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ABSTRACT In this paper, a high order disturbance observer based stochastic adaptive anti-disturbance
control algorithm has been designed for the space unmanned systems (SUSs) with high dynamic disturbances
and stochastic uncertainties. Firstly, to suppress the adverse influence of the high dynamic disturbances,
a high order disturbance observer is designed for the SUSs to maintain the accurate approximation. Secondly,
to overcome the infaust effects of the stochastic uncertainties, a novel variable has been introduced and
the corresponding adaptive law has been proposed. Moreover, the neural networks have been employed
to enhance the adaptability with respect to the nonlinearities and modeling errors. Based on the stochastic
control theory and the fourth-order Lyapunov function, the stochastic stability of the closed-loop control
system has been proved. Finally, the performance of high-order disturbance observer has been verified in
two cases of simulations, and the effectiveness of the stochastic adaptive anti-disturbance control strategy
has been demonstrated simultaneously.

INDEX TERMS Adaptive backstepping control, disturbance observer, stochastic uncertainties, stochastic
control, space unmanned systems.

I. INTRODUCTION
The space unmanned systems are the space systems those can
complete space operations autonomously through advanced
control theory, artificial intelligence and communication
technology without manual intervention. The SUS plays a
significant role in complicated space missions such as space
rendezvous, on-orbit service, space pursuit-escape games,
including the space stations, space robots, and satellites,
etc. Multiple space engineering projects have been carried
out since the 1960s, the researchers found that the frequent
manual space work is not only high-cost but also inefficient.
Therefore, the SUS came into existence. Generally speak-
ing, the SUS are designed to meet the rapidly growing task
quantity, highly depending on the advanced control tech-
nology and intelligence methods. However, there are still a
prohibitive amount of difficulties to be solved in the SUS
control design process [1]–[3].
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In recent decades, there has been a tremendous inter-
est in SUS, and many significant technological achieve-
ments have emerged within the aera of its control
design [4]–[7]. Specifically, for one of the hotspot spacecraft
formation flying (SFF) mission, a purposeful, large-scale
formation needs to be designed, constructed, and maintained
using a sparse separation of spacecraft. The typical linearized
orbital system model, the Clohessy-Wiltshire (CW) model
was once widely used in formation missions because of its
favorable compatibility with various mature linear control
methods [8]–[10]. But the convenience brought by the lin-
earization comes at the cost of losing modeling accuracy.
With the consummation of nonlinear system theory, plenty
delicate nonlinear controllers were introduced into the SUS.
Researchers in [11], [12] studied the relative position adap-
tive control for SFF and proved asymptotical stability of
the system subjected to uncertainties. For the promotion
of parametric linear regression, the external disturbances
in [11], [12] were assumed to be constant which rarely exist
in the physical world. Moreover, the simple combination of
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backstepping and the certainty-equivalence (CE) based adap-
tive law was proposed to stabilize the compositive formation
system while ignoring the convergence and boundness of
the parameter estimation. In [13], a novel output feedback
frame based on a filtered velocity observer provided a semi-
global, asymptotically convergent, relative position tracking
controller with desired adaptive compensation. It is worth
mentioning that the application of partial integration within
the design of adaptive law greatly improves the flexibility of
using unmeasurable state information. In addition, another
noticeable aspect in the SUS is space robot, which is one of
themain realizationmethods of autonomous on-orbit services
and had set off a research boom on a global scale in the
last thirty years [14]. Huang et al. [15] proposed an adaptive
controller constructed by a dynamic and a kinematic adaption
law for the tethered space robot (TSR), taking the attitude
motions of both base and target satellites and the elasticity of
tether into account. In [16], a CE based adaptive controller
with desirable separation property has been proposed to
improve the performance of robot manipulators with both the
uncertain kinematics and dynamics. Besides, to highly restore
the sophisticated nonlinear terms in the system, the adaptive
theory was also organically combined with many well-known
intelligent frameworks such as Reinforcement Learning (RL)
and Neural Network (NN) [17], [18]. Unfortunately, in the
above literatures, although the CE-based adaptive law was
adopted without exception, the vulnerability of the param-
eter estimation values convergence and robustness remains
unresolved, and they scarcely concentrated on the high
dynamic disturbance suppression problem of closed-loop
SUS [19], [20].

With the rapid development of intelligent theories and
methods, a number of reliable approaches has been pro-
posed to approximate and compensate the uncertainties in
the control systems. Broad Learning System (BLS), which
can make full use of the self-adjusting mechanism of node
number to achieve better learning performance, has been
firstly proposed in [4]. Compared with the traditional fusion
method, a framework that can learn and fuse two modal
characteristics based on the broad learning method con-
structed in [5] has better stability and rapidity. By fusing
the Takagi-Sugeno (T-S) fuzzy system into BLS, the fuzzy
broad learning system (FBLS) is proposed in [6]. In [8],
the quaternion broad learning system (QBLS) has been
constructed to achieve tremor estimation and suppression.
By combing a fully convolutional network with broad learn-
ing system, a framework for license plate recognition has
been introduced in [9]. Furthermore, BLS has been used
to solve practical engineering problems. In [12], BLS has
been introduced into hyperspectral image analysis algorithm,
which providing new ideas and technical reserves for a
variety of hyperspectral image analysis problems. [13] pro-
posed a method of landscape capacity allocation based on
BLS, and obtained a capacity allocation result that met the
total investment cost and minimized network active power
loss.

