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ABSTRACT The novel coronavirus, also known as COVID-19, is a pandemic that hasweighed heavily on the
socio-economic affairs of the world. Research into the production of relevant vaccines is progressively being
advanced with the development of the Pfizer and BioNTech, AstraZeneca, Moderna, Sputnik V, Janssen,
Sinopharm, Valneva, Novavax and Sanofi Pasteur vaccines. There is, however, a need for a computational
intelligence solution approach to mediate the process of facilitating quick detection of the disease. Different
computational intelligence methods, which comprise natural language processing, knowledge engineering,
and deep learning, have been proposed in the literature to tackle the spread of coronavirus disease. More so,
the application of deep learning models have demonstrated an impressive performance compared to other
methods. This paper aims to advance the application of deep learning and image pre-processing techniques
to characterise and detect novel coronavirus infection. Furthermore, the study proposes a framework named
CovFrameNet., which consist of a pipelined image pre-processing method and a deep learning model
for feature extraction, classification, and performance measurement. The novelty of this study lies in the
design of a CNN architecture that incorporates an enhanced image pre-processing mechanism. The National
Institutes of Health (NIH) Chest X-Ray dataset and COVID-19 Radiography database were used to evaluate
and validate the effectiveness of the proposed deep learning model. Results obtained revealed that the
proposed model achieved an accuracy of 0.1, recall/precision of 0.85, F-measure of 0.9, and specificity
of 1.0. Thus, the study’s outcome showed that a CNN-based method with image pre-processing capability
could be adopted for the pre-screening of suspected COVID-19 cases, and the confirmation of RT-PCR-based
detected cases of COVID-19.

INDEX TERMS Image pre-processing, coronavirus, COVID-19, machine learning, deep learning, convo-
lutional neural network, CNN, X-Ray.

I. INTRODUCTION
The 2019 novel coronavirus disease presents an important
and urgent threat to global health. It has equally exposed
the fragility of the most highly placed health institutions
and infrastructures across the globe [1], [2]. Since the first
recorded case of COVID-19 in early December 2019 in
Wuhan, in the Hubei province of the People’s Republic of
China, the number of patients confirmed to have contracted
the disease has exceeded 35,960,908 in 214 countries, and the
number of people infected is probably much higher. More-
over, a record estimate of more than 1,052,310 people have
died from the coronavirus COVID-19 outbreak as of October
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06, 2020 [58]. The study conducted by Wynants et al. [1] and
Taiwo and Ezugwu [3] revealed that the implementation of
efficient prediction models, which combine several variables
or features, can assist medical staff in triaging patients when
allocating limited healthcare resources.

Singh et al. [4] developed a deep convolution neural net-
work (CNN) that was applied in the automated diagno-
sis and analysis of COVID-19 in infected patients. Their
model involved tuning hyper-parameters of the CNN model
with a multi-objective adaptive differential evolution algo-
rithm. The comparative analysis showed that their proposed
method outperformed existing machine learning models such
as CNN, GA- and PSO-based CNN models, based on the
different performance metrics employed to validate the con-
ducted experiment, such as the F-measure and Sensitivity
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Specificity, and Kappa statistics. A study in [5], [4] developed
DenseNet201, a deep transfer machine learning model for
the diagnosis and detection of COVID-19 cases from chest
(Computed Tomography) CT scans. The DenseNet201 uti-
lized some feature extraction techniques by adopting its
own learned weights on the ImageNet dataset along with
a convolutional neural structure. The DenseNet201 model
achieved a 97% accuracy compared to other models. In the
study presented by Barstugan et al. [6], a machine learning
approach was proposed to detect the COVID-19 on abdom-
inal Computed Tomography (CT) images. The obtained
results showed that their model differentiated COVID-19 spe-
cific characteristics from other viral pneumonia. In the works
of [7] and [8], the authors implemented a deep convolutional
neural networks model that was able to detect COVID-19
pneumonia patients using digital chest X-Ray radiographs
automatically. The authors in [9] employed a supervised
deep learning model to detect and classify COVID-19 infec-
tion from CT images while minimizing the requirements
for manual labelling of CT images. More so, the model
could efficiently distinguish between −ve and +ve cases of
COVID-19 by using samples from retrospectively extracted
CT images from multi-scanners and multicenters. The exper-
imental results showed that the existing supervised learning
model was able to achieve high precision classifications and
good qualitative visualization for the lesion detections. For a
comprehensive review of existing machine learning models
for COVID-19, interested readers are referred to the follow-
ing references [11], [12], [21].

Although artificial intelligence approaches such as case-
based reasoning (CBR) [13], LSTM [61], and sentiment anal-
ysis [62] using text-based input have been applied in the
detection of the novel coronavirus disease. The CNN model
approaches, however, have shown to be more effective and
promising. Several studies [14], [15], [16], [17], [18], [19]
and [11], [66], [67] on the application of CNN to the task
of detecting and classifying COVID-19 have proven that the
deep learning model is one of the most popular and effective
approaches in the diagnosis of COVID-19 from digitized
images. The outstanding performance of CNN is due to its
ability to learn features automatically from digital images
as has been applied to the diagnoses of COVID-19 based
on clinical images, CT scans, and X-Rays of the chest by
researchers. Therefore, considering the advantages of the sev-
eral automated deep learning solutions approaches as men-
tioned above for curbing the spread of COVID-19 through
early detection, classification, isolation and treatment of
affected persons, it would be worthwhile to investigate fur-
ther the possibility of developing better and more efficient
variants of deep machine learning techniques. Moreover,
we discovered that most studies fell short in hyperparam-
eter selection in the CNN design and other application of
image pre-processing techniques, a limitation which this
study addresses.

