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ABSTRACT Proportional–integral–derivative (PID) control is the most widely used control law in industrial
processes. Although various new controllers continue to emerge, PID controllers are still in a dominant
position due to their simple structure, easy implementation, and good robustness. In the design and
application of PID controllers, one of the core issues is parameter tuning. Accurately and effectively
selecting the best tuning parameters of the PID is the key to achieving an effective PID controller. Therefore,
this paper proposes a novel modified monkey-multiagent DRL (MM-MADRL) algorithm and uses it to
tune PID parameters to improve the stability and performance of automatic parameter optimization. The
MM-MADRL algorithm is a new version of the basic monkey group algorithm (MA) and the multiagent
reinforcement learning algorithm known as the multiagent deep deterministic policy gradient (MADDPG).
This paper selects a typical nonlinear quadcopter system for simulation; its principle and data are given
below. MM-MADRL, the genetic algorithm (GA), particle swarm optimization (PSO), the sparse search
algorithm (SSA) and differential evolution (DE) are used to adjust the parameters. The simulation results
show that the overall performance of the MM-MADRL algorithm is better than that of the other algorithms.

INDEX TERMS PID controller, monkey algorithm (MA), multiagent deep deterministic policy gradient
(MADDPG), modified monkey–multiagent DRL (MM-MADRL) algorithm, optimization.

I. INTRODUCTION
At present, the PID controller is one of the most widely
used industrial controllers because it offers good adaptability,
strong robustness, and a simple and clear algorithm structure.
The literature [2] explains the basic principle structure of
PID. Based on the advantages of PID control, PID controllers
have been used for temperature control, switching power
supply control, and control over air suspension, electronic
throttles, quadcopters and the servomotor system. Studies [1],
[3]–[5] and [37]–[40] introduced the application of PID con-
trol to different systems. Because PID control is widely used,
improving PID control brings great convenience to our lives.
The essence of the PID controller is to set and adjust its PID
parameters to meet the various preset control performances.
As early as 1942, Ziegler and Nichols proposed the Z-N
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method of PID regulator parameter tuning for an object of
first-order inertia plus pure delay. Subsequently, different
people proposed PID parameter tuning methods, but based on
various control conditions, many controlled processes have
characteristics such as a complex mechanism, a high degree
of nonlinearity, a pure time lag, and time-varying uncertainty.
The use of traditional empirical methods to adjust parameters
is time-consuming and laborious, and the adjustment effect is
not ideal. Therefore, the method of intelligent PID parameter
self-tuning was proposed and has gradually become the direc-
tion of development.

At present, a variety of intelligent PID parameter self-
tuning methods have been proposed [15]–[24], such as ant
colony optimization (ACO), the genetic algorithm (GA), par-
ticle swarm optimization (PSO), and differential evolution
(DE). These methods have achieved good research results in
tuning PID parameters. However, these intelligent algorithms
have their own advantages and disadvantages. The key is that
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it easily falls into the local optimal solution, and the calcula-
tion time of the DE and GA algorithms is too long to address
these shortcomings. Later, more researchers improved the
basic intelligent algorithms [6]–[14], [25]–[31] and [59]–[61]
by combining the advantages of different algorithms and pro-
posed improved algorithms such as improved ant colony opti-
mization (IACO), enhanced whale optimization algorithms
(EWOA), complex-order PSO (CoPSO) and unequal limit
cuckoo optimization algorithm (ULCOA). While solving
some of the defects of the original algorithm, these algorithms
further improved the performance of the control system.
In fact, most of the improvements to the original algorithm are
improvements to the search mode of the algorithm itself, such
as adding a selection operator and changing the calculation
formula. Alternatively, combining the advantages of other
algorithms allows them to be improved and tested. However,
the influence of the initial parameter setting of the swarm
intelligence algorithm and the influence of the artificially
fixed search mode on the algorithm still exist. The wide
application of PID control determines that the optimization
of parameters should be based on different systems, and dif-
ferent system environments require different parameter opti-
mization effects. Therefore, there is still much research space
for the automatic tuning of PID parameters, as discussed in
the literature [62]–[64]. These articles not only propose new
improvements but also explain the necessity of PID parameter
tuning. In recent years, the reinforcement learning algorithm
has given researchers new inspiration. This algorithm uses
the interaction between the agent and the environment to
select the search action, which greatly reduces the limitations
of the artificially set search mode and makes it the individ-
ual’s own. The action information comes from the search
environment itself. Therefore, combining the reinforcement
learning algorithm with the swarm intelligence algorithm to
improve the swarm intelligence algorithm is a new research
direction. Therefore, this paper proposes a hybrid swarm
intelligence and reinforcement learning algorithm, combin-
ing the advantages of the two such that they complement each
other.