Since various uncertain factors, such as unknown external
interference, widely exist in the actual engineering system,
the stability of the control system is affected to a certain
extent [14]. In order to solve the uncertain dynamic and
external disturbance in the nonlinear uncertain system and
ensure the high precision tracking performance, the intelli-
gent control methods such as adaptive control [15], sliding
mode control [16] and neural network [17] have been widely
paid attention by the researchers. Because of the clear physi-
cal significance and relatively simple engineering implemen-
tation, the disturbance observer is widely used to estimate
disturbances in uncertain systems, receiving extensive atten-
tion in the academic and engineering fields [18], [21], [22].In
disturbance observer-based (DOB) control, disturbances are
observed by using identified dynamics and measurable states
of plants, and the robustness of systems is easily achieved
by feeding back the observed disturbances [23]. In [24],
a high-order disturbance observer has been proposed to
observe the disturbances and its high-order derivatives, which
can increase the observation accuracy. [25] uses a distur-
bance observer with an additional nonlinear term to adjust the
observer’s steady-state performance. In [26], the decentral-
ized adaptive output feedback saturated control problem has
been researched for interconnected nonlinear systems with
strong interconnections; In [27], the problem of disturbance
attenuation and rejection has been investigated for stochastic
Markovian jump system with multiple disturbances. In [28],
a disturbance observer based resilient control algorithm has
been proposed for Markovian jump nonlinear systems with
multiple disturbances. In [29], the refined anti-disturbance
control problem has been investigated for the switched linear
parameter-varying systems, by using a parameter-dependent
discontinuous Lyapunov function. Meanwhile, the active
disturbance rejection control (ADRC) methods have also
widely utilized to ensure the control performance under
disturbances [25], [30], [31]. Because of the low reliabil-
ity for accurate information, the ADRC controllers have
been designed for many of the engineering systems [30],
[31].In [32], the ADRC has been investigated for the quadro-
tor with winds. In [33], by a combination of back-stepping
and ADRC, an integrated controller is devised to tackle
multiple uncertainties. In [34], an ADRC controller which
can reduce the control gains and the bandwidth has been
designed. Besides, several output feedback anti-disturbance
control algorithm can be found in [35], [36] and [37].
Although fruitful results have been obtained in the area of the
control design for SUSs, the high dynamic disturbances have
been rarely taken into consideration. Furthermore, the control
method which can handle the high dynamic disturbances and
the stochastic uncertainties simultaneously has never been
designed for the SUSs. However, the high dynamic distur-
bances are often encountered when achieving the attitude
stability and tracking of the SUSs, and the stochastic uncer-
tainties are unavoidable in the control process. The adverse
influence of those stochastic and high dynamic uncertainties
may result in the task failure of on orbit service. Therefore,

VOLUME 9, 2021 77029



Y. Zhang et al.: High-Order Disturbance Observer-Based Neural Adaptive Control for SUSs

it is of important urgency and significance to carry out the
study of the stochastic anti-disturbance control methods for
the SUSs.

Based on the above-mentioned analysis, this paper inves-
tigates the neural adaptive control for SUSs with stochastic
and high-dynamic uncertainties. By utilizing the high order
disturbance observer and several new variables, the infaust
effects of the high dynamic disturbances and stochastic uncer-
tainties can be suppressed. By using the neural networks,
the adaptability with respect to the nonlinearities and mod-
eling errors can be enhanced. Based on the stochastic control
theory, it has been proven that the closed-loop stochastic
anti-disturbance control system is stable. Compared with the
existing results, the proposed method possesses the following
features:

• To the best of the authors knowledge, it is the
first stochastic adaptive anti-disturbance control struc-
ture for the SUSs suffering from the stochastic and
high-dynamic uncertainties.

• The proposed method possesses strong robustness and
can achieve better performance. By using the proposed
method, the adverse influence of the high dynamic
disturbances and stochastic uncertainties can be sup-
pressed.

• According to the stability criteria of the proposed
stochastic anti-disturbance control structure, the control
gains and the adaptive parameters can be preliminarily
determined.

The structure of this paper is arranged as follows. In section
2, the problem statement and preliminaries for the stochas-
tic anti-disturbance control of the SUSs are formulated.
In section 3, high-order disturbance observer and stochastic
adaptive anti-disturbance controller is designed for SUSs.
Simulation studies are shown in section 4 with two cases
of disturbances. Some conclusions are drawn in section 5.
Throughout this paper, for any vector a = [a1, a2, a3]T ∈
R3, a× ∈ R3×3 is defined by

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


∀b ∈ R3, it follows that a×b = a × b. ‖a‖ represents the
Euclidean norm of the vector a and Tr (·) represents the trace
of a matrix. Besides, In is n× n identity matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. SYSTEM MODEL
Define σ =

[
σ1 σ2 σ3

]T
∈ R3, ω =

[
ωx ωy ωz

]T
∈ R3

in the inertia frame, which represent the absolute attitude and
angular velocity of the spacecraft, respectively. The attitude
kinematics and dynamics model of the SUS can be described
by the MRPs:

σ̇ = G(σ ) [ω + ω0C2(σ )]

J ω̇ = ω×Jω + τ + f (σ, ω)+ dτ +1ξ (1)

where J represents the inertia matrix, f (σ, ω) denotes the
unknown nonlinear moment, is the external disturbances. ω0
is the orbital angular rate value, which can be denoted asω0 =√
µg
/
r30 , where µg, r0 represent the gravitational constant of

the Earth and orbital radius, respectively. Besides, the atti-
tude motion system is commonly influenced by stochastic
uncertainties. ξ ∈ R is define as white noises, and 1 ∈ R3

represents the amplitudes of the stochastic uncertainties. The
Jacobian matrix G(σ ) ∈ R3×3 can be given by

G(σ ) =
1
4

[(
1− σ Tσ

)
I3 + 2σ× + 2σσ T

]
=

1
4

[
G1 (σ ) G2 (σ ) G3 (σ )

]
(2)

where

G1 (σ ) =

 1+ σ 2
1 − σ

2
2 − σ

2
3

2 (σ1σ2 + σ3)
2 (σ1σ3 − σ2)


G2 (σ ) =

 2 (σ1σ2 − σ3)
1+ σ 2

2 − σ
2
1 − σ

2
3

2 (σ2σ3 + σ1)


G3 (σ ) =

 2 (σ1σ3 + σ2)
2 (σ2σ3 − σ1)