Motivated by the widely reported role of chest X-Rays in
enabling the detection of COVID-19 [59], [60], this paper

proposes the application of image pre-processing and deep
learning techniques to automate the process of extracting
important features. The resulting classification or detection
from digital images will provide automation of the process
of speeding up diagnoses of the SARS-CoV-2 virus and be
supportive in overcoming the issue of a shortage of trained
physicians in remote communities [20]. The novelty of the
new system is based on the multi-layer image processing
techniques and stacking of the convolutional-pooling blocks
of the CNN architecture, which is capable of obtaining
impressive detection accuracy results. In addition, we pro-
pose a framework named CovFrameNet, which demonstrates
a pipeline of image pre-processing techniques, deep learn-
ing model and result verification approach. The proposed
model implementation was such that we first applied some
selected image pre-processing techniques to reduce the noise
on CT and chest X-Rays digital images obtained from the
COVID-19 X-Ray dataset. All the datasets used to vali-
date the performance superiority of the new model were
taken from the National Institute of Health (NIH) chest
X-Ray datasets. Specifically, the technical contributions of
this research are summarized as follows:

• Design of a new CNN based deep learning framework
consisting of image pre-processing techniques, deep
learning model, and result verification mechanism.

• Application of the proposed image pre-processing tech-
niques to the image datasets for further smoothening and
denoising.

• Design of an enhanced CNN architecture aimed at
detecting COVID-19 cases using chest X-Ray images
from COVID-19 chest X-Ray datasets.

• Investigation of the behavior and performance of
the proposed CNN architecture using two optimiza-
tion algorithms, namely Adam and Stochastic gradient
descent (SGD).

• Comparative analysis of the enhanced pre-processing
based CNN model with existing state-of-the-art results
from literature using the following metrics: accuracy,
sensitivity, specificity, F1-score, a confusion matrix, and
AUC using receiver operating characteristic (ROC).

The rest of the paper is structured as follows: Section II
presents an in-depth literature review on COVID-19 related
studies. In section III, we detail the proposed deep learning
framework for the characterization of coronavirus on chest
X-Ray images and datasets. The computational results and
different experimentations are reported in section IV. The
interpretation of the results obtained is presented in section
V, and the limitation of the study is highlighted in section VI.
Finally, the concluding remarks and future research direction
are given in section VII.

II. RELATED WORKS
This section presents in-depth advances made by researchers
in proposing deep learning algorithms in detecting novel
COVID-19 based on different approaches. This aims
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to clearly point out the difference between our pro-
posed approach and the approaches already discussed
in the literature. Since the inception of COVID-19,
many deep learning algorithms were applied to detect
COVID-19; thus, several surveys and experimental stud-
ies have been made on the application of computer vision
in improving detection of the disease in digital medical
images.

For example, [21] conducted an early literature survey
on the detection of COVID-19 through machine learning
approaches. Different deep learning approaches were dis-
cussed in the survey, including CNN variants such as the
SqueezNet, mobilenet, Googlenet, VGG, Inception, Xcep-
tion, Alexnet, Restnet, etc., and challenges were pointed out
with suggestions for future works. Similarly, [22] presented
a review on the applications of different aspects of artificial
intelligence in combatting COVID-19. The artificial intel-
ligent approaches were applied for diagnosing a variety of
symptoms and tests, identifying the severity of the COVID-19
patient, image testing and epidemiology. The detection of
COVID-19 through CNN based on X-Rays and CT scans
were discussed in the paper. Challenges and recommen-
dations for future study were highlighted. Reference [23]
discussed an overview of the applications of artificial intelli-
gence in battling the COVID-19 pandemic. Wynants et al. [1]
presented a critical survey on the diagnosis and prognosis of
COVID-19 for early detection of the virus based on different
models, including machine learning.

In addition, empirical works on the diagnosis of
COVID-19 via medical images, which were not necessarily
covered in the reviews discussed in the preceding section
based on CNN exist. For example, Alimadadi et al. [23]
integrated the CNN and LSTM deep learning algorithms to
detect COVID-19 through X-Ray images. In the approach,
the CNN was applied to extract features while the LSTM
performed the task of detecting COVID-19 from the extracted
features. Islam et al. [24] proposed combining two deep learn-
ing algorithms, namely, bidirectional LSTM and CNN, via
the transfer learning approach for the detection of COVID-19
through CT scans and X-Ray images. ANN was used in the
study for the segmentation of the lung images to get robust
features for the diagnosis. The model was found to improve
the performance of detecting COVID-19 with an accuracy
of 98.70%. However, there is still room for improving the
accuracy as it not up to 100%. Aslan [25] proposed multi-
ple CNN and Bayesnet. The study combined multiple pre-
trained CNN for the detection of the COVID-19 pandemic.
Features from the multiple CNN and correlation-based fea-
ture selection were combined. The Bayesnet performed the
COVID-19 diagnosis with an accuracy of 97.44%, and it
was found that pre-trained CNN outperformed single CNN.
Abraham and Nair [26] proposed SqueezeNet for the detec-
tion of COVID-19 from CT scan images. The result of the
SqueezNet was found to detect the COVID-19 from the CT
scan images with an accuracy of 85.03% better than the
complex CNN structure.

