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ABSTRACT Human–Computer natural language interaction is helpful to reduce the operation and mainte-
nance cost of the SCADA system, and it is necessary to solve the complex natural language interface problem
that supports data query and real-time control. According to the complexity of natural language instructions,
a hierarchical classification of semantic parsing algorithm is adopted. Firstly, the KWECS method is used to
classify the intent of natural language instruction, then the TF-IDF keyword extraction algorithm combined
with the cosine similarity is used to structure the key-value of the classified natural language instructions
which was used into SCADA control intermediate language and then formally converted into actual control
or query instruction. If the analysis fails, the complex control and query instruction analysis are carried
out according to the classification results, structuring instruction parsing based on dependency parsing
and SQL natural language parsing based on deep learning are adopted respectively to implement real-time
control interface and database query interface. Our experimental results show that the proposed hierarchical
classification of natural language comprehensive query and control interface can better solve the problem of
human-computer natural language interaction in the SCADA system, and the accuracy of intent recognition
reaches 96.5%. In more detail, the accuracy, precision, recall, and F-score of instruction parsing reach
88.47%, 90.21%, 89.48%, and 89.72% respectively. Especially, it provides more convenient interactive
means for industrial and agricultural information management and control.

INDEX TERMS Natural language interface, intent classification, semantic parsing, scada systems,
human–computer interaction.

I. INTRODUCTION
Distributed SCADA (Supervisory Control AndData Acquisi-
tion, system control, and data acquisition) is usually used for
integrated monitoring of large industrial processes and power
systems. However, general SCADA system construction and
operation and maintenance costs are high, so special opera-
tion and maintenance personnel are required and almost all of
them rely on the graphical user interface (Graph User Inter-
face, GUI) for human-computer interaction [1]. By observ-
ing the chart data, clicking on the button control to set up
and deploy the SCADA system, operation and maintenance
engineers with special knowledge are needed to complete
the limited operation under the fixed program through the
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Windows interface. This human-computer interaction mode
is not friendly and the operation efficiency is low.

To solve this problem, it is also fundamentally necessary
to improve the natural properties of human-computer inter-
action. The natural language interface of the SCADA system
is an effectivemethod. Natural Language Interface (NLI) uses
human language to interact with machine systems, reducing
the complexity of interaction [2], which is particularly impor-
tant in themanipulation of complex systems and devices, such
as large distributed SCADA systems [3], UAVs, autopilot,
etc. Natural language interfaces are also being widely used
in mobile and Web applications, data management, and other
aspects. For example, some smart softwares provide natural
language interfaces for mobile Android terminals, such as
the voice assistant [4] of Microsoft, Apple, and Baidu; they
construct natural language interfaces for the web, realizes the
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application of natural language operation for web e-mail and
other applications, and improves the use efficiency of web
applications [5]. And also, the preliminary research on Chi-
nese Text-to-SQL algorithms for Chinese natural language
query database provides a new way of thinking [6].

The task of the natural language interface is to convert
user-expressed speech or text into an executable computer
system call interface. The core issue is to address the follow-
ing two steps:

(1) Analyze the intention of manipulation and the
input/output call relationship between complex manipulation
sequences. The core is the formal semantic function descrip-
tion of natural manipulation language;

(2) The mapping between natural language instruction
sequences and computer system call interfaces.

The first step is the semantic understanding problem in
natural language processing, which is also the essential and
fundamental problem to solve the natural language interface.
Usually, it needs to go through the process of text disam-
biguation, lexical annotation, named entity recognition, and
syntactic analysis to identify the user manipulation intention
through pattern classification and semantic understanding.
Regarding the second step, after expressing the manipulation
sequence and system call interface based on the first step,
it mainly solves the problem of similarity calculation and
optimal mapping, and its effect depends largely on the first
step.

There are four main categories of research on intent recog-
nition of manipulation: rule-based approach, query-and-click
log-based approach, statistical feature-based classification
approach, and deep-learning approach. The rule-based
approach uses information such as keywords to form rules
to detect user intent. Chu and Huang [7] proposed a
dialogue-based object query system, which is combined
with cosine similarity and TF-IDF to determine user intent.
Regarding intent classification based on query click logs, it is
mostly used for business scenarios such as search engine, and
user intention can be obtained by clicking log. Ye and Ma [8]
proposed a web page classification method based on query
logs. Aiming at the problem that the sparsity of user click
data makes it difficult for web pages to be directly used to
construct classification pain points, he explored the seman-
tic relations among different queries through word embed-
ding, and proposed three improved graph structure classifi-
cation algorithms. Veilumuthu and Ramachandran et al. [9]
put forward proposed the concept of intention cluster. The
members of the intention cluster have the same intention,
and use the user session information in the query log and
query URL entries to identify the query cluster with the
same intention, which solves the problem of synonym query
and poly-meaning query in keyword search technology. The
method based on statistical feature classification needs to
extract the key features of corpus text and then train the clas-
sifier to realize the intention classification. Commonmethods
include Naive Bayes, Support Vector Machines and Logi-
cal Regression. Setyawan et al. [10] proposed a polynomial

Naive Bayesian classification method for intent recognition.
In this study, chatbots were created who could understand
the natural language input of the user and respond according
to the user’s expectations. Mendoza, Marcelo et al. intro-
duced a high-precision query classification method based on
informational, navigational, and transactional classification,
using a support vector machine as a classifier to identify
the intention of the user’s query, and pro-posed that time
is an important factor to improve the classification accu-
racy. The usual practice based on deep learning first car-
ries out text vectorization, and the commonly used methods
include Word2vec [11], Glove [12] and BERT [13], etc.,
and then uses models for feature extraction. The commonly
used models include LSTM [14], GRU [15] and CNN [16],
etc. Finally, the Softmax layer is used to complete intention
classification. Zhou et al. [17] proposed an improved struc-
ture of bilstm-attention for text classification, but it needs
further optimization and improvement in aspects such as
‘‘dimensional disaster’’, ‘‘semantic gap’’ and ‘‘high complex-
ity’’ [18], [19]. In general, deep learning requires a large
amount of high-quality training data. Theoretically, deep
learning model is suitable for instruction intention classifi-
cation tasks, but the requirements for computational power
and data are relatively high.