1+ σ 2
3 − σ

2
1 − σ

2
2


C2(σ ) is the second column vector of the direction cosine

matrix C(σ ) and equals to

C2(σ ) =
1(

1+ σ Tσ
)2
 8σ1σ2 + 4σ3

(
1− σ Tσ

)
4
(
σ 2
2 − σ

2
1 − σ

2
3

)
+
(
1− σ Tσ

)2
8σ2σ3 − 4σ1

(
1− σ Tσ

)

(3)

According to [38], the kinematic and dynamic equations
in (1) can be rewritten into a Lagrange-like form as

H̄ (σ )σ̈ + C(σ, σ̇ )σ̇ + ḡ(σ ) = τ̄ + f̄ (σ, σ̇ )+ d̄τ + 1̄ξ (4)

where

H̄ (σ ) = G−T (σ )JG−1(σ )

ḡ (σ ) = G−T (σ )

×

[
ω2
0C
×

2 (σ ) JC2 (σ )− 3ω2
0C
×

3 (σ ) JC3 (σ )
]

τ̄ = G−T (σ )τ

f̄ = G−T (σ )f (σ, σ̇ )

d̄τ = G−T (σ )dτ
1̄ = G−T (σ )1 (5)

C3(σ ) denotes the third column vector of C(σ ), which
equals to

C3(σ )=
1(

1+ σ Tσ
)2
 8σ1σ3 − 4σ2

(
1− σ Tσ

)
8σ2σ3 + 4σ1

(
1− σ Tσ

)
4
(
−σ 2

1 − σ
2
2 +σ

2
3

)
+
(
1− σ Tσ

)2

(6)
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Besides, the vector of Coriolis and centripetal torque
C(σ, σ̇ ) equaled to

C(σ, σ̇ ) = G−T (σ )


−JG−1(σ )Ġ(σ )G−1(σ )
−ω0JC

×

2 (σ )G−1(σ )
+
(
G−1(σ )σ̇

)×
JG−1(σ )

+(Jω0C2(σ ))×G−1(σ )
−(ω0C2(σ ))×JG−1(σ )

 (7)

where

Ġ(σ ) =
8(

1+ σ Tσ
)2 [σ̇ σ T + σ σ̇ T − σ̇ Tσ I3 − σ̇×]

−
16σ T σ̇(

1+ σ Tσ
)3 [(1− σ Tσ) I3 − 2σ× + 2σσ T

]
(8)

Our control objective is to develop a dynamic controller
such that the attitude of SUS can track the desired attitude
signal σd in the presence of the unknown nonlinearities,
complex external disturbances and stochastic uncertainties.

In this paper, we make the following assumptions:
Assumption 1: The external disturbance dτ is unknown and

continuously differentiable. Also, the i-th order derivatives of
dτ is unknown and bounded, that is

∥∥∥d (i−1)τ

∥∥∥ ≤ δd .
Assumption 2: The inertia matrix J is a known positive

definite, symmetric and bounded. Therefore, the inverse of
J is bounded, which satisfies

∥∥J−1∥∥ ≤ δJ .
Assumption 3: The amplitudes of the stochastic uncertain-

ties 1 ∈ R3 is bounded, which satisfies
∥∥1T1

∥∥ ≤ ψ̄ .
Moreover, the following properties of the spacecraft have

to be recalled.
Property 1: The matrix G (σ ) is positive definite and

bounded, which satisfies 1
/
4 ≤ ‖G (σ )‖ ≤ 1

/
2. Therefore,

on the basis of Assumption 2, the newly defined matrix H is
bounded, that is,

‖H (σ )‖ =
∥∥∥G (σ ) J−1∥∥∥ ≤ ‖G (σ )‖ ∥∥∥J−1∥∥∥ ≤ 1

2
δJ

Remark 1: For practical systems, the i-th order derivatives
of the external disturbance are usually bounded. The similar
assumptions can be found in [39], and the reasonability of
Assumption 1 can be known.

B. SUPPORTING DEFINITIONS AND LEMMAS
Consider the stochastic system below

dx = f (x, u) dt + g (x, u) dω (9)

where u ∈ Rm and x ∈ Rn denote the input and the system
state (9), respectively. f (·) : Rm+n

→ Rn and g (·) :
Rm+n

→ Rn×r are locally Lipschitz functions and satisfy
f (0, 0) = 0, g (0, 0) = 0. ω ∈ Rr is an independent standard
Wiener process.
Definition 1 [40]: Given any Lyapunov function V (x) ∈

C2,1 along with (9), the differential operator is defined as:

LV (x) =
tialV
∂x

f +
1
2
Tr
{
gT
∂2V
∂x2

g
}

(10)

where Tr (·) is the matrix trace.

Lemma 1 [41]: For any real variables x, y any constant δ >
0, 1 < p, q < ∞ as well as 1

/
p + 1

/
q = 1, the following

inequality holds:

xy ≤ δ
xp

p
+ δ
−
q
p
yq

q

C. RADIAL BASIS FUNCTION NEURAL NETWORKS
(RBFNNs)
According to [42] and [43], the uncertainties in SUSs can
be approximated with the help of the RBFNNs. For any
continuous function f (x) : Rn

→ R, we can find a RBFNN
2T8(x) such that

sup
x∈U

∣∣∣f (x)−2T8(x)
∣∣∣ < ε (11)

where2 ∈ Rl denotes the NN weights, l denotes the number
of the NN nodes, S (x) = [s1 (x) , · · · , sl (x)]T is a Gaussian
function.

si (x) = exp

(
−
‖x − πi‖2

ω2
i

)
, i = 1, . . . , l (12)

where πi =
[
πi,1, · · · , πi,n

]T .
Lemma 2 [44]: Let �x denotes a compact set. Define f (x)

as a continuous function on �x , the following equality holds

f (x) =
(
2∗
)T
8(x)+ ε∗ (13)

where 2∗ is the optimal NN weight and ε∗ is the minimum
approximation error. Note that 2∗ and ε∗ are both bounded.

