used for modeling the status of a distribution line and the

damaged buses, respectively.

βl,ω ≤ 1− (1− zl,ω)× (1− Yl),∀l, ω (16)

αb,k,ω = αb′,k,ω, b = �IB(l
′

),

b′ = �TB(l
′

), ∀l
′

,HEl,ω 6= 0, k,ω (17)

αb,k,ω ≤ HBb,ω, ∀b, k,ω (18)

5) RADIALITY CONSTRAINTS
In this part, the method described in [29] is used for mod-
eling the radiality constraint in each microgrid. In the cur-
rent approach, we create a fictitious network in which each
formatted microgrid permits only a single energy source as
a master control unit, while the other buses are sink buses
with 1 p.u demand loads. According to [29], the connectivity
constraints can be modeled by the following equations:∑

b

αb,k,ω ≤ BM × λk,ω, ∀k,ω (19)

λk,ω ≤ BM ×
∑
b

αb,k,ω, ∀k,ω (20)∑
l

βl,k,ω =
∑
b

αb,k,ω − λk,ω, ∀k,ω (21)∑
b∈�TB

∑
l

ξ
(1)
b,b′,l,k,ω −

∑
b∈�IB

∑
l

ξ
(1)
b,b′,l,k,ω

= −αb′,k,ω,

b′ 6= �BMDG(k), ∀k,ω (22)∑
b∈�TB

∑
l

ξ
(1)
b,b′,l,k,ω −

∑
b∈�IB

∑
l

ξ
(1)
b,b′,l,k,ω

= −ξ
(2)
b′,k,ω × αb′,k,ω,

b′ = �BMDG(k), ∀k,ω (23)

−βl,k,ω ≤ ξ
(1)
b,b′,l,k,ω ≤ βl,k,ω, b ∈ �TB(l),

b′ ∈ �IB(l), ∀l, k, ω (24)

αb′,k,ω ≤ ξ
(2)
b′,k,ω ≤ BM × αb′,k,ω,

b′ = �BMDG(k), ∀k,ω (25)

6) LOAD DEMAND CONSTRAINTS
Here, we presume that the system operator is able to control
some of the loads directly via utilizing the demand response
contracts. Constraints (26) and (27) show the active power in
every node with the load control capabilities in the second
stage. According to constraint (28), if the load control is
utilized to the active power of each load, the reactive power is
decreased as well. In addition, the control capabilities of the
loads are represented by Eqs. (29)–(31) [17].

pLb,k,t,ω = αb,k,ω × Pb,t , ∀b, k, t,ω (26)

pLj,k,t,ω = αj,k,ω × Pj,t−p
LC
j,k,t,ω, ∀j, k, t,ω (27)

qLb,k,t,ω = αb,k,ω × Qb,t−tan (ϕb)

×pLCb,k,t,ω, ∀b, k, t,ω (28)∑
k∈�K

pLCj,k,t,ω =
D∑
d=1

σ Lj,d,t,ω × p
b
j,d,t,ω, ∀j, t,ω (29)
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pLCj,k,t,ω ≤ αj,k,ω × DR
L,Max
j,t , ∀j, k, t,ω (30)

D∑
d=1

σ Lj,d,t,ω ≤ 1, ∀j, t,ω (31)

7) DG CONSTRAINTS
Equations (32)–(35) show the active and reactive power limits
of DGs if they have been allocated in the first stage. One can
see that equation (32) represents a nonlinear constraint and
must be converted to linear constraints. Hence, equation (32)
may be linearized via constraints (36)–(38) [5].