Polsinelli et al. [27] applied CNN for the diagnosis of
COVID-19 from X-Ray images. The approach combined
learning and a pre-trained CNN encoder for extracting
features representation. The proposed approach was found
to improve the accuracy of detecting COVID-19 with an
accuracy of 95.6%. Shorfuzzaman andHossain [28] proposed
the application of Visual Geometry Group (VGG-16) based
fast regions with CNN (R-VGG-16) for the diagnosing of
COVID-19 from X-Ray images. The R-VGG-16 was applied
to detect COVID-19 from X-Ray images. Results indicated
that the R-VGG-16 achieved an accuracy of 97.36% in detect-
ing COVID-19 patients. Shibly et al. [20] proposed CNN for
the learning of custom filters in a single convolutional layer
to identify particular pneumonia. The approach visualized the
region of X-Ray salient with a significant effect on the CNN
output. The experiment showed that the CNN detected the
COVID-19 from X-Rays with an accuracy of 99.80%.

Karthik et al. [29] proposed a variant of CNN called
ResNet to diagnose the novel COVID-19 virus from CT
scans. The RestNet was applied to detect COVID-19 from
CT scan images, and it was found to detect COVID-19 with
an accuracy of 95.09%. Raajan et al. [30] applied grey
wolf optimization algorithm to optimize the hyperparameters
of CNN architecture to detect COVID-19 patients. In the
study, the hyperparameters of the CNN architecture were
optimized through grey wolf optimization algorithm to obtain
the CNN model used for the detection of COVID-19. The
optimized CNN achieved an accuracy of 97.78% in diag-
nosing COVID-19 from X-Ray images. Goel et al. [31]
experimented with 9 variants of CNN Inception ResNet V2,
ResNeXt-50, Se-ResNeXt-50 AlexNet, DenseNet121, Incep-
tion V4, GoogleNet, ResNet-50 and Se-ResNet-50 for the
diagnosing of COVID-19 from X-Rays. Results indicated
that Se-ResNeXt-50 had the best accuracy of 99.32% com-
pared to the other CNN variants. Hira et al. [32] adopted
a transfer learning hybrid of 3D and 2D CNN to detect
COVID-19 from X-Ray images. The model combined pre-
trained VGG16, shallow CNN and depth wise separable
convolution layer and spatial pyramid pooling module. The
proposed approach was applied to detect COVID-19 from
X-Ray images and achieved an accuracy of 96.91%. Simi-
larly, Bayoudh et al. [33] deployed transfer learning-based
CNN to detect COVID-19 from X-Ray images.

Al-antari et al. [10] presented a simultaneous deep learn-
ing computer-aided diagnostic tool developed and based
on the YOLO predictor for detecting and diagnosing
COVID-19 lung disease from the entire chest X-Ray images.
Their model was evaluated through five-fold tests for multi-
class prediction problem by using two different chest X-Ray
images. From the experimental results, the infected regions
of COVID-19 from the whole X-Ray images were simulta-
neously detected and classified end-to-end through the CAD
predictor, which achieved a good detection and classification
accuracies greater than 90%. Moreover, the CAD deep learn-
ing approach showed greater reliability in assisting health
care systems, patients, and physicians in delivering their
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practical validations. The CNN architecture proposed in the
study was found to outperform 7 out of 12 established
CNN architectures: AlexNet, GoogleNet, Vgg16, Vgg19,
ResNet18, ResNet50, ResNet101, InceptionV3, Inception-
ResNetv2, SqueezeNet, Densenet201 and Xception. In
another study, Majeed et al. [34] proposed an online attention
module with 3D CNN to diagnose COVID-19 from CT scan
images, and an accuracy of 87.5% was achieved.

The papers review indicated that CNN had attracted the
research community’s attention in developing a diagnostic
tool using CNN variants, most likely because of the images
used to detect the COVID-19 from mostly X-Ray and CT
scan images. Hybrid algorithms, transfer learning and auto-
matic hyperparameter settings using optimization algorithms
approaches are gaining momentum in detecting COVID-19.
The review of the relevant studies clearly shows that room for
improvement exists as 100% accuracy is yet to be achieved
on the diagnosis of COVID-19 patients through CNN based
on X-Ray and CT scan images. Therefore, further studies
with improved performance are required to strengthen the
diagnosis of COVID-19 patients.

III. COVFRAMENET: THE PROPOSED FRAMEWORK
In this section, an overview of the deep learning approach
proposed in this study is presented. This overview is sum-
marized using an architectural pipeline flow of the concepts
and techniques applied. The datasets and the associated image
pre-processing techniques adopted for this study are also
detailed.

A. DATASETS
The choice and the category of image samples applied to
any CNN model are very important and require selecting
an appropriate dataset. In this study, we decided to apply
our CNN model to chest X-Rays or CT images which were
outcomes of radiological imaging proven to have yielded a
better diagnosis of COVID-19 [35]. Five (5) categories of
datasets, publicly accessible, are employed to characterise
the features and classification of the novel COVID-19 dis-
ease. These databases are the COVID-19 X-Ray images [36],
the National Institutes of Health (NIH) Chest X-Ray Dataset
[37], COVID-19 Radiography database [38], COVIDNet
[39], Figure 1 COVID-19 Chest X-Ray [40], and Actualmed
COVID-19 Chest X-Ray Dataset [41]. The most fre-
quently accessed imaging is the chest X-Ray due to cost-
effectiveness, although it presents a more challenging clinical
diagnosis task than chest CT imaging. Hence, our combined
approach of chest X-Rays or CT images and the use of
publicly available datasets with large instances positioned our
CNN model to achieve clinically relevant diagnoses.