III. MAIN RESULTS
In this section, the high-order disturbance observer is
designed for the SUSs to suppress the adverse influence of
the high dynamic disturbances. Meanwhile, to overcome the
infaust effects of the stochastic uncertainties, a novel variable
has been introduced and the corresponding adaptive law has
been proposed. Moreover, the neural networks have been
employed to enhance the adaptability with respect to the non-
linearities and modeling errors. Fig. 1 shows the block of the
proposed stochastic adaptive anti-disturbance control scheme
for the SUSs suffering from the stochastic and high-dynamic
uncertainties.

A. HIGH-ORDER DISTURBANCE OBSERVER AND
STOCHASTIC ADAPTIVE ANTI-DISTURBANCE CONTROLLER
DESIGN
Define z1 (t) = σ (t) − σd (t) , z2 (t) = σ̇ (t) − β (t), where
β (t) is the inner loop virtual control signal satisfying that

β (t) = −k1z1 (t) (14)

Based onRBFNNs,we can get f (z1, z2) = W T8(z1, z2)+
ε, then from (4) it is easy to get that

ż1 = z2 − k1z1

ż2 = H (σ )
[
−F (σ, σ̇ ) z2 + k1F (σ, σ̇ ) z1 − g (σ )
+W T8(z1, z2)+ ε + τ + dτ +1ξ

]
− β̇

(15)
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FIGURE 1. The structure of the proposed control scheme for SUSs.

where

H (σ ) = H̄−1G−T (σ ) = G (σ ) J−1

g (σ ) = ω2
0C
×

2 (σ ) JC2 (σ )− 3ω2
0C
×

3 (σ ) JC3 (σ )

F (σ, σ̇ ) =


−JG−1(σ )Ġ(σ )G−1(σ )
−ω0JC

×

2 (σ )G−1(σ )
+
(
G−1(σ )σ̇

)×
JG−1(σ )

+(Jω0C2(σ ))×G−1(σ )
−(ω0C2(σ ))×JG−1(σ )

 (16)

Then from [45], substituting ξ with dζ
/
dt respectively,

we finally obtain that

dz1
= [z2 − k1z1] dt

dz2

= H (σ )
[
−F (σ, σ̇ ) z2 + k1F (σ, σ̇ ) z1 − g (σ )
+W T8(z1, z2)+ ε + τ + dτ − H−1 (σ ) β̇

]
dt

+H (σ )1dζ (17)

Aiming at the disturbance dτ , define D̂1, D̂2, · · · , D̂n as
the estimation of dτ , ḋτ · · · dτ (n−1) and p1, p2 · · · pn as auxil-
iary variables, then the first order of high-order disturbance
observer is designed as

D̂1 = p1 + L1H−1 (σ ) z2

ṗ1 = −L1

[
−F (σ, σ̇ ) z2 + k1F (σ, σ̇ ) z1 − g (σ )
+Ŵ T8(z1, z2)+ τ + D̂1 − H−1 (σ ) β̇

]
−L1Ḣ−1 (σ ) z2 + D̂2 (18)

the i-order (i = 2, · · · , n− 1) is designed as

D̂i = pi + LiH−1 (σ ) z2

ṗi = −Li

[
−F (σ, σ̇ ) z2 + k1F (σ, σ̇ ) z1 − g (σ )
+Ŵ T8(z1, z2)+ τ + D̂i−1 − H−1 (σ ) β̇

]
−LiḢ−1 (σ ) z2 + D̂i+1 (19)

the n-order is designed as

D̂n = pn + LnH−1 (σ ) z2

ṗn = −Ln

[
−F (σ, σ̇ ) z2 + k1F (σ, σ̇ ) z1 − g (σ )
+Ŵ T8(z1, z2)+ τ + D̂1 − H−1 (σ ) β̇

]
−LnḢ−1 (σ ) z2 (20)

where L1,L2 · · · Ln ∈ R denote the designed gains of the
disturbance observer. Besides, Ŵ denotes the estimation of
W .
Define the estimation errors as D̃1 = D̂1− dτ , D̃2 = D̂2−

ḋτ , · · · , D̃n = D̂n − dτ (n−1), W̃ = Ŵ − W . Integrating the
system equation (17), we can get

dD̃1 =

(
−L1D̃1 + D̃2 − L1W̃ T8+ L1ε

)
dt − L11dζ

dD̃2 =

(
−L1D̃2 + D̃3 − L2W̃ T8+ L2ε

)
dt − L21dζ

...

dD̃n =
(
−LnD̃n − LnW̃ T8+ Lnε + d (n−1)

)
dt − Ln1dζ

(21)
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Define

ϒ =
3
2
sup
t≥0

∥∥∥H (σ )11THT (σ )

∥∥∥ (22)

In view of SUSs (17) subjected to disturbance and stochas-
tic uncertainties, define design the controller as

τ = τn + τa (23)

where the normal control law is

τn = F (σ, σ̇ ) z2 − k1F (σ, σ̇ ) z1 + g (σ )

+H−1 (σ ) β̇ − k2H−1 (σ ) z2 (24)

the adaptive control law is

τa = −Ŵ T8(z1, z2)− D̂1 − ϒ̂δϒH−1 (σ ) z2 (25)

Ŵ , D̂1 denotes the same meaning as before and ϒ̂ denotes
the estimation of ϒ . The update laws of Ŵ , ϒ̂ is designed as

˙̂W = 0W

(−8(z1, z2) ·8T (z1, z2) ·8(z1, z2) ·
3T
· H (σ ) · HT (σ ) ·3 ·3T

· H (σ )

)
−σW Ŵ


˙̂
ϒ = 0ϒ

(
δϒ3

T z2 − σϒ ϒ̂
)

(26)

Remark 2: It should be noticed that the symmetric, positive
definite inertia matrix H is invertible. According to the result
in [38], the following equalities can be obtained:

Ḣ−1 (σ ) = −H−1 (σ ) Ḣ (σ )H−1 (σ )

H−1 (σ ) = JG−1 (σ )

Ḣ (σ ) = Ġ (σ ) (27)

B. STABILITY ANALYSIS
Theorem 1: Consider the attitude dynamic equation of the
SUS (1). Design the high-order disturbance observer as (18)
∼ (20) and select the adaptive controller as (23)∼ (25), and
the adaptive laws as (26). Suppose the RBFNNs approxima-
tion errors are all bounded. Then the closed-loop system (28)
related to (1), (18) ∼ (20), (23) ∼ (25) as well as (26)
will be uniformly ultimately bounded, that is all the signals
will converge to a compact set as time goes to infinite. The
closed-loop stability of SUS under the complex disturbance
and stochastic uncertainties is guaranteed and the control
objective can be achieved.