At present, the formal description and instruction trans-
lation of natural language instructions are mainly based on
the natural language processing or natural language under-
standing technology combined with statistical and rule meth-
ods [20]. Especially with the development of deep learning
theory, distributed feature representation has brought a break-
through to the development of natural language processing.
According to the neural language model proposed in [21],
a large-scale corpus is an input as training data to obtain
the vector form of words in the corpus, i.e. the distributed
representation of words. Then, the NLP downstream tasks
such as automatic Q & A, natural language interface, etc. are
performed through the obtained word vector. Su et al. [5]
proposed the first end-to-end framework which constructs
NL2API for network application programming interface,
i.e. the natural language is converted to the corresponding
API, making network data, services, and device access more
efficient. Sowmya Kamath et al. [22] proposed a frame-
work for web-oriented discovery of composable service sets
according to the complex needs of users. The method is
based on natural language processing and semantic under-
standing to resolve the functional semantics of service data
sets, and can effectively find relevant services for simple
and complex queries. However, when considering the dif-
ference between complex query and simple query, only a
few keywords are used to distinguish, which is easy to cause
ambiguity. Tian et al. [23] proposed a structured processing
method of pathological reports based on dependent syntax
analysis, which converts the statements into the form of a
dependent syntax tree, and then iterates through the nodes
to obtain keywords in turn. There is a problem that there
are too many nodes to extract, which leads to information
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redundancy. In recent years, the natural language interface
for the database has become a research hotspot. Xu et al. [24]
use the column-attention mechanism to deal with the generic
problem of ’sequence-to-collection ’, avoiding sequence cor-
relation in the where clause. Yu et al. [25] proposed the
TYPESQL architecture, like SQLNet, still treats SQL state-
ment generation as a slot fill problem, but used type infor-
mation to better understand rare entities and data in natural
language problems. Hwang et al. [26] discussed three vari-
ations of the BERT-based architecture and presented how to
use word contextualization in semantic analysis tasks.

In conclusion, the design of a natural language interface for
human-computer interaction plays an active role in reducing
the operation and maintenance cost and service upgrade cost
of the large distributed SCADA system. However, some prob-
lems need to be studied urgently: lack of small data-driven,
strong generalization ability and low calculation amount of
intelligent computing model to guide the design of natural
language interface, to solve the design problem of natural
language interactive interface in the complex uncertain lan-
guage environment. Based on the design of natural language
query and control interface for a SCADA system, combined
with semantic analysis and deep learning theory, a scientific,
reasonable, and generalization ability of natural language
interface for many fields should be studied. Contribution to
this document is as follows:

• A natural language query and control interface based
on hierarchical classification semantic parsing algorithm
is designed, which can effectively identify and parse
basic natural language query and control instructions
and complex natural language and control instructions.

• Experiments show that the proposed hierarchical and
classified natural language integrated control interface
can better solve the human-computer natural interaction
problem of the SCADA system, and achieve good accu-
racy and time performance to meet the requirements.

The structure of the paper is as follows: Section 2 discusses
the requirements of the SCADA system and four types of
natural language instructions. Section 3 describes the module
functions and workflows of the SCADA-NLI architecture.
Section 4 describes the algorithm for the classification of
natural language instructions. Section 5 describes how to
embed the key-value parameter fill sketch into the semantic
parsing algorithm to solve the basic natural language query
and control instruction and complex control instruction, and
use the NL-to-SQL model to complete the semantic parsing
of complex natural language query instruction. Experimental
results show that the method used and the theoretical per-
formance analysis of the proposed technology are given in
Section 6, and finally the full-text summary and future work
prospects.

II. SCADA SYSTEM REQUIREMENTS
The main functions of the SCADA system include data
acquisition, device control, abnormal alarm, and parameter

adjustment. Taking SCADA application scenarios such as
smart home and smart agriculture as examples, SCADA
system instructions are mainly divided into query instruc-
tions and control instructions. The query instruction is
used for querying parameters such as historical data, charts
and operation records, etc. According to the complexity
of the query instruction, for example, in technical imple-
mentation, it can be realized both by calling the HTML
interface linked with HTTP address and by accessing the
built-in database of SCADA system through SQL query
statement; the control instruction is used for remote con-
trol such as operation, parameter modification, etc. such as
calling in the Web interface JavaScript methods are used to
send commands to the server, which are then further dis-
tributed to gateways, nodes, and other field devices. To bet-
ter describe the natural language query and control inter-
face problem studied in this paper, a specific formal sum-
mary of the types of instructions involved in this paper is
presented.

Basic control instructions: For example, ’’
’’(‘‘please turn on the lights of the shed’’),

’’ ’’(‘‘please turn on the sensors
in the field’’), ’’ ’’(‘‘please
raise the temperature of the air conditioner in the shed’’), etc.
These are basic natural language control instructions that do
not contain nested relationships or only contain one action.

Basic query instructions:For example, For example,
‘‘ ’’(‘‘What is the current tem-
perature of the greenhouse’’),

’’(‘‘Please help me to check the cur-
rent CO2 concentration in the field’’), etc. These are basic
natural language query instructions that do not contain sort-
ing, grouping, calculation, or other nested rules.

Complex control instructions:Consider the possibil-
ity that a real-world operation might output instructions
containing multiple actions at once, such as opening or
closing multiple devices at the same time, or opening dif-
ferent devices in multiple locations, and so on. For exam-
ple, ‘‘ ’’
(‘‘Please help me turn on the lamp in the bedroom
and the lampblack machine in the kitchen respectively’’),
‘‘ , , ,

’’(‘‘Please first raise the temperature of
the greenhouse, then turn off the light in the field, and
finally reduce the concentration of carbon dioxide’’),

’’(‘‘Please
help me turn on the lamp in the bedroom and the air
conditioner in the living room respectively’’) and so on.
Therefore, the instruction types similar to those mentioned
above are summarized as complex natural language control
instructions.

Complex query instructions:Instructions that contain one
or more of sorting, grouping, computing, multi-conditional
matching queries, etc. with nested rules are called com-
plex query instructions. Examples of instructions are shown
in Table 1.
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TABLE 1. Types of questions and examples.

FIGURE 1. HTTP address of the shed temperature data.

In the SCADA system, HTTP is divided into three parts:
server IP address, view absolute path, and view channel ID.
For example, the HTTP address for querying shed tempera-
ture data is shown in Figure 1.

Localhost, Scada, plugins, Chart, and Chart.aspx are vari-
ables that do not require attention in this paper. The cnl-
Num corresponds to the channel number of the collected
data, and viewID corresponds to the view number, and
year, month, and day dates. After determining these three
attributes, you can retrieve the values of the variables under
the view number and channel number of a certain date.
Combined with the usage scenario of the SCADA system,
an instruction of intermediate language specification which
meets the requirements of the SCADA system is proposed.
For example, in a smart agriculture measurement and control
system, when input basic natural language query instruc-
tions, such as ‘‘ ’’(‘‘What
is the temperature of the greenhouse now?’’), there are
two pieces of information to be extracted: object, location,
which are transformed into the intermediate language with
a data structure such as { ’object’: ’ ’(’temperature’),
’location’: ’ ’(’greenhouse’)}, SCADA-NLI reads the
index values corresponding to the object and loca-
tion attributes in the above structure and automatically
fills the HTTP address to call the HTML data mon-
itoring interface to complete the basic query function.
When inputting natural language control instructions, such
as ‘‘ ,
’’(‘‘Help me turn on the sensor of the shed first, then
turn on the air conditioner of the field.’’), there are three
pieces of information to be extracted: object, location, and
action, which are transformed into data structures such
as [{’action’: ’ ’(’turn on’), ’location’: ’ ’(’shed’),
’object’: ’ ’(’sensor’)}, {’action’: ’ ’(’turn on’),
’location’: ’ ’(’field’), ’object’: ’ ’(’air conditioner’)}],
SCADA-NLI reads the index values corresponding to the
action, location and object attributes and sends them to the

gateway, node or other field devices to complete complex
control functions.