γb,k,ω,m = αb,k,ω × ZEMm,b , ∀b, k,ω,m (32)

pDGm,k,t,ω ≤
∑
b

γb,k,ω,m × PDG,Maxm , ∀m, k, t,ω (33)

qDGm,k,t,ω ≤
∑
b

γb,k,ω,m × QDG,Maxm , ∀m, k, t,ω (34)

qDGm,k,t,ω ≥
∑
b

γb,k,ω,m × QDG,Minm , ∀m, k, t,ω (35)

γb,k,ω,m ≤ αb,k,ω, ∀b,m, k,ω (36)

γb,k,ω,m ≤ ZEMm,b , ∀b,m, k,ω (37)

γb,k,ω,m ≥ ZEMm,b + αb,k,ω−1, ∀b,m, k,ω (38)

8) ENERGY STORAGES CONSTRAINTS
Constraints (39)–(42) depict the charging and discharging
constraints of the energy storage (ES) units in the second
stage. Moreover, equations (43)–(45) represent the limits
of the maximum, minimum and initial charge levels of the
energy storage units, respectively. The state of charge (SOC)
of the storages at different time intervals is computed using
equation (46) [7].

γ ESe,k,t,ω ≤
∑
�E

αb,k,ω, ∀e, k, t, ω (39)

pesche,k,t,ω ≤ γ
ES
e,k,t,ω × Rate

ch,max
e , ∀e, k, t, ω (40)

pesdche,k,t,ω ≤ (1− γ ESe,k,t,ω)× Rate
dch,max
e , ∀e, k, t, ω (41)

pesdche,k,t,ω ≤
∑
�E

αi,k,ω × Ratedch,max
e , ∀e, k, t, ω (42)

socESe,k,t,ω ≤
∑
�E

αi,k,ω × SOCES,max
e , ∀e, k, t, ω (43)

socESe,k,t,ω ≥
∑
�E

αi,k,ω × SOCES,min
e , ∀e, k, t, ω (44)

socESe,k,t,ω =
∑
�E

αb,k,ω × SOCES,initial
e + pesche,k,t,ω ×

ηESe

CapESe

−pesdche,k,t,ω ×
1

ηESe × CapESe
, ∀e, k, t, ω (45)

socESe,k,t,ω = socESe,k−1,t,ω + pes
ch
e,k,t,ω ×

ηESe

CapESe

−pesdche,k,t,ω ×
1

ηESe × CapESe
, ∀e, k, t, ω (46)

9) LINE FLOW CONSTRAINTS
Constraints (47) and (48) define the active and reactive power
flows of the lines.

−βl,ω × PMaxl ≤ pl,t,ω ≤ βl,ω × PMaxl , ∀l, t,ω (47)

−βl,ω × QMaxl ≤ ql,t,ω ≤ βl,ω × QMaxl , ∀l, t,ω (48)

10) POWER BALANCE IN EACH BUS
The active and reactive power balances in each node are
illustrated in (49) and (53). Due to the use of bilinear terms
PDGm,k,t,ω. Z

EM
m,b in (49) and QDGm,k,t,ω. Z

EM
m,b in (53), these con-

straints are nonlinear. Therefore, constraints (50)–(52) and
(54)–(56) are used to transform the nonlinear constraints [17].∑

∀k∈�K

[∑
∀m

pDG,depm,b,k,t,ω−p
L
b,k,t,ω

]
=

∑
l∈�I

−pl,t,ω ×MapTLb,l, ∀b, t,ω (49)

pDG,depm,b,k,t,ω ≤ PDG,Maxm × ZEMm,b , ∀m, b, k, t,ω (50)

pDG,depm,b,k,t,ω ≤ pDGm,k,t,ω, ∀m, b, k, t,ω (51)

pDG,depm,b,k,t,ω ≥ pDGm,k,t,ω−P
DG,Max
m × (1− ZEMm,b ),

∀m, b, k, t,ω (52)∑
∀k∈�K

[∑
∀m

qDG,depm,b,k,t,ω−q
l
b,k,t,ω

]
=

∑
l∈�I

−ql,t,ω ×MapTLb,k , ∀b, t,ω (53)

qDG,depm,b,k,t,ω ≤ QDG,Maxm × ZEMm,b , ∀m, b, k, t,ω (54)

qDG,depm,b,k,t,ω ≤ qDGm,k,t,ω, ∀m, b, k, t,ω (55)

qDG,depm,b,k,t,ω ≥ qDGm,k,t,ω−Q
DG,Max
m × (1− ZEMm,b ),

∀m, b, k, t,ω (56)