The monkey group algorithm [32] is an intelligent opti-
mization algorithm proposed by Zhao and Tang in 2008. The
algorithm is composed of the ‘‘climb’’, ‘‘watch-and-jump’’,
and ‘‘somersault’’ operations. The ‘‘climb’’ and ‘‘watch-and-
jump’’ operations form the monkey group algorithm, while
the core search process, i.e., the ‘‘somersault’’ operation,
enables the algorithm to jump out of the local optimal solu-
tion and perform a precise search in the later stage of the
algorithm. The monkey group algorithm has the advantage
over other algorithms of fewer adjustment parameters. The
largest difference between the monkey group algorithm and
other intelligent algorithms is the somersault operation, so the
research object of this article is the monkey group algo-
rithm. MADDPG [36] is a multiagent reinforcement learning
algorithm. It obtains the optimal strategy through learning.
It can give the optimal action by using only local information
during its application. It does not need to know the dynamic

FIGURE 1. Basic principles of PID control.

model of the environment and the special communication
requirements. Algorithms can be used not only in a coopera-
tive environment but also in a competitive environment. Com-
pared with traditional reinforcement learning algorithms,
the MADDPG has a higher search speed [33]–[36].

Therefore, this paper introduces the framework of
MADDPG into the core search part of the monkey group
algorithm and solves the problem in which the initial step
parameter setting of the monkey group algorithm has a
greater impact on the results. Additionally, the monkey
group algorithm itself is too independent of the monkey
group individuals, and its iteration has a slight relationship
with the environment. The MADDPG algorithm framework
allows the monkey group individuals to carry out location
information exchanges and is closely related to the changes
in the search environment, increasing the search speed and
accuracy. The ‘‘somersault’’ operation allows the algorithm
to converge faster but also allows the algorithm to perform a
precise search later. Based on the proposed MM-MADRL
algorithm, many multiagent test environments have been
proposed and tested. However, to optimize the parameters
of the PID-controlled aircraft system with the proposed
algorithm, the most important thing is to redesign and write
a multiagent test environment, including the following: 1.
An aircraft control system to be used in this article. 2. The
optimization environment of the PID parameters to achieve
the purpose of using the algorithm proposed in this paper to
optimize the PID parameters. Additionally, the GA, PSO, and
DE algorithms and the newly proposed (2020) SSA algorithm
are used to compare the test results with the MM-MADRL
proposed in this article. Therefore, the contribution of this
article can be summarized as follows:

1. The MM-MADRL algorithm is proposed for self-tuning
of the PID parameters.

2. The MM-MADRL algorithm improves the control
performance.

3. An environment in which the MM-MADRL algorithm
can adjust the PID parameters is designed.

4. Using Python 3.6 PyTorch == 1.5.1, for the code of
MM-MADRL to tune the PID parameters, a simulation com-
parison with the GA, PSO, SSA and DE algorithms proves
the superiority of the MM-MADRL algorithm.

II. PID CONTROLLER AND ALGORITHM INTRODUCTION
A. PID CONTROLLER
The principles of PID control are shown in Figure 1:
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According to the deviation e(t) = r(t) − y(t) between the
given input value r(t) and the actual output value y(t), the PID
controller divides it into proportional, integral and differential
forms through a linear combination. The method constitutes
the control quantity and then controls the controlled object.
The control law is:

u(t) = KPe(t)+ KI

∫ τ

o
e(t)dt + KD

d
dt
e(t) (1)

where KP is the proportional coefficient; KI is the integral
time constant; KD is the derivative time constant; t is current
time.

The PID control algorithm can be divided into two types
in the application process, namely, the positional PID control
algorithm and the incremental PID control algorithm. The
two are the same in control theory, and each has its advantages
and disadvantages.