The COVID-19 X-Ray dataset consists of COVID-19,
MERS, SARS, and ARDS cases, represented as chest X-Ray
or CT images samples. The database is accompanied by
several attributes for each instance, which provides further
details on the image sample. These fields include the number
of days since the start of symptoms or hospitalization of

FIGURE 1. Comparison of the dataset sizes of the two major datasets
(COVID-19 and NIH Chest X-Rays) used in this study.

patient (necessary for tracking multiple copies of the image
taken per patient), sex, age, findings or outcome of the diag-
noses, patient survival status, the view of the image presented
(PA, AP, or L for X-Rays and Axial or Coronal for CT
scans), modality (CT or X-Ray), clinical notes, and other
important information. We obtained 363 instances of images
and their accompanyingmetadata from the COVID-19X-Ray
database.

The second database is the National Institutes of
Health (NIH) Chest X-Ray Dataset. This database is
comprised of 112,120 X-Ray images which are of sizes
1024 x1024 with disease labels from 30,805 unique patients.
The database provides samples of images and their diagnosed
diseases and the disease region bounding boxes. Similar to
the COVID-19 X-Ray dataset, this database also provides the
following metadata about each instance: findings/diagnosis,
type of disease diagnosed, age and gender of the patient,
the view of the image and other details.

In the following figures, we have summarized the
databases’ class distributions and sizes and present a com-
bined chart of the two databases. Figure 1 shows the number
of images in the COVID-19 chest X-Ray and NIH Chest
X-Rays databases, which are 363 and 84823, respectively.
Figure 2 reveals that the COVID-19 Chest X-Ray consists
of ten (10) classes of images which include: COVID-19,
287 samples; Streptococcus, 17 samples; ARDS, 16 sam-
ples; SARS, 16 samples; Pneumocystis, 15 samples; E.coli,
4 samples; No findings or disease-free images, 3 samples;
Chlamydophila, 2 samples; Legionella, 2 samples; and lastly
Klebsiella, 1 sample. Similarly, there are 15 classes of images
in the NIH Chest X-Rays databases (including the ‘No
findings or disease-free label), which consist of Atelectasis,
Consolidation, Infiltration, Pneumothorax, Edema, Emphy-
sema, Fibrosis, Effusion, Pneumonia, Pleural thickening,
Cardiomegaly, Nodule Mass and Hernia. The distribution of
several instances across these classes of disease is as follows:
No-Finding, 37645 samples; Infiltration, 10814 samples;
Effusion, 7567 samples; Atelectasis, 7074 samples; Nodule,
3879 samples; Mass, 3415 samples; Pneumothorax, 2852

77908 VOLUME 9, 2021



O. N. Oyelade et al.: CovFrameNet: Enhanced Deep Learning Framework for COVID-19 Detection

FIGURE 2. Classes of images available in the COVID-19 Chest X-Ray
dataset.

FIGURE 3. Classes of images available in the NIH Chest X-Ray dataset.

samples; Consolidation, 2766 samples; Pleural Thickening,
1984 samples; Cardiomegaly, 1715 samples; Emphysema,
1557 samples; Edema, 1352 samples; Fibrosis, 1219 samples;
Pneumonia, 822 samples; and Hernia, 162 samples. These
figures are charted in Figure 3.

In the experimentation phase, the combined representation
of the images from the two datasets were split into training,
evaluation and testing categories and yielded 63887 samples
for training, 17034 samples for validation and 4265 samples
for testing. This is illustrated in Figure 4. A joint representa-
tion of the class distribution of images/samples across the two
databases for training is shown in Figure 5. The combination
yielded twenty-four (24) classes with the following number
of samples in each class: No-finding or disease-free samples
had 28222 images, Infiltration had 8017 images, Effusion
had 5701 images, Atelectasis had 5373 images, Nodule had
2887 images, Mass had 2558 images, Pneumothorax had
2255 images, Consolidation had 2012 images, Pleural Thick-
ening had 1511 images, Cardiomegaly had 1187 images,

FIGURE 4. A combined graphing of distribution of images used for
training, testing and validation as drawn from the COVID-19 and NIH
Chest X-Ray datasets.

FIGURE 5. Distribution of training samples among classes of disease as
drawn from the COVID-19 Chest X-Ray and NIH Chest X-Ray datasets.

Emphysema had 1171 images, Edema had 1003 images,
Fibrosis had 968 images, Pneumonia had 636 images,
COVID-19 had 203 images, Hernia had 118 images, Strepto-
coccus had 17 images, ARDS had 15 images, Pneumocystis
had 15 images, SARS had 11 images, E.coli had 4 images,
Chlamydophila had 2 images, Legionella had 2 images, and
Klebsiella had 1 image. Meanwhile, a presentation of the
splitting of the datasets into the evaluation and testing sets
is captured in Figures 6 and 7.

We sourced for more COVID-19 samples from three (3)
chest X-Ray databases namely: COVID-19 Radiography
database [38], COVIDNet [39], Figure 1 COVID-19 Chest
X-Ray [40], and Actualmed COVID-19 Chest X-Ray Dataset
[41]. After combining these supporting datasets, we obtained
69918 image samples for training, 17319 samples for valida-
tion, and 4587 samples for testing. Considering the level of
noise, distortion, or anomalies associated with some of the
images accessed from the publicly available databases, this
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FIGURE 6. Distribution of validation samples among classes of disease as
drawn from the COVID-19 Chest X-Ray and NIH Chest X-Ray datasets.

study pre-processed all the samples. This was achieved by
applying some standard image pre-processing techniques to
our images. The next section details this approach.