To realize the above process, this paper proposes a
sketch of automatic key-value parameter padding, as shown
in Figure 2, and describes this type of intermediate lan-
guage format as a key-value data structure. In Figure2(a), this
paper defines the beginning of ’$’ to indicate the location
to be filled, and the variable name after ’$’ indicates that
it is the parameter to be filled. The $viewID is populated
with the index value corresponding to the keyword repre-
senting the location; $cnlNum is populated with the index
value corresponding to the keyword that represents the object
attribute; $actionParameters is filled with the index parameter
corresponding to the keyword that represents the action prop-
erty. The dependencies between the parameters are shown
in Figure2(b). The keywords in the extracted natural language
instructions are used as keys to query the corresponding val-
ues, thus implementing the instruction parameter mapping.

For the complex natural language query instructions in
Example 4, it is not suitable to parse it into an intermedi-
ate language in the form of key-value. A new intermediate
language format is needed, and this paper uses SQL state-
ments as the intermediate language format after parsing com-
plex natural language query instructions. The overall flow is
shown in Figure 3, including the NL-to-SQL semantic pars-
ing unit and the SQL statement execution unit, which aims
to transform the input natural language instructions into SQL
statements, and the SQL statement execution unit to complete
the query on a given database. In this paper, we mainly study
the NL-to-SQL semantic parsing unit and a single table query
for a given data table, with SQL statements conforming to the
form of Figure 4. Where the fields after the $ symbol indicate
the ones to be populated, and * indicates zero or more.

III. SCADA-NLI EQUIVALENT ABSTRACT WORKFLOW
SCADA-NLI is a natural language query and control inter-
face based on a hierarchical classification semantic parsing
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FIGURE 2. Sketch of key-value parameter filling, where (a) denotes the intermediate language data structures and their
corresponding parameters, and (b) denotes the parameter dependencies.

FIGURE 3. Schematic of NL-to-SQL process.

FIGURE 4. Types of SQL statements studied in this paper.

algorithm. The equivalent abstract workflow of the system is
given in this section, as shown in Figure 5.
• Figure 5(a) reflects the equivalent abstraction workflow
of basic query instructions. Firstly, natural language
instructions are input, and after classification, it is deter-
mined to be a query instruction type, however, at this
time, the instruction cannot be fully identified as a
basic natural language query instruction, and it needs
to pass TF-IDF+COS_SIM semantic parsing algorithm,
after successful parsing, it can automatically fill HTTP
address and successfully call the data monitoring HTML
interface to realize the basic data query function.

• Figure 5(b) reflects the equivalent abstract workflow
of the basic control instruction. Like the basic query
instruction, after the resolution is successful, the param-
eters are sent to the surrounding gateways, nodes,
or other field equipment through the SCADA system to
complete the basic control operation.

• Figure 5(c) reflects the equivalent abstraction work-
flow of complex control instructions, the first step is
also through TF-IDF+COS_SIM semantic parsing algo-
rithm, however, the algorithm does not satisfy the com-
plex control instructions, so the parsing fails, at this
time SCADA-NLI chooses to call the semantic parsing
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FIGURE 5. Equivalent abstraction workflow of SCADA-NLI. (a) represents the workflow of basic query instructions, (b) represents the
work-flow of basic control instructions, (c) represents the workflow of complex control instructions, (d) represents the workflow of
complex query instructions.

algorithm based on dependent syntax analysis according
to the classification results, and successfully resolves
the complex natural language control instructions. And
the mapped parameters are sent to the surrounding gate-
ways, nodes, or other field devices through the SCADA
system to complete the complex control operation.

• Figure 5(d) reflects the equivalent abstraction workflow
of complex query instructions. As in Figure 5c, after the
first failed parsing, the NL-to-SQL model will be called
according to the classification results, and the complex
natural language instructions will be converted into SQL
statements to realize the complex query function by
accessing the SCADA built in database.

IV. INSTRUCTION INTENT CLASSIFICATION METHOD
Instruction intent classification is the first stage of the
SCADA-NLI architecture, Effective intention classification
is helpful to reduce information redundancy, improve the

retrieval efficiency of subsequent algorithms, and help to
rationally select the invocation service. For the four instruc-
tion types proposed by the SCADA system requirements,
we used the BiLSTM-Attention model for the instruction
classification task, due to the lack of sufficient high-quality
annotated datasets. The recognition effect is not good, and
it takes a lot of time and cost to label a high-quality corpus,
so in this paper, we propose an instruction intent classification
method KWECS (Keywords extraction and cosine similarity)
for measurement and control systems. An example is shown
in Figure 6 to illustrate how KWECS works.

The user inputs the instruction ‘‘
’’ (‘‘Turn off the sprayer and sensor of

the shed.’’), and first goes through the keyword extraction
(step 1), using the TF-IDF algorithm, The calculation formula
is as follows:

TFWiDi =
count(w)
|Di|

(1)
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FIGURE 6. An example of KWECS.

where count(w) denotes the number of keyword w occur-
rences and |Di| is the number of all words in a document
Di; then the keywords of verb lexicality are extracted (step
2); then we construct a good list of common control verbs in
the measurement and control field (step 3) for the subsequent
cosine similarity calculation; load the trained Word2vec
model and perform word embedding operation to transform
one keyword into a low-dimensional dense word vector (step
4); finally come to calculate the verb similarity between the
verb in the instruction and the verb in the verb word list in
turn, where we set the threshold value as 0.65, and once the
cosine value exceeds this threshold, the instruction can be
considered as a control instruction. For word vectors xi and
yi, the cosine similarity is calculated as:

cos < xi, yi >=

∑n
i=1(xi × yi)√∑n

i=1 x
2
i ×

∑n
i=1 y

2
i

(2)

where the cosine similarity takes the value interval [0,1]. The
closer the cosine value of the angle between two-word vectors
is to 1, the closer the semantics of these two words are.

V. NATURAL LANGUAGE INSTRUCTION PARSING
In this section, details of parsing natural language instruc-
tions are presented. section 5.1 and section 5.2 introduce the
semantic analysis algorithm based on TF-IDF+COS_SIM
and the semantic analysis algorithm based on dependency
syntax, respectively, and explain how these two algo-
rithms embed key-value parameters to automatically populate
sketches. section 5.3 introduces the NL-to-SQL model based
on BERT, describes the specific details of translating natural
language problems into SQL statements.

A. TF-IDF+COS_SIM BASED SEMANTIC PARSING
ALGORITHM
1) SEMANTIC PARSING FLOW OF TF-IDF+COS_SIM
The overall processing flow of TF-IDF+COS_SIM based
semantic parsing algorithm is shown in Figure 7. If the user
inputs a basic natural language query instruction, such as

‘‘ ’’ (‘‘Please help me
check what is the temperature of my bedroom?’’), it needs
to be transformed into the intermediate language {’object’:
’ ’(’temperature’), ’location’: ’ ’(’bedroom’)}. Then
fill the sketch with the key-value parameter, complete the
parameter mapping and fill it into the parameter list, as shown
in the above-structured instruction can be converted to [5,7],
as shown in the blue dashed line. And fill the parame-
ters cnlNum and viewID into the HTTP address of the
SCADA system, and realize real-time data query by call-
ing the HTML monitoring data interface of address link.
If it is a basic natural language control instruction, such as
‘‘ , ’’(‘‘It is hot, please
help me turn on the air conditioner in the living room.’’),
it also needs to be converted to an intermediate language
{’object’: ’ ’(’air conditioner’), ’location’: ’ ’(’living
room’), ’action’: ’ ’(’turn on’)}, which has one more con-
trol action compared to the query instruction. Still filling the
sketch by key-value parameters, mapping the structured inter-
mediate language to parameters, and filling the parameters to
the list, the above instruction can be converted to [8,9,1], this
process is shown as a yellow dashed line. The parameters are
then sent to the corresponding gateways, nodes, or other field
devices through the SCADA system to complete the real-time
control operation.