This article uses the positional PID control algorithm in the
simulation link, and its expression is as follows:

KPe(k)+ KIT
k∑
j=0

e(j)+ KD
e(k)− e(k − 1)

T
(2)

where T is the sampling period, k is the sampling number,
with k = 1,2. . . , and e(k−1) and e(k) are the system deviation
signals obtained at the (k−1)th and k thmoments, respectively.

B. MONKEY ALGORITHM (MA)
The monkey group algorithm is an intelligent algorithm that
was recently proposed. It is different from other intelligent
algorithms because of its ‘‘somersault’’ feature. Additionally,
the monkey group algorithm has the advantages of fewer
adjustment parameters and a simple structure, in contrast
to other intelligent algorithms. Easy to operate, the ‘‘som-
ersault’’ feature speeds up the optimization of the monkey
colony algorithm, and it does not easily converge to the local
optimal solution. The operation process of the monkey group
algorithm is shown in Figure 2.

In Figure 2, the climbing process of the monkey group
algorithm is shown. It is the process of monkeys performing
local optimization in a small area. This process has two key
parts: a pseudogradient calculation and a calculation of the
fitness function value. The calculation of the pseudogradient
provides the direction of movement for the monkey, and
the calculation of the fitness function value completes the
optimization operation, allowing a position with good fitness
to replace a position with poor fitness.

The ‘‘watch-and-jump’’ operation is performed to ‘‘wait
and see’’ around the current optimal position after themonkey
individual completes the ‘‘climb’’ operation. If a better posi-
tion is found, the current position is replaced. The key point
in the operation is the calculation of the pseudogradient. The
algorithm uses the pseudogradient of the objective function
as the direction of movement. The pseudogradient calculation
method is given below.

Suppose the pseudogradient of the point xi,d is fi,d , where
1xi = 1xi,1, . . . ..,1xi,d is a random vector, θ is a random

FIGURE 2. Monkey algorithm process [32].

number,1xi,d = a, a is the set climbing step length, and d is
the search range; then

fi,d (xi,d ) =
f (xi,d +1xi,d )− f (xi,d −1xi,d )

21xi,d
(3)

The ‘‘somersault’’ operation is performed to make the
monkey jump out of the local optimal position in the current
area and continue to ‘‘climb’’ and ‘‘watch-and-jump’’ in a
new range to find the global optimal solution.

The main parameters of the monkey group algorithm are
as follows:

TABLE 1. MA parameters.

The pseudocode of the monkey group algorithm is as
follows:

In the pseudocode above, n is the dimension of the prob-
lem, x is themonkey, y is the newmonkey, and x ′ is the current
monkey.

According to the literature, the monkey swarm algorithm
has the following shortcomings:

1. It has only a single initialization.
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Algorithm 1Monkey Algorithm (MA)
Initialization():
for i = 1: M do
for j = 1: n do
x(i, j)← random

end for
fitness← f (x(i, :))

end for
iteration←1
While iter < MT do
Climb():

k ← 0
for i = 1: M do
While (k < NC ) do

for j = 1: n do
p← rand(1)
if p > 0.5 then x ← a
else x ←−a

Check whether it is out of range; if
it is out of range, it is equal to the critical value
end for

ch←Difference between critical values
for i = 1: M do

f ′← ch
21X

y← x − a sin(f ′(x ′))
end for
if y in the feasible area
x ′← y
k ← k + 1
end while
end for

Watch-and-Jump():
for i = 1: M do
While (True)
for j = 1: n do
l ← x − bu← x + b

y← 1+ rand(1)(u− 1)
end for
if f (y)← f (x ′) jump to end
end while
end for
do climb()
somersault():
Randomly take the number in the somersault interval
(c, d) as the step length of the somersault

if y is in the feasible region
x ′← y

else Return to the first step.
end
iter← iter +1

end while

2. The fixed a and b cause the monkey’s movement to be
unable to interact with the environment, which affects the
optimization ability.

3. There is no communication and cooperation between
individual monkeys, which prevents the algorithm from
adjusting individual monkey behaviors according to the sit-
uation, which affects the speed of optimization.

C. REINFORCEMENT LEARNING AND MULTIAGENT
REINFORCEMENT LEARNING
Reinforcement learning tasks are usually described by the
Markov decision process (MDP). The principle is shown in
the figure below:

FIGURE 3. Fundamentals of reinforcement learning.