B. IMAGE PRE-PROCESSING
This study adopted some image pre-processing techniques
to enhance the performance of the proposed deep learn-
ing model. This approach is also seen in related studies
[42], [43], [44], [45], which have encouraged the applica-
tion of inputs/samples to appropriate pre-processing tech-
niques/algorithms. Image processing, which uses algorithms
to perform image processing on digital images, is cate-
gorized into analogue image processing and digital image
processing. The pre-processing techniques aim to improve
the features in the image through image enhancement and
the suppression of unwanted distortions, thereby yielding an
improved image/input for the deep learning model. In this
study, we applied our samples to the following pre-processing
techniques after reading or loading images into the buffer:

• Image resizing: Due to the heterogeneity of the
databases and variations in the sizes of images,
we resized the images into 220× 220 sizes. Such resiz-
ing operation allowed for decreasing the total num-
ber of pixels from 888 × 882 and 1024 × 1024 for
COVID-19 X-Ray and NIH Chest X-Ray datasets 220×
220 for both.

• Removal of noise (denoise): Image denoising can
present a challenging procedure arising from the oper-
ation of estimation of the original image with the hope
of eliminating noise. For instance, one might be inter-
ested in removing any of the following noises from an
image: Poisson noise, salt and pepper noise, Gaussian
noise, and speckle noise. In this study, we attempted to
eliminate/remove noise from our image samples using
the Gaussian Blur technique since study [46] showed
that the technique is relevant in images with high noise.
We used a Gaussian filter by applying our images to the
function cv2.GaussianBlur using kernel size of 5×5 and

FIGURE 7. Distribution of testing samples among classes of disease as
drawn from the COVID-19 Chest X-Ray and NIH Chest X-Ray datasets.

zero (0) for both the standard deviation for both the x and
y directions.

• Morphology (smoothing edges): As a pre-processing
operation, we applied the morphology operation to our
samples before applying segmentation to our images.
This enabled us to extract image components that were
useful in the representation and description of region
shape. This operation (morphological smoothing) aimed
to remove bright and dark artefacts of noise through an
opening and closing operation. The output of this phase
yielded images whose edges were smoothened for easy
detection.

• Segmentation: It is well-known that image segmen-
tation allows for the partitioning of an image into
multiple image objects or segments appearing as dif-
ferent categories of pixels such that a similar cate-
gory constitutes a segment. This study applied this
technique to enhance detecting image objects that
support feature extraction, thereby obtaining mean-
ingful results. We achieved this by using thresh-
olding methods, leaving out other methods such as
edge detection-based techniques, region-based tech-
niques, clustering-based techniques, watershed-based
techniques, partial differential equation-based and artifi-
cial neural network-based techniques. Using the thresh-
olding method, we used the THRESH_BINARY_INV
thresholding style of OpenCV and a maxVal of 255,
representing the value to be given if the pixel value
is more than the threshold value. The computation of
THRESH_BINARY_INV is as shown in (1).

dst (x, y) =

{
0, src (x, y) > thresh
maxVal, otherwise

(1)

The second parameter to the maxVal is the retVal as
used in our thresholding technique. Otsu’s method is widely
reported to yield interesting results and is also suitable for
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FIGURE 8. The CovFrameNet framework showing image/input pre-processing, feature detection, sample classification and post-classification
processing.

distinguishable foreground and background [47]. The use of
this method was inferred from the value we set for the retVal,
which is the THRESH_OTSU. This allowed for automating
the process of calculating the threshold value from the image
histogram. Thus far, we have filtered our image samples with
a 5× 5 Gaussian kernel to remove the noise and then applied
Otsu thresholding.

Furthermore, we applied the dilate operation on the
image to enlarge the foreground and find the sure back-
ground area. Also, to find the sure background area in
the image, we applied the distance transform operation to
represent a binary image so that the value of each pixel
was replaced by its distance to the nearest background
pixel. Hence the threshold segmentation was applied to
divide the image into regions of object and background.
Our thresholding segmentation was completed by applying
global thresholding, which uses any appropriate threshold
value of T = kept constant for the whole image so that the
output image is obtained from the original image as seen
in (2) [48].

q (x, y) =

{
1, if p (x, y) > T
0, if p (x, y) ≤ T

(2)

The resulting images from all the pre-processing tech-
niques above were then passed as input into the CNN model
described in the following subsection.

C. THE CNN ARCHITECTURE
The proposed CNN model is a component of a complete
framework in Figure 8, representing the pipeline flow of tech-
niques used in this study. The architectural pipeline shown in
the figure reads in the sample images from the databases, and
then pre-processing techniques described in the previous sub-
section were applied sequentially. Furthermore, the resized
and improved image samples were split into training and
validation sets based on the illustration shown in the previous
subsection. After that, the CNN model was applied to the
input samples for training and validation. The trained model
was then applied to the test set of images for prediction, and
then the result of the classification was output for perfor-
mance evaluation.

CNN is the most widely used deep learning model for
image recognition. Medical image recognition tasks have
largely benefited from the field of computing. CNN con-
sists of a convolution layer that extracts the features of the
image and a fully connected layer that determines which
class the input image belongs to – the classification of
the input image. In Figure 9, we present the architecture
of the proposed CNN model designed and applied to our
datasets in this study. The architecture of the model follows
the form of Conv-Conv-Conv-Pool-Drop-Conv-Conv-Conv-
BatchNorm-Pool-Drop-Dense(relu)–BatchNorm-Drop, with
many filters modeled as 32(3, relu)–32(3, relu)-128(5, relu)–
2(2)-64(3, relu)–64(3, relu)-256(5, relu) and so on. For the

VOLUME 9, 2021 77911



O. N. Oyelade et al.: CovFrameNet: Enhanced Deep Learning Framework for COVID-19 Detection

FIGURE 9. The architecture of the proposed convolutional neural network (CNN) for feature detection and classification COVID-19 disease from chest
images.

classification purpose, we applied the SoftMax function to the
model’s feature detection phase. This allowed for a multiclass
classification as against the binary classification in our case.