2) DETAILS OF THE SEMANTIC PARSING ALGORITHM FOR
TF-IDF+COS_SIM
The specific steps of the semantic parsing algorithm of
TF-IDF+COS_SIM are shown in Figure 8.

The user entered ‘‘ , ’’(‘‘It’s
too hot, help me open the air conditioner in the living
room.’’).Firstly, it is to perform Chinese word segmentation
and stop word filtering (Step1). The part-of-speech tagging
(Step2) is then performed to improve the keyword extraction
accuracy (Step3) of the TF-IDF algorithm. Then, the word
vectorization is performed, and each keyword is trans-
formed into a 300-dimensional word vector (Step4). After the
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FIGURE 7. The flow of semantic parsing algorithm based on TF-IDF+COS_SIM.

FIGURE 8. An example of the TF-IDF+COS_SIM algorithm.

conversion is completed, the first match is made, and the
extracted keywords are filled into the key-value data struc-
ture (Step5). If the filling fails, the second matching (Step6)
shall be carried out. Before this, the word similarity shall be
calculated. Take the word ‘‘ ’’(‘‘open’’) as an example.
If the first matching fails, the keyword with the highest sim-
ilarity shall be calculated as ‘‘ ’’(‘‘turn on’’). Therefore,
the second matching shall be carried out for ‘‘ ’’(‘‘turn
on’’).Finally, it is converted into a key-value intermediate
language format for reading by the SCADA system.

The pseudo-code implementation of the TF-IDF+
COS_SIM semantic parsing algorithm proposed in this paper
is shown in Figure 9 (with basic natural language control
instructions as an example).

B. SEMANTIC PARSING ALGORITHM BASED ON
DEPENDENCY SYNTACTIC ANALYSIS
1) THE SEMANTIC PARSING PROCESS OF DEPENDENT
SYNTACTIC ANALYSIS
In this section, we use the Baidu Chinese dependent pars-
ing tool DDParser to analyze the dependent syntax of com-
plex natural language control instructions. By analyzing the
dependence between word prototypes in complex control
instructions, the problem of semantic understanding of com-
plex control instructions is solved. The overall flow of the

algorithm is shown in Figure 10.Firstly, the dependency of
natural language instruction is obtained through dependency
syntactic analysis. Each node contains four parts, which are
word prototype, word character, dependency, and position
dependency between words. Then, the dependent syntax tree
of the natural language instruction is obtained by using the
dependent syntax analysis tool, and the sketch is filled with
the key-value parameter to complete the transformation from
unstructured natural language to a structured intermediate
language. After step 2, the generated structured intermedi-
ate language is optimized, and the optimized intermediate
language is mapped to corresponding parameters, which are
stored in the form of a list. Since complex control instructions
usually contain two or more actions, the mapped parameters
are usually two or more groups. Finally, it is sent to the
SCADA system in turn and then to the corresponding gate-
way, node, or other field equipment by the SCADA system to
complete the real-time control action.

2) DEPENDENT SYNTACTIC ANALYSIS PROCESS
The complex natural language control instruction ‘‘

’’(‘‘first turn on the
air conditioner in the shed and then turn off the lights
in the shed.’’) in Example 4 generates dependencies
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FIGURE 9. Algorithm 1 Semantic parsing algorithm for TF-IDF + COS_SIM.

like the list [{’word’: [’ ’(’first’), ’ ’(’turn on’),
’ ’(’shed’), ’ ’(’in’), ’ ’(’air conditioner’), ’ ’
(’then’), ’ ’(’turn off’), ’ ’(’shed’), ’ ’(’in’), ’ ’
(’lights’)], ’postag’: [’d’, ’v’, ’n’, ’u’, ’n’, ’c’, ’v’, ’n’, ’u’,
’n’], ’head’: [2, 0, 5, 3, 2, 7, 2, 10, 8, 7], ’deprel’: [’ADV’,
’ HED’, ’ATT’, ’MT’, ’VOB’, ’ADV’, ’VV’, ’ATT’, ’MT’,
’VOB’]}] are shown. Among them, ’word’ indicates the
result of the natural language instruction after word divi-
sion; ’postag’ indicates the lexicality of the words; ’head’
indicates the position relationship between the semantic
dependencies of the words; ’deprel’ indicates the seman-
tic relationship; after summarizing the complex natural lan-
guage control instructions, it is found that there are four
main types of semantic dependencies commonly found
in the instructions: the core relationship (HED), definite
middle (ATT), verb-object (VOB), and concurrent (COO).
Table 2 gives examples of common dependencies in natural
language.

The dependency tree of the instruction is shown
in Figure 11. In natural language control instructions, usually,
the verb is the core of the whole sentence and does not depend
on any words. As shown in Figure 11(a),the number under
’ ’(’turn on’) is 0, i.e., it does not form a dependency
relationship with any word and is defined as the ROOT node.
Meanwhile, the definite relationship (ATT) describes the

relationship between the definite word and the core
word. In this example, the number corresponding under
’ ’(’shed’) is 5, i.e., it forms a definite relationship (ATT)
with the 5th word ’ ’(’air conditioner’), considering
’ ’(’shed’)is the definite article of ’ ’(’air condi-
tioner’), and similarly, the number under ’ ’(’shed’)
is 10, which is the definite relationship (ATT) with the
tenth word ’ ’(’lights’) constitutes the definite middle
relationship (ATT). Based on this property, the word pro-
totype corresponding to the ATT can be selected as the
location attribute in the intermediate language data struc-
ture pattern. Meanwhile, in the example, the number under
’ ’(’air conditioner’) is 2, i.e., it forms a verb-object
relationship (VOB) with the second word ’ ’(’turn on’),
and the number under ’ ’(’lights’) is 7, i.e. The num-
ber under ’ ’ (’lights’)is 7, which is the verb-object
relationship (VOB) with the 7th word ’ ’(’turn off’).
Based on this property, the word prototype corresponding
to the verb-object relation (VOB) can be selected as the
object (Object) property in the intermediate language data
structure paradigm. However, the natural language con-
trol instruction ‘‘ ’’(‘‘Turn on
the sensors and lights in the shed.’’)’ ’(’sensors’)
will constitute a juxtaposition relationship (COO) between
’ ’(’sensors’) and ’ ’(’lights’), i.e., between words
of the same type The dependency relationship is shown
in the Figure 11(b), so in this case, the word prototypes
corresponding to the COO relationship can be extracted and
merged into the Object attribute. And for the action (Action)
attribute, we can consider the verb-object relationship (VOB),
after finding the object, that is, the object attribute, accord-
ing to the dependency relationship between the verb and
the object, extracts the keywords that the object depends
on as the action attribute, for example, ’ ’(’Turn
off the lights’), ’ ’(’turn off’) and ’ ’(’lights’) form
a verb-object relationship, so the action attribute can
be determined as ’ ’(’turn off’). So after the above
steps, we will get the paradigm of the intermediate lan-
guage data structure of the complex control language
‘‘ ’’(‘‘first turn
on the air conditioner in the shed and then turn off the
lights in the shed.’’): that is, [{‘action’: ‘ ’(’turn on’),
‘location’: ‘ ’(’shed’), ‘object’:‘ ’(’air conditioner’)},
{‘action’: ’(’turn off’), ‘location’: ‘ ’(’shed’), ‘object’:

’(’lights’)}]. Finally, the key-value semantic instruction
mapping algorithm is called to complete the parameter trans-
formation.