11) BUS VOLTAGE CONSTRAINTS
Magnitude and angles constraints on the node voltages are
defined using (57) and (58). The voltage magnitude of master
unit k is set to the controlled value (1 p.u), as shown in
constraint (59). Besides, constraint (60) forces its voltage
angle to be zero [17].

αb,k,ω × Vmin
≤ vb,k,t,ω ≤ αb,k,ω
×Vmax , ∀b, k, t,ω (57)

−αb,k,ω × δ
max
≤ δb,k,t,ω ≤ αb,k,ω

×δmax , ∀b, k, t,ω (58)

vb,k,t,ω = αb,k,ω × V
DG,set
k ,

∀b ∈ �BMDG , ∀k, t,ω (59)

−
(
1− αb,k,ω

)
× δmax ≤ δb,k,t,ω ≤

(
1− αb,k

)
× δmax ,

∀b ∈ �BMDG , ∀k, t,ω (60)

12) LOAD FLOW LIMITS
In this section, the method presented in [17] is utilized to
perform load flow computations in the distribution network.
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FIGURE 2. Flowchart of line damage scenario generation.

Using this approach, the node voltage magnitudes and angles
are computed according to a suitable linear approximation.
Constraints (61)–(63) define the linearized load flow equa-
tions. Moreover, the slack variable restrictions are shown in
equations (64)–(66) for validating equality constraints when
the two buses of one line are not in the same microgrid.

E1l =
rl

r2l +x
2
l

, E2l =
xl

r2l +x
2
l

(61)

pl,t,ω = zpl,t,ω +
∑
k

[
δb,k,t,ω−δr,k,t,ω

]
×E2l +

∑
k

[
vb,k,t,ω−vb′,k,t,ω

]
×E1l, ∀l, t,ω (62)

ql,t,ω = zql,t,ω +
∑
k

[
δb,k,t,ω−δb′,k,t,ω

]
×E1l +

∑
k

[
vb,k,t,ω−vb′,k,t,ω

]
×E2l, ∀l, t,ω (63)

−
(
1− β l,ω

)
× BM ≤ zpl,t,ω + ε ≤

(
1− β l,ω

)
×BM , ∀l, t,ω (64)

−
(
1− β l,ω

)
× BM ≤ zql,t,ω + ε ≤

(
1− β l,ω

)
×BM , ∀l, t,ω (65)

−0.01 ≤ ε ≤ 0.01 (66)

C. LINE DAMAGE SCENARIOS GENERATION
In this paper, the operational status of distribution lines
against hurricanes are considered uncertain set. The process
of line outage scenario generation is shown in Fig. 2. In distri-
bution networks, overhead distribution lines (conductors) and
poles can be damaged by hurricanes. The fragility function of
conductors and poles is given as follows [30]–[32]:

ppole(w) =
{
0.0001e0.0421w, 1

}
(67)

pcond (w) =


0, w ≤ wmin
w−wmin

wmax−wmin
, wmin ≤ w ≤ wmax

1, w ≥ wmax

(68)

In the scenario generation phase, one must investigate
the hurricane occurrence model in the distribution system.
Therefore, in the present paper, we consider hurricanes in
categories 1-3. Moreover, it is considered that the hurricane
happens with various speeds in each scenario based on the
probability of each hurricane category. Then, for each sce-
nario, the operational status of the conductors and poles of
each distribution line is extracted by comparing the failure
probability, which is computed through the fragility func-
tions and the random number sampling from the uniform
distribution (0, 1). Hence, the operational status of each line
is defined. It is worth mentioning that a distribution line is
failed if the conductor or any distribution pole between the
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TABLE 2. Cost of strategies to enhance resilience.

associate nodes is failed. In addition, we presume that failure
probabilities of poles are independent and all poles have the
same fragility function. However, a few resilience researches
consider the fact that the joint failure probabilities of multiple
lines can be modeled [33].