According to the above figure, when agent performs a
certain task, it first interacts with the environment to generate
a new state, and the environment gives a reward. The cycle
continues, and the agent and the environment continue to
interact to generate more new data. The reinforcement learn-
ing algorithm is used to interact with the environment through
a series of action strategies to generate new data and then
uses the new data to modify its own action strategy. After
several iterations, the agent learns the action strategy needed
to complete the task.

In summary, the key elements of reinforcement learning
are as follows:

TABLE 2. Important parameters of reinforcement learning.

Q-learning is one of the traditional model-free rein-
forcement learning algorithms with which we are familiar.
However, traditional reinforcement learning is limited to
situations where the action space and sample space are
very small and generally discrete. However, tasks that are
more complex and closer to actual situations often have
a large state space and continuous action space. There-
fore, the researchers proposed deep learning that combines
high-dimensional input with reinforcement learning, taking
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FIGURE 4. Fundamentals of the MADDPG.

advantage of both, and then performing deep reinforcement
learning.

Deep Q-learning (DQN) and DDPG are well-known deep
reinforcement learning algorithms. However, the above algo-
rithms are suitable only for a single-agent environment.When
addressing actual problems, multiagent scenarios are very
common. Thus, a multiagent reinforcement learning algo-
rithm is proposed, i.e., the multiagent deep deterministic
policy gradient (MADDPG).

In recent years, reinforcement learning algorithms have
been applied to many fields, and many researchers have
studied various reinforcement learning algorithms and pro-
posed improvements, as described in the literature [41]–[54].
A review of the literature shows that when deep reinforcement
learning uses neural networks to fit traditional reinforcement
learning, it has more advantages and offers wider applica-
bility than traditional reinforcement learning. The proposal
of multiagent deep reinforcement learning (MADRL) offers
additional reinforcement. The application of learning algo-
rithms has taken a step forward.

MADDPG is a series of improvements that have been
made to the AC algorithm to make it suitable for complex
multiagent scenarios that cannot be handled by traditional
RL algorithms. Figure 4 shows the basic framework of the
MADDPG. The schematic diagram and pseudocode of the
MADDPG are given below.

The MADDPG is an algorithm based on a policy gra-
dient. It can be traced back to the DPG algorithm. After
the DPG algorithm, the neural network is used for fitting
so that the DDPG algorithm can be used. The MADDPG
algorithm extends the DDPG algorithm to many agents in the
environment.

The calculation of its gradient is also clearly indicated in
the code:

∇θiJ ≈
1
S

∑
i

∇θiµi

(
Oji
)
∇aiQ

µ
i

×

(
xi, aj1, . . . , ai, . . . , a

j
N

) ∣∣∣∣
ai=µi(o

j
i)

(4)

Themethod of gradient ascent can ensure that each strategy
is better than the previous strategy and that a single agent

Algorithm 2Multiagent Deep Deterministic Policy Gradient
(MADDPG)
for episode = 1 to M do
Initialize a random process N for action exploration,
receive initial state information x.
for t = 1 to max_episode_Length do
For each agent i, select the action ai = µθi (oi)+Nt
Return to the collection of all the agents’ actions
a = (a1, . . . aN ),
Store reward r and new state x ′ (x, a, r , x ′) in the relay
buffer D x ← x ′

for agent i = 1 to N do
Sample random min-batch of S samples

(
xj, aj, r j, x′j

)
from D
Set yi = r ji + γQ

µ′

i

(
x′j, a′j, . . . , aN

) ∣∣∣∣
a′K=µ

′
k (o

j
k )

Update critic by minimizing the loss:

L(θi)=1
S

∑
j

(
yj−Qµi

(
xj, aj1, . . . , ai, . . . , a

j
N

))2 ∣∣∣∣
ai=µi(o

j
i)

Update actor using the sampled policy gradient:
∇θiJ ≈

1
S

∑
j
∇θiµi

(
oji
)
∇aiQ

µ
i(

xj, aj1, . . . , ai, . . . , a
j
N

) ∣∣∣∣
ai=µi

(
oji

)
end for
Update target network parameters for each agent i
θ ′i ← τθi + (1− τ )θ ′i
end for

end for

FIGURE 5. Quadcopter structure.

can approach the correct direction at each step under these
conditions.