Proof: The closed-loop attitude control system of the
SUS can be formulated by:

ż1 = z2 − k1z1

dz2 =
[
−k2z2 − H (σ ) W̃ T8(z1, z2)
+H (σ ) ε − H (σ ) D̃1 − ϒ̂δϒ z2

]
dt

+H (σ )1dζ (28)

Construct the Lyapunov function candidate as:

V (t) = V1 (t)+ V2 (t)

V1 (t) =
1
2
zT1 z1 +

1
4

(
zT2 z2

)2

V2 (t) =
1

40W
Tr
(
W̃ T W̃ W̃ T W̃

)
+

1
4

n∑
i=1

(
D̃Ti D̃i

)2
+

1
20ϒ

ϒ̃2 (29)

According to Definition 1 and closed-loop attitude sys-
tem (28), we obtain the derivation of V1 is

V̇1 (t) = zT1 ż1 + z
T
2 z2z

T
2

[
−k2z2 − H (σ ) W̃ T8(z1, z2)
+H (σ ) ε − H (σ ) D̃1 − ϒ̂δϒ z2

]
+
3
2
Tr
(
1THT (σ ) z2zT2H (σ )1

)
(30)

From (21), the derivative of V2 is

V̇2 (t) =
1
0W

Tr
(
W̃ T W̃ W̃ T ˙̂W

)
+D̃T1 D̃1D̃T1

(
−L1D̃1 + D̃2 − L1W̃ T8

)
−
3
2
Tr
(
1TLT1 D̃1D̃T1 L11

)
+D̃T2 D̃2D̃T2

(
−L1D̃2 + D̃3 − L2W̃ T8

)
−
3
2
Tr
(
1TLT2 D̃2D̃T2 L21

)
+ · · ·

+D̃Tn D̃nD̃
T
n

(
−LnD̃n − LnW̃ T8+ d (n−1)

)
−
3
2
Tr
(
1TLTn D̃nD̃

T
n Ln1

)
+

1
0ϒ

ϒ̃
˙̂
ϒ

=
1
0W

Tr
(
W̃ T W̃ W̃ T ˙̂W

)
+

n−1∑
i=1

D̃Ti D̃iD̃
T
i

(
−LiD̃i + D̃i+1 − LiW̃ T8

)
+D̃Tn D̃nD̃

T
n

(
−LnD̃n − LnW̃ T8+ d (n−1)

)
−
3
2

n∑
i=1

D̃Ti Li11
TLTi D̃i +

1
0ϒ

ϒ̃
˙̂
ϒ (31)

Define 3T
= zT2 z2z

T
2 , 4

T
i = D̃Ti D̃iD̃

T
i i = 1, · · · , n,

the derivative of V1 in (30) can be rewritten as

V̇1 (t) = −k1zT1 z1 + z
T
1 z2

+3T
[
−k2z2 − H (σ ) W̃ T8(z1, z2)
+H (σ ) ε − H (σ ) D̃1 − ϒ̂δϒ z2

]
+
3
2
zT2H (σ )11

THT (σ ) z2 (32)

and V2 in (31) is

V̇2 (t) =
1
0W

Tr
(
W̃ T W̃ W̃ T ˙̂W

)
+

n−1∑
i=1

4T
i

(
−LiD̃i + D̃i+1 − LiW̃ T8

)
+4T

n

(
−LnD̃n − LnW̃ T8+ d (n−1)

)
−
3
2

n∑
i=1

D̃Ti Li11
TLTi D̃i +

1
0ϒ

ϒ̃
˙̂
ϒ (33)
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According to Lemma 2, we know that

zT1 z2 ≤
1
2
zT1 z1 +

1
2
zT2 z2 ≤

1
2
zT1 z1 +

1
8δz

(
zT2 z2

)2
+

1
2
δz

(34)

And from (22), we obtain

3
2
zT2H (σ )11

THT (σ ) z2 ≤ ϒzT2 z2 ≤ ϒδϒ3
T z2 +

ϒ

4δϒ
(35)

Hence, it can obtain that

V̇1 (t) = −k1zT1 z1 +
1
2
zT1 z1 +

1
8δz

(
zT2 z2

)2
+

1
2
δz

+3T
[
−k2z2 − H (σ ) W̃ T8(z1, z2)
+H (σ ) ε − H (σ ) D̃1 − ϒ̂δϒ z2

]
+ϒδϒ3

T z2 +
ϒ

4δϒ

= −k1zT1 z1 +
1
2
zT1 z1 +

1
8δz

(
zT2 z2

)2
+

1
2
δz

−k23T z2 −3TH (σ ) W̃ T8(z1, z2)

+3TH (σ ) ε −3TH (σ ) D̃1 − ϒ̃δϒ3
T z2 +

ϒ

4δϒ
(36)

According to Property 1, we get that

−3H (σ ) D̃1 ≤
1
2

(
zT2 z2

)2
+

1
2
zT2H (σ ) D̃1D̃T1H

T (σ ) z2

≤
1
2

(
zT2 z2

)2
+
1
4

(
zT2H (σ )H

T (σ ) z2
)2
+

1
4

(
D̃T1 D̃1

)2
≤

(
1
2
+
δJ

4

64

)(
zT2 z2

)2
+

1
4

(
D̃T1 D̃1

)2
(37)

and

3TH (σ ) ε ≤
1
2

(
zT2 z2

)2
+
ε2

2
zT2H (σ )H

T (σ ) z2

≤

(
1
2
+
δ4J

64

)(
zT2 z2

)2
+

1
4
ε4 (38)