The proposed CNN model benefits from some deep learn-
ing regularization techniques, demonstrating the capacity to
combat the overfitting issue. Overfitting is the situation when
a model learns the training data excellently but falls short
of generalizing well when some other data is exposed to
it. Regularization techniques such as L2 and L1, dropout,
data augmentation, and early stopping have been widely
reported to enhance the performance of deep learning models
[49], [50]. Therefore, this study experimented with some
techniques to ensure optimal performance of the proposed
deep learning (CNN) model. Hence, we did not just hope
to improve performance but also to enable our model to
generalize well. A model failing to generalize well will show
validation error increasing while the training error steadily
decreases. In this study, we applied our work to the most
common regularization technique L2, which is also referred
to as ‘‘weight decay’’, to eliminate overfitting. L2 values
range between 0 and 0.1 with examples as 0.1, 0.001, 0.0001,
and are in logarithmic scale.We, therefore, hope to reduce our
model’s training error [51], [52] by applying this technique.
For instance, the Inception V3 model experimented with a
value of 0.00004 [53]. We discovered that it was subopti-
mal and instead experimented with 0.00005. In addition to
the use of L2, we also demonstrated early stopping to stop
our model from continuing training when it had attained its
optimal performance. This regularization concept is another
widely used technique in deep learning to stop training when
generalization error increases. The proposed CNNmodel was
also experimented with to use a dropout layer at the rate
of 0.5.

IV. EXPERIMENTATION
In this section, the COVID-19 chest X-Ray and NIH chest
X-Ray datasets described in the previous section are applied
to the CNN model for training. Furthermore, the perfor-
mances of the CNN model on multiclass classification
are evaluated. The environment for the experimentation
and the outcome of the pre-processing techniques are also
described.

FIGURE 10. A sample of raw image of size 888 × 882 from the COVID-19
Chest X-Ray dataset.

A. CONFIGURATION ENVIRONMENT
All our experiments were carried out on Google’s Colab envi-
ronment with the following configurations: 2-core Intel(R)
Xeon(R) CPU @ 2.30GHz, 13GB memory and 33GB hard
drive; and GPU Tesla P100-PCIE-16GB.

B. APPLICATION OF IMAGE PRE-PROCESSING
The pre-processing techniques applied to our input
images/samples were extensively discussed in previous
section. Therefore we aim to present the outcome of the
application of those techniques on our datasets. The first
operation applied was the resizing of images from the high
resolution of 888×882 and 1024×1024 to a collective size of
220× 220. This was necessary to allow the datasets sourced
from different platforms to feed into our model effectively
as a fixed size. Figures 10 and 11 show the original image
samples from COVID-19 and the NIH chest X-Ray datasets,
respectively, and the outcome of the resizing of the operation
shown in Figure 12.

One major pre-processing operation carried out on our
input sets was removing noise as described in the previous
section. The approach taken in this study was to blur the
image samples as a measure to clean and denoise them.
Hence, in Figure 13, a pair of samples resulting from the
un-denoised and denoised image is captured and shown.
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FIGURE 11. A sample of the raw image labeled ‘No Finding’ of size
1024 × 1024 from the NIH Chest X-Ray dataset.

FIGURE 12. A resized sample from 888 × 882 to 220 × 200 in the
COVID-19 Chest X-Ray dataset.

FIGURE 13. An illustration of image pre-processing task carried out on
samples through the denoising and blurring effects.

Furthermore, to demonstrate the segmentation operation car-
ried out on the image samples by this study, we have also
presented output from such operation. In Figures 14 (a-b),
a pair of samples of images with segments and background
extracted are presented. The pair of images in Figure 14a
shows the original image and the outcome of the segmented
images, while that of Figure 14b shows the original image and
its extracted background. These operations allow for an easier
understanding of what is in the image and enable an easier
analysis of each part. In addition, the segmentation operation

FIGURE 14. a. An illustration of image pre-processing task aimed at
segmenting samples b. An illustration of image pre-processing task
aimed at extracting segmented background from samples.

on our medical X-Ray images were segmented within the
image typically for further investigation.

Bounding boxes is one of the most interesting operations
supporting image annotation in deep learning models. This
proves useful in object classification in images and even
for further localization tasks. Whereas image is aimed at
assigning a class label to an image, object localization allows
for creating bounding boxes around recognizable objects in
the image. The model’s target to classify and obtain posi-
tions of objects in the image is referred to as object detec-
tion or object recognition. Drawing bounding boxes can be
achieved using deep learning models or other algorithms. For
instance, to describe the location of some targeted diseases in
our input images, we drew a bounding box as a rectangular
box that can be determined by the x and y axis coordinates in
the upper-left corner and the x and y axis coordinates in the
lower-right corner of the rectangle. This operation allows for
easily annotating our samples for convenient recognition by
CNN model.

Figures 15 (a-b) and 16 (a-b) show the bounding boxes
(using black colour) locating the position of the labelled dis-
ease on the image and their corresponding contours. In addi-
tion to drawing bounding boxes around input, we detected
contours both in the bounding box and those outside it.
In each case of images in Figures 15 and 16, the upper image
represents the bounding box localizing the presence of the
disease while the lower figure represents the contours in each
image.