D. QUADCOPTER SYSTEM
The principal structure of the quadcopter system is given
in Figure 5.

Viewed from the top, it has 2 clockwise rotating rotors and
2 counterclockwise rotating rotors. Its working principle is
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FIGURE 6. Principle of vertical motion.

based on the basic principles of fluid mechanics. The upper
and lower surfaces of the rotor form a pressure difference to
generate lift.

The state of motion in space is divided into the following
6 types:

1. Vertical motion.
2. Pitch motion.
3. Roll motion.
4. Yaw motion.
5. Back and forth motion.
6. Lateral motion.

The kinematic equations and principles of various motions
can be understood in detail from the literature [58]. This
article uses vertical motion in the simulation part, so the focus
is on vertical motion.

The vertical motion schematic diagram is shown in
Figure 6.
F1,...,4 is the lift of the indicated rotor,W1,...,4 is the motor

speed, m is the quality and g is the acceleration of gravity.
Under the condition that the rotation speed of the four

rotors is the same, when F > mg, the aircraft rises vertically;
when F < mg, the aircraft descends vertically; and when
F = mg, the aircraft is hovering.

The nonlinear mathematical model of the hovering state
can be found in the literature [58], and this reference also
provides detailed notes and the processes by which to derive
the formulas.

III. MM-MADRL DESIGN PRINCIPLES AND IDEAS
A. THE BASIC IDEA OF MM-MADRL
First, the core search method of the monkey swarm algo-
rithm is to perform the ‘‘climb’’ and ‘‘watch-and-jump’’
operations in space D to achieve the goal of optimization.
Then, the search space D is regarded as the action strategy
space of RL. The monkey group individuals in the space are
regarded as agents, the fitness function value is regarded as
the reward of the environment, and the search problem of the
monkey group algorithm can be easily transformed. This is
a multiagent reinforcement learning problem. Based on the

MADDPG, each agent has an actor and a critic. The critic can
obtain global information. Actors can take actions based only
on local observations. We can also call actor networks. The
policy network is responsible for making decisions for the
agent, and its input is the state of the agent. The critic network
is generally called a critic and is responsible for evaluating
the value of the actor making this decision. Each individual
monkey is regarded as an MADDPG agent and accordingly
MADDPG creates N individual monkeys; then, a concurrent
action of N monkey individuals is a search for space. Based
on the essence of the monkey swarm algorithm optimization,
multiple monkeys have a common goal in the search space
D, which is to find the position with the best fitness function
value, and the search environment is regarded as a multiagent
cooperative environment.

Initialization:
The search space D is defined for segmentation D =

(D1, . . . ..DN ), which is the environment. The total number
of monkeys, M , is the number of agents. Each individual
monkey appears in a different small area of space D. The
monkey’s movement mode n is defined, which is the dimen-
sion of the problem, denoted as −→a = (−→a1 , . . .

−→aN ). Then,
the fitness function is set, which is the reward r . Finally,
the monkey position is initialized randomly, denoted as x.

Core section:
(1) The agent perceives the state x of the environment at

time t .
(2) According to the current state x and the enhanced

greedy information, the system selects and then executes a
certain action port−→a , the action port−→a acting on the current
environment, and the environment changes accordingly.

(3) The current optimal position best_x ′ is recorded.
(4) The reward function is received by the agent, and the

existing greedy strategy changes, that is, t − t + 1.
(5) When the area r is stable, the ‘‘somersault’’ operation

is performed to make the agent jump into an area closer to the
target and continue with steps (1)-(4).

(6) When a satisfactory target state is obtained, the cycle
stops and outputs the optimal position, Best_x.
The core search method of this operation allows each indi-

vidual monkey to act based on the environment. Additionally,
the step length parameter and the field of view parameters
a, b cannot be set without the need to specifically set the
step length and field of view parameters so that the monkey
individual random selection is within a given range, because
based on the greedy strategy, the monkey’s ‘‘climbing’’ and
‘‘watch-and-jump’’ operations are performed at the same
time, which ensures the search diversity and improves the
accuracy. In the original ‘‘climbing’’ operation with a pseu-
dogradient as the search direction, after the change, based
on the environment, the direction of good adaptability is the
new search direction. The essence of optimization has not
changed, and because of the advantages of the MADDPG,
the cooperation between monkeys increases, and the search
becomes faster.
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Algorithm 3 Modified Monkey – Multiagent Deep Rein-
forcement Learning Algorithm (MM-MADRL)
Set cycle search timesMT
for episode = 1 toMT do
Initialize a random process = for action exploration,
NC receive initial state information x.
Set the number of search rounds episode_length=
split search space D = (D1, . . .DN )
for t = 1 to max_episode do
For each monkey j, select the action aj = uθj(oj)+ =(t)
Return to the collection of all the monkeys’ actions
−→a = (−→a1 , . . .