III. CASE STUDY AND NUMERICAL RESULTS
In this section, a modified IEEE 33-bus distribution system
and IEEE 69-bus distribution system are utilized for vali-
dating the effectiveness of the proposed SMILP model. It is
assumed that average occurrences of hurricanes in a year
are one. The duration of the failure state is considered to be
15 hours (between 10:00 and 24:00). Table 2 shows the initial
investment costs of the two considered resilience improve-
ment options. The length of each distribution line is presumed
to be proportional to its resistance. Hence, we can calculate
the number of distribution poles in every distribution line. It is
assumed that the distance between two consecutive poles is
150 ft. Also, the resilience improvement options are assumed
to have a life time of 15 years. Considering a 10% interest
rate, the annual investment cost for the purchase and instal-
lation of each option is a tenth of the original investment
cost. The penalty cost for load shedding is considered to be
14 $/kWh [11], and the load shedding cost parameter is the
product of the load priority and the load shedding penalty
cost. The assumed multipliers of the load profile are shown
in Fig. 3 [35]. Also, we consider the same multipliers for all
the buses. The lower and upper limits of the voltage range are
set to 0.9 and 1.1 pu, respectively. The proposed model was
implemented using GAMS environment and solved using
CPLEX solver with a 0.01% optimality gap. Our simulation
is done on a PC with a 3.2-GHz Intel Core i7 processor and
32 GB of RAM. The computation time is 30-60 minutes
for the IEEE 33-bus distribution system and approximately
2 hours for the IEEE 69-bus distribution system.

A. IEEE 33-BUS DISTRIBUTION SYSTEM
This case study has six normally-closed lines, five tie lines,
and one upstream substation. It is assumed that controllable
back-up DGs with 1000-kW capacities are used by utilities

FIGURE 3. Load profile multiplier.

for boosting the network resilience. The buses 11, 21, 24, 25,
and 30 are selected as candidates for the natural gas-fired DG
installation as master units. Nodes 4, 7, 8, 14, 24, 25, 29, 30,
31, and 32 are demand-response-capable. These nodes can
only apply load shedding. The blocks of the load control are
considered to be 100 kW, and the controlling options have
five levels. In the last level, if the load reduces below 100 kW,
the load will be interrupted entirely. There are two energy
storage units, which are installed on nodes 22 and 33. The
capacity, charging and discharging rates, initial SOC, and
efficiency of the energy storage units are considered to be
100 kWh, 50 kW, 60% and 0.85, respectively. The detailed
bus and distribution line data are available in [36].

1) CASE 1: EFFECTIVENESS OF MICROGRID FORMATION
STRATEGY
Here, the effects of the microgrid formation on the resilience
of a distribution system during the failure state when the
upstream network is available have been studied. A demon-
stration case considering three scenarios for the distribution
line outage status is used to illustrate the effectiveness
of the presented model. The optimal planning measures
and the scenarios of line outages with reconfiguration are
shown in Fig. 4.

In the planning stage with a $ 250,000 hardening budget,
two DGs are installed, and four lines are hardened accord-
ing to the proposed distribution system planning model.
With the realization of line outage uncertainty, specific dis-
tribution lines are damaged in three scenarios as depicted
in Fig. 4 (a)–(c). In each scenario, the planning decisions
are adopted and the operational strategies of microgrid for-
mation, network reconfiguration, and demand-side manage-
ment are employed to restore critical loads in the emergency
response stage.