3) KEY INDICATOR EXTRACTION
The key indicators in the control instruction of complex
natural language are extracted through dependency syntac-
tic analysis and part-of-speech features, and filled into the
intermediate language data structure defined in Section 2.Key
indicator extraction steps are as follows:

• Generating a dependency syntax tree of complex natural
language control instructions.
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FIGURE 10. The flow of semantic parsing algorithm based on dependency syntactic analysis.

TABLE 2. Dependency relation tags in DuCTB.

FIGURE 11. Dependency tree.

• After searching dependence analysis results, extracting
key indexes according to semantic relationship and part-
of-speech characteristics.

• Automatically fill it into the pre-defined intermediate
language data structure form.

In this paper, when using semantic features for key indi-
cator extraction, there are three main semantic relations that

we are looking for: definite in relation (ATT), verb-object
relation (VOB), and concurrent relation (COO). The follow-
ing rules need to be followed when performing key indicator
extraction.
• Rule 1: When there are multiple verbs in the instruction,
the verbs will have core relationship (HED) and continu-
ous predicate relationship (VV), which is not conducive
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FIGURE 12. Algorithm 2 instruction structure resolution algorithm based
on dependency syntax analysis.

to direct extraction, so we first look for the verb-object
relationship (VOB) and find the corresponding verb with
the help of object according to the language habits and
the part-of-speech characteristics.

• Rule 2: Attributive is mainly a modifier. This paper
takes into account the semantic parsing of manipulation
instructions, and usually the position information that
represents the fixed-medium relation (ATT). It can there-
fore be extracted as a position attribute indicator.

• Rule 3: Co-ordinate relationship (COO) plays the same
role in the manipulation instruction, i.e., the action of the
control object is the same, and for this kind of relation-
ship so that its control action and location information
are consistent, and the word prototypes corresponding
to the verb-object relationship (VOB) can be merged.

Based on the above rules, the pseudo-code of the seman-
tic parsing algorithm based on dependent syntactic analysis
proposed in this paper is shown in Figure 12.

4) INSTRUCTION PARSING RESULT OPTIMIZATION
STRATEGY
This section proposes a set of instruction parsing result
optimization algorithms whose main function is to further

optimize the instruction structuring results obtained by
Algorithm 2. By analyzing the noisy data that often
appear in complex controlled natural languages for depen-
dency syntactic analysis, the failed extraction results are
automatically eliminated. The Chinese language itself is
very complex, and the dependencies formed by the same
word in different contexts may be different. For example,
‘‘ ’’(‘‘Please help me turn on the
lamp in my bedroom.’’) and ‘‘ ’’(‘‘Turn
on the desk lamp in the bedroom.’’), which are two
natural language instructions, express the same mean-
ing, but The dependencies expressed by the keyword
’ ’(’turn on’) are different. In the first instruction,
’ ’(’turn on’) and ’ ’(’help’) form a double object
relationship (DOB). In the second instruction ’ ’(’turn
on’) and ’ROOT’ form a correlation (HED). Similarly,
the word prototypes corresponding to the same depen-
dency in the same natural language instruction may not be
consistent, for example, ’ ’(’help’) and ’ ’(’lamp’) in
‘‘ ’’(‘‘Please
help me turn on the lamp in the bedroom and the
air conditioner in the living room respectively.’’), both
form verb-object relations with other words (VOB).
In addition, humans will mix some other words in
their speech, for example, ‘‘ ,

’’(‘‘Turn on the bedroom sweeper,
hygiene needs to be kept clean’’), and the result after
Algorithm 2 is: [{’action’: ’ ’(’turn on’), ’location’:
’ ’(’bedroom’), ’object’: ’ ’(’sweeper’)},
{’action’: ’ ’(’turn on’), ’location’: ’ ’(’bedroom’),
’object’: ’ ’(’kept’)}]. It can be seen that the second
dictionary is redundant and mistakes ’ ’(’kept’) for the
’object’ property. The main reason is that ’ ’(’kept’) and
’ ’(’needs’) form a verb-object relationship (VOB), and
’ ’(’sweeper’) and ’ ’(’turn on’) also form
a verb-object relationship (VOB). also form a verb-object
relationship (VOB). Algorithm 2 will mistakenly identify
’ ’(’kept’) as an object attribute and complete the indi-
cator extraction. Therefore, in the optimization algorithm
module, it is necessary to automatically delete the redundant
invalid information in the structured results and eliminate
the error extraction information by combining the part-
of-speech features. Therefore, it can improve the accuracy
of instruction parsing and enhance the scientificity, appli-
cability, and expansibility of instruction structure parsing
algorithms based on dependent syntactic parsing. The opti-
mization algorithm is shown in Figure 13.

C. NL-TO-SQL MODEL
1) DATA SET AND PROBLEM ANALYSIS
NL2SQL data sets in Chinese are scarce. The training data
sets and test data sets used in this paper are from the first Chi-
nese NL2SQL Challenge Competition. The scale is shown
in table.3. A total of 41522 natural language problems and
corresponding formal SQL statements are included in the
training set, and 4086 natural language problems are included
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FIGURE 13. Algorithm 3 resulting optimization algorithm for the
instruction structure parsing algorithm based on dependent syntactic
analysis.

TABLE 3. Data examples.

in the test set. A sample of data was selected, as shown
in Figure 14.

For the sel field, it represents the column selected by SQL,
belonging to the multi-label classification model, but since
the data table and its meaning of each sample are different,
the categories here may change at any time, so it is necessary
to dynamically encode each category vector according to the
column name of the table. Agg represents the aggregate func-
tion corresponding to the selected column, corresponding to
sel, and has 6 categories. Cond_conn_op is a single label
4 classification problem. The last field, conds, needs to be
classified in combination with the field label, and it needs
to determine which column is a condition, the operational
relationship of the condition, and the corresponding value of
the condition. Details of the model are given in section 5.3.2.