−→aN )
Store reward r = (r1, . . . .rN ) and new state X ′ (x, −→a ,

r , x ′) in relay buffer D
Record the best position best_x ′ for each episode_length
Set the stop condition of the loop episode >10 &&
r ′-r < 0.001
do somersault ()
Start interval update after NC rounds from best_x ′ to

obtain (MAX_x, MIN_x),
c← x − (x −MAX_x)0.1 d ← x − (x −MIN_x)0.1
Return to the main loop
Reach the set goal
Output the global Best_x
for monkey i = 1 to N do
Sample random min-batch of S samples (X j, aj, r j,X

′j)
from D.
Set yj = r j + γQu

′

j (X
′j, a′1, . . . ., a

′
N ) |a′k=u′k (o

j
k )

Update critic by minimizing the loss:

L(θi)=1
S

∑
j

(
yj−Qµi

(
xj, aj1, . . . , ai, . . . , a

j
N

))2 ∣∣∣∣
ai=µi(o

j
i)

Update actor using the sampled policy gradient:
∇θiJ ≈

1
S

∑
j
∇θiµi

(
oji
)
∇aiQ

µ
i(

xj, aj1, . . . , ai, . . . , a
j
N

) ∣∣∣∣
ai=µi

(
oji

)
end for
Update target network parameters for each monkey i
θ ′i ← τθi + (1− τ )θ ′i
end for

end for

‘‘Somersault’’ step:
The best_x ′ based on the core search algorithm updates

the search area to form a new search area (c, d), allowing
each individual monkey to jump to the new search area to
continue the search, that is, an area closer to the target location
for further search, which accelerates the search convergence.
Additionally, it also ensures a precise search within a small
range in the later stage and improves the accuracy.

The pseudocode of MM-MADRL is as follows:

B. MM-MADRL ALGORITHM ANALYSIS
Multiagent cooperation environment:

The stochastic game (SG), orMarkov game, can be defined
as:

〈A,X , {Ui}i∈A, f , {pi}i∈A〉 (5)

where A represents the number of agents, X is the state space,
{Ui}i∈A is the action space, U is the set of multiagent joint
actions, the transition probability distribution pi:X∗U∗X , and
i ∈ A is the reward function.
Definition 1: If X = empty set, then the Markov game is

a static game; when p1 = p2 = . . . . . . .pN , the agent has a
completely cooperative relationship.

According to Definition 1, the learning objective is simpli-
fied to the MDP, and the form of Q in the joint action space
is:

Qk+1(xk , uk ) = Qk (xk , uk )+ a[rk+1
+ γ max

u′
Qk+1(xk+1.u′)− Qk (xk , uk )] (6)

In the cooperative environment, agents can be divided
into direct collaboration and indirect collaboration without
collaboration.

Strategy gradient and gradient ascent:
As mentioned above, the MADDPG algorithm is an algo-

rithm based on a policy gradient. Simply put, its purpose is to
find an optimal strategy for the agent to obtain the maximum
reward. Its essence lies in directly modeling and optimizing
the strategy. The homogeneous modeling method is usually a
θ parameterized function πθ (a| s), and its reward function is
defined as:

J (θ )=
∑
s∈S

dπ (s)V π (s)=
∑
s∈S

dπ (s)
∑
a∈A

πθ (a | s)Qπ (s, a) (7)

where dπ (s) is the stationary distribution of theMarkov chain
derived from πθ , V π (s) is the expected cumulative return of
the state following strategy π , s ∈ S is the state, a ∈ A is
the action, andQπ (s, a) is the action-value function following
strategy π .
Gradient ascent ensures that every new strategy is better

than the old strategy. θ changes in the direction of ∇J (θ ).