Further, we have the items that

−3TH (σ ) W̃ T8(z1, z2)

≤

(
3T
· H (σ ) · HT (σ ) ·3 ·3T

· H (σ ) · W̃ T
·

W̃ · W̃ T
·8(z1, z2) ·8T

· (z1, z2) ·8(z1, z2)

)
(39)

Integrating (37), (38) and (39), then the derivative of V1(t)
in (36) is expressed as

V̇1 (t) = −k1zT1 z1 +
1
2
zT1 z1 +

1
8δz

(
zT2 z2

)2
+

1
2
δz

−k23T z2 −3TH (σ ) W̃ T8(z1, z2)

+3TH (σ ) ε −3TH (σ ) D̃1 − ϒ̃δϒ3
T z2 +

ϒ

4δϒ

= −

(
k1 −

1
2

)
zT1 z1

−

(
k2 −

1
8εz
−

(
1+

δ4J

32

))(
zT2 z2

)2
+

[
3T
· H (σ ) · HT (σ ) ·3 ·3T

· H (σ ) · W̃ T
·

W̃ · W̃ T
·8(z1, z2) ·8T

· (z1, z2) ·8(z1, z2)

]
−ϒ̃δϒ3

T z2 +
1
4

(
D̃T1 D̃1

)2
+
1
2
δz +

1
4
ε4 +

ϒ

4δϒ
(40)

Based on Assumption 3, we can define

Ti =
3
2
sup
t≥0

∥∥∥Li11TLTi
∥∥∥ (41)

By choosing limited DOB gains, it can obtained that

−
3
2

n∑
i=1

D̃Ti Li11
TLTi D̃i ≤

n∑
i=1

TiD̃Ti D̃i

≤

n∑
i=1

δTi4
T
i D̃i +

n∑
i=1

T 2
i

4δTi
(42)

And using the inequality in Lemma 1, we can obtain

n−1∑
i=1

4T
i D̃i+1 ≤

1
2

n−1∑
i=1

(
D̃Ti D̃i

)2
+

1
2

n−1∑
i=1

D̃Ti D̃i+1D̃
T
i+1D̃i

≤
1
2

n−1∑
i=1

(
D̃Ti D̃i

)2
+

1
4

n−1∑
i=1

(
D̃Ti D̃i

)2
+
1
4

n−1∑
i=1

(
D̃Ti+1D̃i+1

)2
≤

3
4

(
D̃T1 D̃1

)2
+

n−1∑
i=2

(
D̃Ti D̃i

)2
+
1
4

(
D̃Tn D̃n

)2
(43)

as well as

−

n∑
i=1

4T
i LiW̃

T8 ≤

n∑
i=1

(D̃Ti D̃iD̃
T
i D̃i

+L4i
(
8T8

)2
W̃ T W̃ W̃ T W̃ )

≤

n∑
i=1

(
(
D̃Ti D̃i

)2
+L4i

(
8T8

)2
Tr
(
W̃ T W̃ W̃ T W̃

)
)

≤

n∑
i=1

(
(
D̃Ti D̃i

)2
+L4i ϕ

2Tr
(
W̃ T W̃ W̃ T W̃

)
) (44)

Then substituting the (42), (43), (44) into (33), the deriva-
tive of V2(t) is represented as

V̇2 (t) ≤
1
0W

Tr
(
W̃ T W̃ W̃ T ˙̂W

)
−

n∑
i=1

Li4T
i D̃i
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FIGURE 2. The estimation effects for constant disturbances.

+
3
4

(
D̃T1 D̃1

)2
+

n−1∑
i=2

(
D̃Ti D̃i

)2
+
1
4

(
D̃Tn D̃n

)2
+

n∑
i=1

(
D̃Ti D̃i

)2
+

1
0ϒ

ϒ̃
˙̂
ϒ

+

n∑
i=1

 L4i ϕ
2Tr

(
W̃ T W̃ W̃ T W̃

)
+4T

n d
(n−1)
+

n∑
i=1
δTi4

T
i D̃i +

n∑
i=1

T 2
i

4δTi


Further,

V̇2 (t) ≤
1
0W

Tr
(
W̃ T W̃ W̃ T ˙̂W

)
+
3
4

(
D̃T1 D̃1

)2
+

n−1∑
i=2

(
D̃Ti D̃i

)2
+
1
4

(
D̃Tn D̃n

)2
+

n∑
i=1

(
D̃Ti D̃i

)2
+4T

n d
(n−1)
+

n∑
i=1

T 2
i

4δTi
+

1
0ϒ

ϒ̃
˙̂
ϒ

+

 n∑
i=1

L4i ϕ
2Tr

(
W̃ T W̃ W̃ T W̃

)
−

n∑
i=1

Li4T
i D̃i +

n∑
i=1
δTi4

T
i D̃i

 (45)

Besides, from Assumption 1, the following inequality
holds

4T
n d

(n−1)
≤

1
2

(
D̃Tn D̃n

)2
+

1
2
D̃Tn d

(n−1)d (n−1)
T
D̃n

≤
3
4

(
D̃Tn D̃n

)2
+

1
4
δ2d (46)

V2(t) in (45) is rewritten as

V̇2 (t) ≤
1
0W

Tr
(
W̃ T W̃ W̃ T ˙̂W

)
+

n∑
i=1

L4i ϕ
2Tr

(
W̃ T W̃ W̃ T W̃

)
−

n∑
i=1

Li4T
i D̃i +

n∑
i=1

δTi4
T
i D̃i

+
1
4
δ2d +

n∑
i=1

T 2
i

4δTi
+

1
0ϒ

ϒ̃
˙̂
ϒ

+
3
4

(
D̃T1 D̃1

)2
+

n−1∑
i=2

(
D̃Ti D̃i

)2
+

1
4

(
D̃Tn D̃n

)2
+

n∑
i=1

(
D̃Ti D̃i

)2
+

3
4

(
D̃Tn D̃n

)2
≤

1
0W

Tr
(
W̃ T W̃ W̃ T ˙̂W

)
+

n∑
i=1

L4i ϕ
2Tr

(
W̃ T W̃ W̃ T W̃

)
−

n∑
i=1

Li4T
i D̃i +

n∑
i=1

δTi4
T
i D̃i

−
1
4

(
D̃T1 D̃1

)2
+ 2

n∑
i=1

(
D̃Ti D̃i

)2
+
1
4
δ2d +

n∑
i=1

T 2
i

4δTi
+

1
0ϒ

ϒ̃
˙̂
ϒ (47)