2) MODEL INTRODUCTION
Firstly, marking the input natural language problem and
header name. Considering that the column meanings of each
table are different, with the help of the characteristics of
BERT, We connect the problem sentence with the header of
the data table and input it into the BERT model for real-time
coding. The coding is as follows:

[CLS] ,w1,w2, . . . ,wn, [SEP] (3)

As a result, global attention will be paid to downstream
tasks, and these vectors need to be used to predict the number

of fields corresponding to different slots. Next, you will see
the following information:

1) Represents a global classifier: Used to determine
the join between conditions. Where the condition is
conn_sql_dict= 0:‘‘‘‘,1:’’ and ‘‘,2:’’ or ’’, so we define
it as a 3 classifier. The corresponding calculation for-
mula is as follows:

x = bert_model([x1_in, x2_in]) (4)

xconn = f (x) (5)

pconn = softmax(xconn) (6)

where f means that the vector of questions corre-
sponding to [CLS] is taken out for classification, and
num_cond_cpnn_op is 3, which means 3 is classified.

2) 7 tags sequence annotation: The main purpose is
to mark which columns will be selected and pre-
dict aggregation relationships, aggregator dictionary
agg_sql_dict = 0:‘‘’’, 1: ‘‘AVG’’, 2: ‘‘MAX’’, 3:
‘‘MIN’’, 4: ‘‘COUNT’’, 5: ‘‘SUM’’. 6 categories, but
we choose to add a category so that if the first 6 cat-
egories are selected, it means that this category is
selected and also predicted agg. In this way, if the first
6 categories are selected, it means that this category
is selected and the agg is predicted, at the same time,
and if the 7th category is selected, it means that this
category is not selected. The calculation formula is as
follows.

xsel = f (x, h) (7)

psel = softmax(numagg)(xsel) (8)

3) 5 tags sequence annotation: used to mark values and
operators as conditions, the operators are op_sql_dict=
0:‘‘>’’, 1:‘‘<’’, 2:‘‘==’’, 3:‘‘! =’’. For the field conds,
i.e. WHERE, it is necessary to find the conditional
column, the conditional type, and the conditional value.
Therefore, for the prediction of conds, we divide it
into two steps, the first step predicts the conditional
value and the second step predicts the conditional col-
umn. Prediction of the conditional value is essentially a
sequence labeling problem,where the conditional value
corresponds to four operators, consistent with the above
approach, adding a new category, that is, converted into
a 5 classification problem, the fifth category represents
the current field is not labeled, otherwise it can be
labeled, so that the conditional value and operators can
be predicted. The calculation formula is as follows.

pop = softmax(numop)(x) (9)

num_op is 5, meaning 5 classifications. See Step 4 for
the prediction condition column.

4) Combine the columns to do classification, and deter-
mine which column the current condition belongs to:
predict the condition column corresponding to the con-
dition value, the word vector of the labeled condition
value, and each table header for similarity calculation,
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FIGURE 14. An example of training data set.

FIGURE 15. NL-to-SQL model structure.

here the similarity is calculated by directly concatenat-
ing the word vector and the table header vector, and
then connect a Dense(1) through the fully connected
layer. The calculation formula is as follows.

pcsel = tanh(f ([pcsel, pcsel_2])) (10)

pcsel = softmax(pcsel) (11)

VI. EXPERIMENTS
A. EXPERIMENT PREPARATION
The performance evaluation metrics of the KWECS method
are first introduced in Section 6.1.1; then the process of
constructing the Chinese natural language query and control
instruction test dataset is introduced in Section 6.1.2, and
finally, the relevant metrics for evaluating the performance
of SCADA-NLI are provided in Section 6.1.3.

1) KWECS EVALUATION METRICS
KWECS method is used to classify the intent of natural
language instructions from the point of view of rules and

statistics, considering the similarity between key verbs and
semantics. An evaluation index, i.e. the percentage of instruc-
tions intended to identify success in all tests, is given as
follows:

ACC

=
Correct number of instruction intent recognition

Total number of test instructions
(12)

2) CHINESEQCI-TS DATASET
SCADA-NLI is a natural language interface for specific
fields. For the application field proposed in this paper,
we build a Chinese query and control instruction test data
set: ChinsesQCI -TS. Corpus collection is not a direct
integration of dialogue text, but a pre-defined variety of
instructions that may appear in the SCADA system, and
then spread out into natural and colloquial sentences in the
form of staff crowdsourcing. This method can effectively
improve the performance of the system. First, we define
an instruction {‘object’: ’ ’(’air conditioner’),’location’:
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FIGURE 16. Example of corpus.

’ ’(’living room’),’action’: ’ ’(’turn on’)} that com-
plies with the intermediate language specification mentioned
in the SCADA system requirements. The pseudo-language
problem description is then rewritten as the natural language
problem E =‘‘ ’’(‘‘Turn on the living room
air conditioner.’’) and statement E is expanded to a more
complex and colloquial natural language statement. A case
in the corpus is shown in Figure 16.

The final ChineseQCI-TS dataset provides a collection
of 600 natural language instructions from different do-mains,
such as the agricultural domain (200), the industrial domain
(200), and the smart home domain (200). Each domain con-
tains basic natural language query and controls instructions as
well as complex natural language query and control instruc-
tions. Experimental tests were conducted using various types
of data as shown in Figure 17.

3) SCADA-NLI PERFORMANCE EVALUATION METRICS
The evaluation methods of SCADA-NLI performance
include four main ones: Accuracy, Precision, Recall, and
F-score values, which are obtained by the manual determi-
nation in this paper.

The accuracy rate indicates the proportion of the number
of instructions executed correctly out of the number of all
instructions executed, and in this paper, N is used to denote
the number of instructions executed correctly and T denotes
the total number of instructions. As shown in Equation 13.

Accuracy =
N
T

(13)

The precision rate indicates the proportion of correctly
expressed indicator words and corresponding indicator values
in the structured intermediate language results obtained by
the corresponding algorithm or model. The formula is calcu-
lated as follows, using S to denote the number of correctly
expressed indicator words and P to denote the number of all
structured intermediate languages, as shown in Equation 14.

Precision =
S
P

(14)

The recall rate indicates the number of correctly expressed
indicator words and corresponding indicator values among
the structured intermediate language results obtained by the
corresponding algorithm or model for all the indicator values

contained in the original instruction. R is used to denote
the number of all indicator values contained in the original
instruction. This is shown in Equation 15.

Recall =
S
R

(15)

F-score is the summed average of precision rate and recall
rate, which can reflect the good or bad performance of
SCADA-NLI comprehensively, This is shown in Equation 16.

F-score =
2× Precision× Recall
Precision+ Recall

(16)

B. EXPERIMENTAL PROCEDURE AND THEORETICAL
ANALYSIS
1) INSTRUCTIONS INTENT CLASSIFICATION EXPERIMENT
Two main works were carried out in this section.
• 200 Instructions were randomly extracted from the
ChineseQCI-TS dataset to test the KWECS method.
And record the recognition accuracy and the maximum
response time, and give several recognition examples.

• The test results were comparedwith the cosine similarity
method and the keyword extraction algorithm, and the
results were analyzed.