IV. PID PARAMETER TUNING BY THE
MM-MADRL ALGORITHM
According to MADRL, analyze the three parameters of PID
control, i.e., kp, ki and kd , and build a search environment.

Based on [33], an environment with three parameters can
be built, as shown in Figure 7.

The cuboid environment (Figure 5) is divided equally into
8 small cubes.

Assign an agent to each small cube, with the initial position
of each agent being random. Therefore, the number of agents
designed in this article is 8. Each agent is a set (kp, ki, kd ).
Thus, the motion of each agent is a three-dimensional motion.
The movement of each agent can be recorded in detail as
follows:

The second step is to set the reward function. In the PID
control system, the evaluation of the merits of the PID param-
eter values can usually be measured by the deviation integral
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FIGURE 7. Environment of three parameters.

TABLE 3. Example of agent movement.

index. There are three commonly used deviation integral
indicators:

IE =
∫
∞

o
e(t) dt

ISE =
∫
∞

o
e2(t) dt

IAE =
∫
∞

o
|e(t)|dt (8)

Different index selections have different results in the opti-
mization of the system. In the actual operation process, you
can choose the index function according to the purpose of
your own system. Some researchers have also proposed an
index function combining multiple indexes. This article uses
the ISE indicator function to design the fitness function.

Thus, the reward can be set as:

R =


Good adaptability, r = Positive reward
Bad adaptability, r = Negative reward
Achieve goals, r = Large positive reward

Set a loop search with the following loop stop condition:
loop a certain number of times, after which the reward sta-
bilizes. The two loop training rewards stops if the change is
small.

This paper designs a multiagent deep reinforcement learn-
ing environment. Simply put, the three parameters kp, ki and
kd are randomly combined within a specified range, and the
pros and cons of the combinations are judged by r . For the

TABLE 4. Target value test result.

TABLE 5. Average target value test result.

optimal combination value, if there is a definite objective
function, it can be used as the judgment function; if there is
no definite objective function, such as in a nonlinear system,
the above three index functions can be used for judgment.

V. SIMULATION AND RESULTS ANALYSIS
The simulation part of this article uses Python 3.6 and
PyTorch == 1.5.1 to write the code of MM-MADRL, GA,
PSO, DE, and SSA and to write the PID control environ-
ment code of a quadcopter at the same time. The following
details the steps of the simulation and the analysis of the
results obtained. Additionally, for simplicity, the Ornstein–
Uhlenbeck process (OU) noise, which is used in deep rein-
forcement learning and is also correlated with the signal,
is applied in the simulation part in this article. The simulation
is carried out using Intel(R) Core(TM) i7-6700T CPU @
2.80GHz with 64-bit operating system, Windows 10, and
Pycharm 2020.3.3 Professional Edition, while the output cal-
culation time is through the system Direct statistics.

A. TEST FUNCTION SIMULATION
To test the performance of MM-MADRL, this paper selects
3 standard test functions as the fitness function of the algo-
rithm for testing. These functions have different mathemati-
cal characteristics, such as single peaks and multiple peaks.
The functions tested in this paper include the Ackley func-
tion, Rastrigin function and Griewank function. Additionally,
the GA, PSO, SSA and DE algorithms are brought into and
tested in the same environment. The maximum number of
iterations is 1000, the total group number pop = 50, and
dim = 2. Each algorithm was tested 10 times for each func-
tion, and the results obtained are as follows:

From Tables 4 and 5, the target value is 0 for the test
functions. The tables show the best and average search results
from DE, GA, SSA, PSO and MM-MADRL. The result of
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TABLE 6. Operation time result.

FIGURE 8. Griewank function convergence curve.

FIGURE 9. Rastrigin function convergence curve.

the MM-MADRL algorithm is better than that of the other
algorithms. Table 6 illustrates the optimal time for several
algorithms to find the target. The time in the table is the
total time from the beginning to the end of the algorithm and
outputting the target value. DE takes the longest time, and the
best performance is the MM-MADRL algorithm proposed in
this paper.

In summary, the MM-MADRL algorithm performs best in
the test function experiment and has advantages in calculation
time and accuracy.

The convergence curve is shown in Figures 8-10.
Figures 8, 9 and 10 show the average convergence curves of

the GA, DE, PSO, SSA and MM-MADRL algorithms in the
three test functions. The MM-MADRL algorithm proposed
in this paper can quickly find the target value and end.