Substitute the adaptive laws (26) into (40) and (47) yields

V̇ (t)
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≤ −

(
k1 −

1
2

)
zT1 z1 −

(
k2 −

1
8εz
−

(
1+

δ4J

32

))(
zT2 z2

)2
+

[
3TH (σ )HT (σ )33TH (σ ) W̃ T

·

W̃ W̃ T8(z1, z2)8T (z1, z2)8 (z1, z2)

]
−ϒ̃δϒ3

T z2 +
1
4

(
D̃T1 D̃1

)2
+

1
2
δz +

1
4
ε4 +

ϒ

4δϒ

−Tr

 W̃ T W̃ W̃ T8(z1, z2) ·
8T (z1, z2)8 (z1, z2) ·
3TH (σ )HT (σ )33TH (σ )


−σWTr

(
W̃ T W̃ W̃ T Ŵ

)
+

n∑
i=1

L4i ϕ
2Tr

(
W̃ T W̃ W̃ T W̃

)
−

n∑
i=1

(
Li − δTi

)
4T
i D̃i −

1
4

(
D̃T1 D̃1

)2
+2

n∑
i=1

(
D̃Ti D̃i

)2
+

1
4
δ2d +

n∑
i=1

T 2
i

4δTi

+ϒ̃δϒ3
T z2 − σϒ ϒ̃ϒ̂ (48)

Since aT b = Tr
(
baT

)
, we can obtain from (48)

V̇ (t)

≤ −

(
k1 −

1
2

)
zT1 z1 −

(
k2 −

1
8εz
−

(
1+

δ4J

32

))(
zT2 z2

)2
+
1
2
δz +

1
4
ε4 +

ϒ

4δϒ
− σWTr

(
W̃ T W̃ W̃ T Ŵ

)
+

n∑
i=1

L4i ϕ
2Tr

(
W̃ T W̃ W̃ T W̃

)
−

n∑
i=1

(
Li − δTi

)
4T
i D̃i

+2
n∑
i=1

(
D̃Ti D̃i

)2
+

1
4
δ2d +

n∑
i=1

T 2
i

4δTi
− σϒ ϒ̃ϒ̂

≤ −

(
k1 −

1
2

)
zT1 z1 −

(
k2 −

1
8εz
−

(
1+

δ4J

32

))(
zT2 z2

)2
−

n∑
i=1

(
Li − δTi − 2

) (
D̃Ti D̃i

)2
−σWTr

(
W̃ T W̃ W̃ T Ŵ

)
+

n∑
i=1

L4i ϕ
2Tr

(
W̃ T W̃ W̃ T W̃

)
+
1
2
δz +

1
4
ε4 +

ϒ

4δϒ
+

1
4
δ2d +

n∑
i=1

T 2
i

4δTi
− σϒ ϒ̃ϒ̂ (49)

It is obvious that

−4Tr
(
W̃ T W̃ W̃ T Ŵ

)
≤ −Tr

(
W̃ T W̃ W̃ T W̃

)
+Tr

(
W TWW TW

)
−2ϒ̃ϒ̂ ≤ −ϒ̃2

+ ϒ2 (50)

According to (50), (49) can be represented as

V̇ (t) ≤ −
(
k1 −

1
2

)
zT1 z1

−

(
k2 −

1
8εz
−

(
1+

δ4J

32

))(
zT2 z2

)2
−

n∑
i=1

(
Li − δTi − 2

) (
D̃Ti D̃i

)2
−
σW

4
Tr
(
W̃ T W̃ W̃ T W̃

)
+
σW

4
Tr
(
W TWW TW

)
+

n∑
i=1

L4i ϕ
2Tr

(
W̃ T W̃ W̃ T W̃

)
+
1
2
δz +

1
4
ε4 +

ϒ

4δϒ
+

1
4
δ2d

+

n∑
i=1

T 2
i

4δTi
−
σϒ

2
ϒ̃2
+
σϒ

2
ϒ2 (51)

Accordingly, we know that

V̇ (t) ≤ −
(
k1 −

1
2

)
zT1 z1

−

(
k2 −

1
8εz
−

(
1+

δ4J

32

))(
zT2 z2

)2
−

n∑
i=1

(
Li − δTi − 2

) (
D̃Ti D̃i

)2
−

(
σW

4
−

n∑
i=1

L4i ϕ
2

)
Tr
(
W̃ T W̃ W̃ T W̃

)
−
σϒ

2
ϒ̃2
+
σW

4
Tr
(
W TWW TW

)
+
1
2
δz +

1
4
ε4 +

ϒ

4δϒ
+

1
4
δ2d +

n∑
i=1

T 2
i

4δTi
+
σϒ

2
ϒ2

(52)

Further, we can rewrite (52) as

V̇ (t) ≤ −λV + β (53)

where

λ = min


2k1 − 1, 4

(
k2 − 1

8εz
−

(
1+

δ4J
32

))
,

mini=1,··· ,n4
(
Li − δTi − 2

)
,(

σW − 4
n∑
i=1

L4i ϕ
2
)
, σϒ


β =

σW

4
Tr
(
W TWW TW

)
+
σϒ

2
ϒ2

+
ϒ

4δϒ
+

1
4
δ2d +

n∑
i=1

T 2
i

4δTi
+

1
4
ε4 (54)

In order to guarantee the stability of closed-loop,
the parameters of controller and high-order disturbance
observer are limited as

k1 >
1
2
, k2 >

1
8εz
+

(
1+

δ4J

32

)
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FIGURE 3. The estimation errors of constant disturbances.