Contours allow for identifying the shapes of objects within
an image and are recognized through lines of curves joining
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FIGURE 15. Samples of images and their respective findings with expert
annotation as extracted from the NIH Chest X-Ray dataset. The bounding
boxes show the suspected regions of COVID-19 in PA view. Below is a
capture of the contours in the image samples.

all the continuous points with similar colour or intensity. This
technique provides support for object detection and recog-
nition. In this study, to extract the contours as shown in the
images below those with the bounding boxes, we carried out
the following: first thresholded each image and then found
all the contours in each image; with each contour, we drew a
bounding rectangle in green colour; then got a minimum rect-
angle area and converted all coordinates floating-point values
to integer, and drew a red ‘nghien’ rectangle; furthermore,
we got the minimum enclosing circle and converted all values
to an integer to draw the circle in blue; then finally drew all
contours on each image.

The proposed CNN model receives grayscale images as
its input, and experiments were performed with multiclass
classifications. Table 1 shows the detection classes for each
classification and their distribution in both datasets. Mean-
while, for each experiment carried out, we trained the model
for 50 epochs and 1310 steps.

C. EVALUATION METRICS
To evaluate the performance of the proposed model, we com-
puted accuracy, sensitivity, specificity, precision, recall,
F1-score, Cohen’s Kappa, ROC AUC, and confusion matrix.
The following paragraphs briefly outline the metrics and their
relevance to our classification of novel COVID-19 disease.
The metric precision checks what proportion or quantity of
positive identifications achieved by a model was correct and
given by (3).

Precision =
TP

(TP+ FP)
(3)

On the other hand, recall checks the number of actual
positive cases in our datasets which the proposed CNNmodel

TABLE 1. Classes for multiclass classifications for the COVID-19 and
National institutes of health (NIH) Chest X-Ray datasets.

was able to identify correctly. This is given by (4).

Recall =
TP

(TP+ FN)
(4)

Evaluating the effectiveness of our CNN model requires
that we examine its performance in terms of precision and
recall, hence the need to compute these metrics. Furthermore,
we examined another metric known as the F1 Score. This
metric expressed the balance between the precision and the
recall described above and helped us decide whether the
performance of our model was based on precision and recall.
We give the equation for the F1 score in (5).

F1−Measure =
(2 ∗ Precision ∗ Recall)
(Precision+ Recall)

(5)

In this study, we chose an under-utilized, though effective,
multiclass classification metric known as Cohen’s Kappa.
This metric is robust in handling imbalanced class problems,
as may be seen in our datasets. In a multiclass classification
problem, this metric provides a broader view of the perfor-
mance of a classification model compared to accuracy in (6)
or precision/recall. The metric is represented in (7).

Accuracy =
TP+ TN

(TP+ TN+ FP+ FN)
(6)

K ≡
po − pe
1− pe

= 1−
1− po
1− pe

(7)

The receiver operating characteristic (ROC) curve
expresses the performance of the classification model using
a graphical approach and does these at all classification
thresholds. It can achieve this by graphing the True Positive
Rate (TPR) and False Positive Rate (FPR). The metric gives a
summary of the performance of a classifier over all possible
thresholds. Similar to the ROC is the area under the ROC
curve (AUC), which examines the entire two-dimensional
area underneath the entire ROC curve that covers (0,0) to
(1,1). This metric is effective at checking the proper/wellness
and quality of our model’s prediction performance. Finally,
we have the confusion matrix. Whereas the accuracy of a
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FIGURE 16. Samples of images and their respective findings with expert
annotation as extracted from the NIH Chest X-Ray dataset. The bounding
boxes show the suspected regions of COVID-19 and ARDS in PA views.
Below is a capture of the contours in the image samples.

FIGURE 17. Pattern of change in loss function of training and validation
on the combined dataset using Adam optimizer.

model may seem appealing in some sense, it is limited by its
inability to give details of the performance of the classifica-
tion model. On the other hand, the confusion matrix presents
this detail by unambiguously presenting the prediction result.

V. RESULTS AND DISCUSSION
This section presents the performance of the CNN architec-
ture and a comparative analysis of the model with similar
studies. We experimented with the proposed CNN model
on the datasets using some variation of hyperparameters.
For instance, we investigated the model’s performance when
SGD and Adam optimizers are applied to the model and
plotted the model’s output. Furthermore, we experimented on
our proposed model to discover the effect of two different
values for the L2 (weight decay) regularization technique.

The first set of experiments used the Adam optimiza-
tion algorithm and weight decay (L2) value of 0.0002.
Figure 17 captures the model’s performance in terms of
the loss function, while Figure 18 shows the trajectory of the
accuracy for both training and validation cases. Note that the
configuration of the Adam optimizer is as follows: learning
rate= 0.001, beta1= 0.9, beta2= 0.999 and epsilon= 1e-8.

FIGURE 18. Pattern of change in accuracy of training and validation on
the combined dataset using Adam optimizer.

TABLE 2. Summary of result obtained by the proposed model.

Similarly, in the second experiment, we experimented using
the SGD optimizer with the following configuration: learning
rate = 0.01, decay = 1e-6, momentum = 0.9 and nesterov =
True. The value of 0.0005 was used for the L2 regularization
technique. The performance of the model was also examined,
and we found that although the accuracy remained close to
that of the Adam optimizer, there was, however, a difference
in the loss values trajectory. Figures 19 and 20 capture the
performance of the model on the training and validation
for loss function and accuracy. We also exposed the trained
model to the test dataset under the same configuration.

The result showed that the CNN model using SGD learnt
the problem effectively as the loss values for training and val-
idation progressively dropped. Although a slight dispersion
appeared in their loss values between 0-30 epochs, the values
significantly closed between epochs 30-50. The combined
performance of the training and loss supports the argument
that the proposed CNNmodel significantly learns and detects
COVID-19 features. On the other hand, we observed that
Adam’s loss values for training and validation showed some
irregularity. This irregularity was observed in epochs 30-38
while it normalized around 38-50 epochs. These observations
showed that the application of SGD outperformed Adam in
the CNN architecture proposed in this study. The experi-
mental results of the multiclass classification for two (2)
experimental cases showed more than 99% accuracy.