Table 4 shows the experimental results. For example, for
the basic natural language query instructions, 57 instructions
were used in the experiments for testing, and the cosine sim-
ilarity method could recognize 27; the key-word extraction
algorithm could recognize 52, and KWECS could recognize
53. The accuracy of the cosine similarity method was 63.5%,
the accuracy of the keyword extraction algorithm was 81.0%,
and the accuracy of KWECS was 96.5%. The main reason
is that KWECS namely considers the importance of words
and can extract verbs quickly, and at the same time con-
siders the semantic connection between words. Even if the
extracted key verbs cannot be successfully matched with the
control dictionary, themost similar words can be identified by
calculating the cosine similarity, which greatly improves the
accuracy rate. In terms of response time, the cosine similarity
response time is the longest, mainly because it treats the
importance of each word as the same and needs to calculate
the similarity between each word, which consumes more
time. the response time of the keyword extraction algorithm,
although due to KWECS, has 15.5% less accuracy compared
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FIGURE 17. Example of test instructions for different domains of the ChineseQCI-TS dataset.

TABLE 4. The accuracy of different methods.

to the latter. the maximum response time of KWECS is 0.74s,
which is in line with the intention recognition efficiency.

For clarity and visibility, the type color of the text in the
given example is aligned with the label color. The yellow
color indicates words or theirs near synonyms that can be
matched in the control dictionary. The blue one indicates that
the instruction contains a verb, but cannot be matched with
the dictionary. Red indicates that the instruction contains no
verb, and the default is query instruction. The result is shown
in Figure 18.

2) TF-IDF+COS_SIM BASED INSTRUCTION SEMANTIC
PARSING EXPERIMENT
To evaluate the performance of the TF-IDF+COS_SIM
instruction semantic parsing algorithm, the basic query
instruction and the basic control instruction in the
ChineseQCI-TS data set are used to carry out experiments.
Because the quality of the returned results and the time it takes
to generate the results may vary depending on the size of the
dataset, each experiment is conducted for a different number
of instructions. By using the method of random allocation,
the data sets of basic natural language instruction in three

TABLE 5. Test results of basics natural language query and control
instructions.

fields are randomly divided into 100,200 and 300, of which
basic query instruction and basic control instruction account
for half respectively. It is then inputted intoAlgorithm 1 to test
its performance, and the maximum time of Accuracy, Preci-
sion, Recall, F-score and return result is shown in Table 5.

The following insights can be obtained from Table 5.

• On the test set, the average values of the four major
assessment metrics are 90.13%, 90.37%, 90.79%, and
90.58%, which are all above 90%, and they all achieve
good results.

• With the increase in the number of instructions, the eval-
uation index values all show a decrease, which is
between 2% and 6%, which is within an acceptable
range.

• The maximum flat response time is about 0.79s, and the
response time can satisfy the real-time control and query
functions.

Figure 19 gives a summary of the results of this study.
In order to correspond to the parameter dependency graph in
Section 3, set the yellow font to indicate the action attribute,
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FIGURE 18. Example of instruction classification.

FIGURE 19. Example of structured parsing of instructions.

TABLE 6. Test results of complex natural language control instructions.

the blue font to indicate the position attribute, and the green
font to indicate the controlled object attribute.

3) EXPERIMENTS ON SEMANTIC PARSING OF
INSTRUCTIONS BASED ON DEPENDENT SYNTACTIC
ANALYSIS
This section uses the complex control instructions in the
ChineseQCI-TS dataset as shown in the table and sets the
number of instructions to 50,100,150. Then, it is input into
the combined algorithm of algorithm 2 and algorithm 2+3 to
test their performance, and the maximum time of Accuracy,
Precision, Recall, F-score, and returned results are shown
in Table 6.

The following insights can be obtained from Table 6.
• Both Algorithm 1 alone on the complex control instruc-
tions test set and Algorithm 1 + Algorithm 2 together
on the complex control instruction test set achieved good
results, where the average F-score reached 82.64% and
91.04%, respectively.

• As the number of complex control instructions
increases, the performance of both Algorithm 2 and
Algorithm 2 optimized by Algorithm 3 decreases
to some extent. The four evaluation metrics before
optimization decreased by an average of 4.67%,
5.56%, 4.14%, and 4.96%, respectively. After optimiza-
tion, the four evaluated metrics decrease by 2.01%,
2.76%, 2.05%, and 2.73%, respectively. It is clear
that the decrease in the values of the indicators is
also reduced with the optimized algorithm, which
shows that the optimized algorithm plays a signifi-
cant role in the process of complex control instruction
resolution.

• The maximum average response time is about
1.474s, which satisfies the real-time human-computer
interaction.
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FIGURE 20. Example of structured parsing of instructions.

FIGURE 21. Example of structured parsing of instructions.

Figure 20 shows three examples of the actual instruction
parsing.

4) NL-TO-SQL MODEL TRAINING EXPERIMENTS
In this experiment, the Bert pretraining model is the Chinese-
Bert-WWM version of HINU. The maximum length of
one-off coding (maxlen) is 80, the learning rate is 5E-5,
the minimum learning rate is 1E-5, the input batch_size of
each batch is 16, the epochs = 10, and the sample number of
each batch is 32. The Adam algorithm is used for optimiza-
tion, and the loss function is sparse_categorical_crossentropy.
The loss iteration curve and accuracy iteration curve of
the test set are shown in Figure 21 and Figure 22
respectively.

The loss value reached convergence after 10 batch iter-
ations, in which the accuracy of the test set reached
65.9%. Considering that the model structure is relatively
simple, it basically meets the requirements of the com-
plex query instruction parsing module of SCADA-NLI.
Then we selected 150 complex query instructions in the

FIGURE 22. Example of structured parsing of instructions.

TABLE 7. Test results of complex natural language query instructions.

ChineseQCI-TS dataset to test the model, and the test results
of each field are shown in Table 7.

As the number of instructions increases, the test accuracy
of each field decreases, and the average accuracy is only
66.45%. The main reason is that there is no high-quality
training data set in a specific field, so the accuracy is low
during the test. However, considering that the natural lan-
guage problems in the human-computer interaction process
are mostly control types, and the normal production and life
will not query too complex problems, the overall accuracy
of 65.9% is also within a reasonable range. Average max-
imum response time is 1.83s, which satisfies the real-time
nature of human-computer interaction.
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TABLE 8. Combined service performance test results.

5) SCADA-NLI COMPOSITE SERVICE PERFORMANCE TEST
EXPERIMENT
In this section, we package all the algorithms together
for combined service performance testing. First, 200 nat-
ural language instructions are randomly selected on the
ChineseQCI-TS dataset proposed in this paper, which con-
tains basic natural language query instructions, basic natu-
ral language control instructions, complex natural language
query instructions, and complex natural language control
instructions. Then we input the natural language instructions
into SCADA-NLI and record the generated results and the
maximum time spent to generate the results. Here, the eval-
uation metrics Accuracy, Precision, Recall, and F-score are
still used to measure the overall performance of SCADA-
NLI. The correctness of the intent classification effect of the
instructions is also recorded and used to analyze whether
the SCADA-NLI equivalent abstraction workflow proposed
in Section 4 can complete a reasonable algorithm invocation
service efficiently and with high quality. The experimental
results are shown in Table 8.