FIGURE 4. The tracking performance for the expected MRPs of the SUS with constant disturbances.

Li > δTi + 2, σW > 4
n∑
i=1

L4i ϕ
2, σϒ > 0 (55)

Obviously, if the parameters are chosen properly,
the closed-loop system signals z1, z2,Di (i = 1, · · · , n),

W̃ , ϒ̃ in Lyapunov function (29) can ultimately con-
verge to an enough small neighborhood. Therefore,
the high-order disturbance observer can realize the esti-
mation of dτ , ḋτ , · · · , d (n−1) and compensate the effect of
external disturbance in spacecraft attitude control. And the
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FIGURE 5. The derivatives of MRPs of the SUS with constant disturbances.

FIGURE 6. The trajectories of the adaptive parameters with constant disturbances.

attitude of the spacecraft can be actuated to the desired
value by the designed controller. Therefore, it can be
proved that the closed-loop SUS system (1) with the con-
troller (23) and high-order disturbance observer (18) ∼ (20)

is uniformly ultimately bounded, which completes the
proof.�
Remark 3: Compared with the classical disturbance

observer, the advantage of the high order disturbance observer
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FIGURE 7. The estimation effects for time-varying disturbances.

is remarkable. In fact, by using the high-order disturbance
observer, the high dynamic disturbances can be estimated
and finally handled, while the classical disturbance observer
cannot ensure the estimation performance. In details, to apply
the classical disturbance observer, the assumption ḋ = 0 is
required to guarantee the estimation error equation ˙̃d = −Ld̃ .
For the high dynamic disturbances, ḋ = 0 is not satisfied
and the estimation performance of the classical disturbance
observer may largely degrade. By using high-order distur-
bance observer, the estimation error equation

dD̃1 =

(
−L1D̃1 + D̃2 − L1W̃ T8+ L1ε

)
dt − L11dζ

dD̃2 =

(
−L1D̃2 + D̃3 − L2W̃ T8+ L2ε

)
dt − L21dζ

...

dD̃n =
(
−LnD̃n − LnW̃ T8+ Lnε + d (n−1)

)
dt − Ln1dζ

can be obtained, the convergence can be proved and the
estimation performance can be guaranteed.
Remark 4: There exist several limitations of the proposed

method, those are: (1) The tracking errors using the proposed
method cannot be reduced to zero accurately. (2) To apply
the proposed method, the inertia parameters of the SUS are

required in advance. By introducing the integral action limiter
into the proposed method, the tracking errors can be reduced.
By fusing the inertia free adaptive design algorithm into the
proposed controller, the requirement for the inertia parame-
ters can be relaxed.

IV. SIMULATION STUDY
In this section, a numerical example is provided to verify the
effectiveness of the proposed method. The desired attitude
of the SUS is σd =

[
0.05 0.02 0.03

]T . The physical
parameters of the SUS are as follows:

J =

 245.3 −100 −85
−100 45.3 −120
−85 −120 245.3

 kg · m2

and the unknown nonlinear moment f (z1, z2) and the ampli-
tude of uncertainty 1 are

f (z1, z2) = 0.1z1+0.2z2
1 = [0.01, 0.02, 0.03]T

The order of the high-order disturbance observer is chosen
as 3. The initial simulation values of SUS are shown in
Table 1.
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FIGURE 8. The estimation error of time-varying disturbances.

FIGURE 9. The tracking of expected MRPs attitude of the SUS with time-varying disturbances.

The orbital radius r0 is 7.078×108m, and the gravitational
constant of the Earth is µg = 3.986 × 1014m3/s2. The
external disturbance dτ is set as two types. For constant
disturbance, dτ is dτ (t) = [0.2, 0.1, 0.2]T . For time-varying

case, dτ (t) =
[
0.1sin

(
π
5 t
)
, 0.1sin

(
π
15 t
)
, 0.1sin

(
π
10 t
)]T .

The gains of the high-order disturbance observer are L1 =
5,L2 = 10,L3 = 15. The controller gains are designed as
k1 = 0.3, k2 = 0.9.
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FIGURE 10. The derivatives of MRPs of SUS with time-varying disturbances.

FIGURE 11. The trajectories of the adaptive parameters with time-varying disturbances.

The simulation results are given in Fig. 2 ∼ Fig. 11.
The estimation effects for the constant and time-varying dis-
turbances by using the high-order disturbance observer are
shown in Fig. 2 ∼ Fig. 3 and Fig. 7 ∼ Fig. 8, respectively.

Apparently in Fig. 3 and Fig. 8, the constant or high dynamic
disturbances can be estimated, the derivative of the distur-
bances can be estimated by using the high-order disturbance
observer, which can enhance the observation precision and
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TABLE 1. The initial values in simulation.

shorten convergence time. Then the simulation results for
SUS with constant disturbance and time-varying disturbance
are provided in Fig. 4 ∼ Fig. 5 and Fig. 9 ∼ Fig. 10
respectively. It is obvious that the attitudes can converge
to the expected value. In summary, the satisfactory control
performance can be achieved. Fig. 6 and Fig. 11 displays
the trajectories of the adaptive parameters under constant or
time-varying disturbances, exhibiting the boundedness of the
adaptive parameters.

V. CONCLUSION
The problem of the stochastic adaptive anti-disturbance con-
trol has been addressed for the SUSs with high dynamic
disturbances and stochastic uncertainties in this paper.
By designing the high order disturbance observer for the
SUSs, the adverse influence of the high dynamic disturbances
can be suppressed. By defining a novel variable and design-
ing the corresponding adaptive law, the infaust effects of
the stochastic uncertainties can be overcome. Based on the
stochastic control theory and the fourth-order Lyapunov func-
tion, the closed-loop attitude control system was proved to
be stochastically stable. Finally, the simulation experiments
have been conducted and the effectiveness and advantages
of the proposed stochastic adaptive attitude control strategy
have been demonstrated. In the future, we will investigate the
cooperate stochastic adaptive control problem for the SUSs
with nonlinear multiple disturbances.
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