For instance, distribution lines 7-8, 12-13, 16-17, and
19-20 are damaged in Fig. 4 (a). In this case, line 19-20
is hardened and two DGs are installed in candidate nodes
11 and 30 to restore loads in a critical situation. More-
over, the tie-lines 18-33 and 25-29 are closed, and the
normally-closed lines 3-23, 6-26, and 15-16 are opened to
form three microgrids with the main grid, DG1 and DG2,
respectively. Similar analyses can be carried out for other
scenarios.

Table 3 displays the simulation results of the 33-bus system
with and without microgrid formation strategy. Moreover,
In Fig. 5, the investment decisions without the microgrid
formation strategy are shown. It is worth mentioning that,
in Fig. 5, without microgrid formation strategy means that the
distribution network has not used the normally closed lines.

As depicted in Table 3, the load shedding increases with-
out the utilization of the microgrid formation strategy. The
reason is the disconnection of the distribution network from
the upstream network to supply loads. In addition, without
the utilization of the normally closed lines, the distribution
system cannot sectionalize itself into multiple microgrids to
recover the critical loads during disasters. In fact, one master

VOLUME 9, 2021 78867



M. Ghasemi et al.: Stochastic Planning Model for Improving Resilience

FIGURE 4. Optimal planning results for the 33-bus test system.

TABLE 3. Simulation results of the 33-bus distribution network.

DG is installed in node 11, and only one microgrid is formed
due to not using the normally closed lines. Thus, adopting
the microgrid formation approach can considerably decrease
the load shedding cost more than %63. On the other hand,
considering the microgrid formation strategy can enhance the
distribution system flexibility in the recovery phase.

2) CASE 2: EFFECTIVENESS OF NETWORK
RECONFIGURATION
This section is designed to illustrate the effectiveness of
the network reconfiguration on resilient distribution system
planning against hurricane. The location of DGs and the
hardened lines and the configuration of distribution network
without tie-lines are shown Fig. 6(a)–(c). It should be men-
tioned that ‘‘without reconfiguration’’ means that the distri-
bution network is in its initial configuration. In this case,
the line hardening cost and the cost of loss of load are
$4 9,200 and $ 441,413.59, respectively.

As shown in these figures, considering tie-lines as an
operational strategy can significantly decrease the investment
cost, especially the line hardening cost. In fact, in comparison
with Section III-A, the load shedding and line hardening
costs increased approximately %15 and %3.9, respectively.
As a consequence, the combination of the planning and
operational actions such as microgrid formation and net-
work reconfiguration can efficiently enhance the resilience of
distribution systems.

FIGURE 5. Optimal planning results without microgrid formation strategy.

3) CASE 3: EFFECT OF THE HARDENING BUDGET
This section investigates the dynamic microgrid formation
and load shedding cost with various hardening budgets from
B = 0 to B = 300,000 to validate the effectiveness of
the hardening budget. The investment cost and the total cost
associated with load shedding are shown in Table 4. In the
absence of the hardening budget, the line outage uncertainty
will impose $ 734,440.73 in the network load shedding cost.
If we increase the hardening budget to $ 50,000, the loss of
load cost will be reduced to $ 628,425.68. However, the cost
of loss of load will not always lessen as we increase the
hardening budget.
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FIGURE 6. Optimal planning results without network reconfiguration.

TABLE 4. Planning results for the 33-bus test system under different
hardening budgets.

FIGURE 7. The load shedding under different hardening budgets.

The reason is that hardened lines (with fixed numbers of
DGs) cannot alter the microgrid formation. In Table 4, when
B = 150,000 and 200,000, the hardening plans are the same,
e.g., the four distribution lines 7-8, 8-9, 19-20, and 27-28 are
hardened. With a hardening budget of $ 300,000, the loss
of load cost will drop from $ 734,440.73 to $ 417,258.26, a
decrease of more than % 43. This illustrates the effectiveness
of DG placement and distribution line hardening. Moreover,
the load shedding for the IEEE 33-bus distribution network is
shown in Fig. 7.