The following insights can be obtained from Table 8.
• Average size of the corresponding evaluation indexes
is 88.47%, 90.21%, 89.48% and 89.72% respectively.
It is observed that the accuracy of the training data may
decrease because the training data is not completely
targeted to the application field of this article in the com-
plex query instruction training module. Then, the num-
ber of incorrect intermediate language data structures
generated is small, and the overall average evaluation
index exceeds 88%. Therefore, it can be concluded that
the service performance test results of the proposed
method are satisfactory.

• The average accuracy of the algorithm calls is 94.40%,
and the KWECS algorithm combines the semantics of
words and the importance of words to achieve a better
result in the classification of instructions on small data
sets, which makes the intention recognition get better
effect.

• Themaximum average response time is 2.45s. Consider-
ing that the SCADA-NLI architecture contains multiple
algorithm calls, the response time meets the require-
ments.

6) COMPARATIVE EXPERIMENT AND ANALYSIS
The comparative experimental ideas set up in this paper
contain two main categories, the first one is the end-to-end
concept, where unstructured natural language instruction
is input to automatically generate a structured instruction,

TABLE 9. Comparison of experimental results.

and the other one is the template matching approach with
manual rules. In the end-to-end concept, this study uses
the original seq2seq model, the Seq2Seq model after using
word2vecword embedding, the Seq2Seqmodel after combin-
ing word2vec, BiLSTM, and the Seq2Seq model combined
with word2vec, BiLSTM, and Attention for comparison
experiments, respectively. The dimension of the word vec-
tor is 150 dimensions, the number of neurons per layer of
LSTM is 256, the batch size (the size of batch gradient
descent) is 64, and the epoch is set to 100. 450 items from
the ChineseQCI-TS dataset are taken as the training set,
and the remaining 150 instructions are used as the test set
to obtain the relevant performance evaluation index values.
In the manual rule-based template matching method [27],
it generally means analyzing the natural language instruc-
tions to be structured by keyword information, analyzing
the syntactic pattern features in the text by manual reading
method, and thus writing the key metric extraction algo-
rithm to transform the unstructured natural language instruc-
tions into structured natural language instructions. Finally,
for the fairness of the experiment, 150 instructions are used
for testing in both template matching and the method pro-
posed in this paper. The final experimental results are shown
in Table 9.

The following insights can be obtained from Table 9.

• Experiment numbers 1, 2, 3, and 4 are all end-
to-end concepts, and the experimental goal is to gener-
ate unstructured natural language instructions, such as
‘‘ ’’(‘‘please help
me turn on the desk lamp and air conditioner in my bed-
room’’), into a structured instruction ‘‘[ ]
[ ]’’(‘‘[Turn on Bedroom Desk Lamp]
[Turn on Bedroom Air Conditioner]’’), but the experi-
mental accuracy, precision, recall, and F-value are not
ideal, mainly due to the lack of a large amount of
high-quality training corpus, which makes the model
appear under fitted and the feature extraction is not
obvious.

• The accuracy, precision, recall, and F-value of the tem-
plate matching-based method reached 78.67%, 79.97%,
80.64%, and 81.32%, respectively. It is significantly
ahead of the Seq2Seq model and related variants. The
main reason is that it is relatively easy to find rules in a
limited field of natural language. However, the artificial
rule-based approach requires a lot of human resources to
find rules, and if in open domains, there are differences
in representations between different instructions, so it is
necessary to specify different rules, which shows that the
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portability of the approach and its scientific generaliza-
tion is poor.

• The method proposed in this paper recommends dif-
ferent natural language semantic parsing algorithms
according to the different features of instructions.
The TF-IDF+COS_SIM algorithm is recommended for
basic natural language instructions, and the maximum
structured extraction of instructions is accomplished by
the idea of keyword extraction and structural similar-
ity optimization. For complex natural language control
instructions, the structured extraction of long instruc-
tions is accomplished to a greater extent by assembling
domain-specific rules based on the results of depen-
dency analysis. And for complex natural language query
instructions, it relies on Bert’s powerful coding and par-
allel computing power, combined with NL2SQL rules,
to transform natural language into SQL statements, and
realize the semantic parsing of complex natural lan-
guage query instructions. Thus the overall architecture
has accuracy, precision, recall, and F-value of 90.67%,
91.69%, 92.21%, and 91.95%, respectively. Finally,
the architecture proposed in this paper can recommend
different algorithms for different types of instructions
and can achieve natural instruction parsing to a large
extent.

VII. CONCLUSION
This paper presents a natural language query and control
interface (SCADA-NLI) for distributed SCADA systems,
The interface understands natural language instructions input
by users through a hierarchical classification semantic pars-
ing algorithm. A ChineseQCI-TS dataset is also provided
in the form of crowdsourcing to test the performance of
the interface. In terms of determining the input instruction
intent, the KWECS method is proposed to determine the
user intent using the importance of words in the instructions
and the semantic connections be-tween words. we conducted
several experiments in terms of accuracy and maximum
response time, and the KWECSmethod achieved an accuracy
of 96.5% and a maximum response time of only 0.74 s. In the
case of basic query and control instructions, using the TF
-IDF+COS_SIM algorithm can satisfy the user’s request.
In the complex control instruction module, the instruction
parsing algorithm based on dependent syntactic analysis
is used to parse the user input instructions, and finally,
in the complex query instruction module, a BERT-based
NL-to-SQL model is constructed to complete the complex
query instruction parsing. In evaluating the performance of
the individual modules and the combined service separately,
we conducted several experiments in terms of accuracy, pre-
cision, recall, F-value, and maximum response time for both.
The interface was evaluated at 88.47%, 90.21%, 89.48%,
89.72%, and 2.45 s. And significantly outperforms the clas-
sical deep learning methods during the comparison experi-
ments. The experiments showed that the interface has high
accuracy and efficiency in understanding user semantics in

human-computer interaction. In the process of instruction
parsing in natural language, there is a phenomenon that the
instruction cannot be parsed completely. For example, in the
basic query and control instruction parsingmodule, the calcu-
lation of semantics depends on the quality of the trained word
vector model. In this paper, word2vec is used to train Chinese
Wikipedia data. There is a problem that extracting keywords
cannot be matched in the word vector model, and word2vec
cannot solve the problem of polysemy of a word. In future
work, we will study the use of BERT, ELMO, and other pre-
training models to encode keywords, and the above problems
will be solved. In the complex control instruction parsing
module, we only consider active sentence parsing, for pas-
sive sentence parsing is not carried out, such instructions as
‘‘ ’’(‘‘please help
me turn on the bedroom lamp and air conditioner respec-
tively.’’) will not be successfully parsed, and in the future,
we will consider the form of graph neural network to encode
the instructions, to solve such problems. In the complex query
instruction parsing module, the disadvantages are obvious.
Considering the reasons for the data set and application field,
we have not made a comparison with any baseline. In the
future, we intend to improve the accuracy of complex query
and support higher extensibility by setting up a knowledge
map in combination with the neo4j database. In addition,
the complexity of the algorithm will be optimized in the
future to reduce the service response time of the interface
and improve the real-time performance of human-computer
interaction. In a word, our method provides more convenient
interactive means for industrial and agricultural information
management and control.
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