In Table 2, we listed the performance of our model for the
experiments carried out in comparison with similar models
adapted to the purpose of classification COVID-19 disease.

The result obtained in Table 2 showed that our system
achieved 1.00, 0.85, 0.85, 0.90, 0.50, and 1.00 for specificity,
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FIGURE 19. Pattern of change in loss function of training and validation
on the combined dataset using SGD.

FIGURE 20. Pattern of change in accuracy of training and validation on
the combined dataset using SGD optimizer.

recall, precision, F-score, AUC, and accuracy for phase one
of the experiment. On the one hand, in the second experiment
carried out, our model yielded the following: 1.00, 0.85,
0.85, 0.90, 0.50, and 1.00 for specificity, recall, and preci-
sion, F-score, AUC and accuracy, respectively. The proposed
model attained 85% precision and recall, making it useful
for the proposed task, eliminating unnecessary false alarms.
F1 measure is relevant if we are looking to select a model
based on a balance between precision and recall, and is the
harmonic mean of precision and recall and gives a better
measure of the incorrectly classified cases than the accuracy.
As a result, the value of 0.9 for our F1-score shows the
performance of our model even when there are imbalanced
classes, as is the case inmost real-life classification problems.

Figure 21 illustrates the relevance of the outcome of
this study when compared with related CNN architectures
designed for the detection of COVID-19. The proposed Cov-
FrameNet model is seen to strongly compete with state-of-
the-art models using specificity, precision, F-score, AUC, and
accuracy as metrics for the comparative analysis. We argue
that the accuracy of CovFrameNet outperforms that of its
similar structure – ResNet. Moreover, we see CovFrameNet
competing with ResNet, FCONet, COVID-CheXNet and
COVID-DeepNet using F1-score. Although the proposed

TABLE 3. Comparing the contributions and performances of the
proposed study with similar approaches.

FIGURE 21. Comparative analysis of the performance of the proposed
architecture with similar studies using Specificity, Sensitivity, Precision,
Recall, F-score, and AUC.

CovFrameNet falls short in AUC, precision, and recall com-
pared with ResNet, it demonstrates a competitive result con-
sidering specificity.

In Table 3, we list the performance of our model compared
to other similar models used for the detection of COVID-19,
with emphasis on the accuracy of the concerned models.

Considering the performance of our model from Table 3
compared with other similar studies, we conclude that
this study outperforms state-of-the-art deep learning mod-
els aimed at detecting and classifying the novel Coron-
avirus (COVID-19). This is clear from the performances
of similar studies when compared with this study. We note
that only Ko et al. [55] and Panwar et al. [57], who used
the fast-track COVID-19 classification network (FCONet)
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FIGURE 22. Comparative analysis of the performance of the proposed
architecture with similar studies based on the accuracy.

and nCOVnet, respectively, have their models’ performances
competing with our model. Therefore, this study has suc-
cessfully advanced research in the areas of detection and
classification of COVID-19 using deep learning models.

As earlier noted, the proposed CNN model is patterned
after ResNet architecture, and the result obtained, as shown
in Figure 22, confirms that the former outperformed the latter.
Similarly, we note that popular networks such as VGG19 and
other related networks designed to detect COVID-19 are
seen to lag behind the proposed CovFrameNet. This further
demonstrates that CovFrameNet network architecture is well
suited for extraction COVID-19 features and further classifi-
cation purposes.

In summary, the findings in this study show that deep
learning models can sufficiently detect the presence of
COVID-19 from digital chest X-Rays. To minimize the high
risk of bias in the study, we ensured that considerably large
samples of COVID-19 cases were applied. This was also
complemented by using publicly available datasets in com-
bination with additional new data to overcome overfitting.
Also, the data were widely pre-processed using combina-
torial methods to ensure inputs to the CNN model were
acceptable. To promote reproducibility of our approach,
our algorithm and implementation are publicly available at
https://github.com/NathanielOy/covid19cnn

VI. LIMITATIONS OF THE STUDY
The CNN architecture proposed in this study was designed
based on the authors’ expertise in neural network archi-
tectures. Although the number of parameters was memory-
demanding, this could be further scaled down by optimising
hyperparameters, which will eliminate operations that do not
significantly contribute to the algorithm.

VII. CONCLUSION
In this paper, a deep learning model based on CNN was
designed and implemented to detect and classify the presence
of COVID-19 in chest X-Rays and CT images. The study’s

main contribution involves applying selected image pre-
processing techniques and the design of CNN architecture
both encapsulated in a deep learning-based framework. The
proposed framework pipelined the entire procedure in a
manner to enhance the performance of the classification.
Furthermore, we investigated the performance of the pro-
posed model by juxtaposing the use of optimizer between
the popular Adam and SGD. The result revealed that our
model achieved 100% accuracy in classifying the novel coro-
navirus (COVID-19) using SGD. The outcome of this study
showed that a CNN-based solution might be adopted in
pre-screening suspected cases and confirmation of RT-PCR-
based detected cases of COVID-19. The training of the CNN
model was partly impaired by the availability and access to
COVID-19 images. This study’s future research direction is
recommended to explore the high volume of chest X-Ray
images emerging from new cases for fine-tuning the CNN
architecture. Furthermore, it will be interesting to see the
deployment of our trained CNN model to both web and
mobile applications for clinical utilization.
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