Obviously, the investment schemes offer an effective plan
for the determination of the distribution hardening budget via
a comparison of the marginal benefits.

B. IEEE 69-BUS DISTRIBUTION SYSTEM
This test network involves a 12.66 kV distribution sys-
tem with 1 medium voltage feeder, 69 nodes, 71 lines,
3 tie lines, and 8 normally-closed lines. The total active
and reactive power demands of this system are 3.8 MW
and 2.69 Mvar, respectively. The distribution system con-
tains 1200-kW back-up DGs. The newly installed DGs are
restricted to a total number of two. The candidate positions
for DG placement are 11, 21, 30, 50, and 61. Nodes 11, 12,
21, 49, 50, 61, and 64 are considered as demand-response-
capable. Similar to the 33-bus system, the load control blocks
are considered to be 100 kW, and the controlling options
have five levels. There are two energy storage units, which
are installed on nodes 17 and 37. The characteristics of the
energy storage units are similar to the 33-bus system. In [37]
and [38], the accurate data of the distribution system loads
and line parameters are given.

According to the proposed distribution system planning
model, two DGs are installed, and nine distribution lines are
hardened considering a $ 300,000 hardening budget. In this
state, the investment cost in the 69-bus distribution system is
$ 299,400. Fig. 8 illustrates the optimal planning decisions
resulting from solving the proposed method for scenarios
when the distribution system is connecting to the upstream
network. In Fig. 8(a)–(c), there were 7, 15, and 3 faulty
lines isolated via the normally-closed lines in scenario S1,
S2, and S3, respectively. As shown in this figure, the distri-
bution system sectionalized itself into multiple microgrids.
For example, two DGs are installed in line damage scenar-
ios. Moreover, 2, 8, and 1 faulty line are hardened to form
multiple microgrids for reducing the load shedding cost in
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FIGURE 8. Optimal planning schemes of scenario S1-S3 in the 69-node system.

FIGURE 9. The average SOC level of the energy storage units during a
hurricane.

scenario S1, S2, and S3, respectively. These simulation
results depict that the presented model can form microgrids
through master-slave control technique and network recon-
figuration for restoring the critical loads. In Table 5, the load
shedding cost under 3 different scenarios for the cases B = 0
and B = 300,000 are provided. It can be seen that the cost
of load shedding with $ 300,000 hardening budget is sig-
nificantly smaller than the state without investment plans
in the presence of the upstream network. As shown in this
table, the load shedding cost reduction in the IEEE 69-bus
distribution network is approximately %36. In fact, it mean
that the optimal investment schemes can directly reduce the
economic losses during disasters.

Moreover, the average SOC level of the energy storage
units is depicted in Fig. 9. Based on the results, the two energy
storage units are fully operated and the maximum capacity of
them is utilized to supply loads during disaster. In addition,
the SOC levels of the two energy storage units are decreased
at the end of the scheduled period.

TABLE 5. Planning results for the 69-node test system.

IV. CONCLUSION
In this study, we proposed a novel model for the resilient
distribution system planning with line hardening and DG
placement based on two-stage stochastic optimization to min-
imize the load shedding costs against natural disasters. To do
this optimally, the master-slave control method was used to
coordinate resources within each microgrid in the second
stage. Moreover, we applied load control blocks and energy
storage units to help the system operator in improving dis-
tribution system performance in the restoration stage. It was
demonstrated that the combination of planning and opera-
tional strategies can significantly increase the resilience of
distribution systems. According to the simulation results,
the use of the microgrid formation strategy and network
reconfiguration can significantly reduce load shedding costs
by %63 during hurricanes. In addition, the hardening cost
increases by ∼%15 without considering network reconfigu-
ration. However, as has been shown in the case study, deter-
mining a proper hardening budget can efficiently decrease
the cost of loss of loads. In future works, we will study the
impact of line damage and load uncertainties on themicrogrid
formation strategy in the resilient planning model.
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