B. QUADCOPTER SYSTEM SIMULATION
First, we introduce the quadcopter. The quadcopter is a typ-
ical nonlinear system. Based on the control structure of the

FIGURE 10. Ackley function convergence curve.

literature [58], the simulation part is designed. This article
sets the initial altitude to 0 and requires the aircraft to fly
to a height of H = 10 m and remain there. The mass of
the aircraft m = 1.54 kg, the transmission constant of the
electromechanical system c = 10, the known acceleration
of gravity g = 9.81 N/kg, and the resistance is 0.75speed.
This article compares the control force u output by the PID
controller with that of the quadcopter. A cycle is set in the
flight state to simulate the movement of a four-axis aircraft.
Because the objective function of a nonlinear system is diffi-
cult to determine, due to Figure 6, the specific cycle settings
are as follows:

If the control input is u <= gravity, the aircraft remains
stationary on the ground, which can prevent the quadcopter
from ‘‘falling’’ to the ground when the thrust is too small.

Otherwise, if u > gravity, the four-axis acceleration is
directed upwards.

Second, the PID control system adopts the positional PID
control formula mentioned in the second part of this article;
thus, u is given by equation (2).
After adjusting the parameters manually according to the

empirical method, it can be seen that the range of kp, ki and
kd of the quadcopter control system is (0, 2), (0, 1), (0, 0.1)

First, the MA is used to set the parameters, and the result
is as follows:

Let MT = 10, NC = 5, a = 0.1, b = 0.1, and (c, d) =
(−1, 1)

From Figure 11, it can be seen that due to the influence
of the step size parameter setting and the set maximum
number of iterations, the basic MA is not very effective
when applied to the system. If the set parameters are not in
place, good results cannot be obtained, showing the setting
effect.

Next, the MM-MADRL algorithm proposed in this article
is used to automatically adjust the three parameters of the PID
controller. The specific initial data input are as follows:

‘‘Somersault’’ is set to start the interval update after 200
rounds. For example, the original value of kp ranges from 0 to
2, and the optimal value for multiple rounds is best_kp_list=
[0.5, 0.6, 0.7, 0.8, 0.99, 1.3, 0.44, 0.56, 1.1, 1.5, 0.9]. The
length of the list is 10. The last 5 numbers are taken for the
interval update.
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FIGURE 11. MA tuning result for a height of 10 m.

TABLE 7. MM-MADRL parameter setting.

Only one parameter is listed here; the other parameters
use the same method. The individual monkey jumps to a
smaller cube area. Finally, the interval changes from [0, 2]
to [0.044, 1.95].

Figure 12 shows that ‘‘Somersault’’ can increase the speed
of the algorithm. As shown in the figure, when there is ‘‘som-
ersault’’, the calculation is completed at the third episode.

FIGURE 12. Influence of somersault.

FIGURE 13. MM-MADRL tuning result for a height of 10 m.

FIGURE 14. Comparison of simulation results between MM-MADRL and
the GA, PSO, SSA and DE at a set height of 10 m.

Then, the simulation result of MM-MADRL is as follows:
From Figure 13, Table 8 can be obtained.
In the following, the GA, PSO, SSA and DE are used to set

the parameters in the same search environment. The resulting
figure is compared with that of the MM-MADRL algorithm
proposed in this article, and the results obtained are shown
in Figure 14.
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TABLE 8. Simulation result data.

TABLE 9. Simulation result data.

The results obtained from Figure 14 are shown in Table 9.
In the simulation result project, three key data points,

including overshoot, response time and time to steady state,
are included. Overshoot is the ratio of the instantaneous
maximum deviation value of the adjusted amount to the
steady state value. For the system, the overshoot should be
minimized because if the overshoot is too large, the aircraft
system cannot meet its control requirements. The response
time is an intuitive reflection of the influence of the given
parameters on the control system. A shorter response time
proves that the system responds faster and better. The time to
reach the steady state reflects the time for the system to meet
the control requirements and stabilize. A shorter time proves
that the control effect of the given parameter is better, and the
time for the system to reach the goal is shorter. In summary,
the simulation system of this article needs to make the system
react quickly after the three parameters are given and reach
a stable state in a short time, and the overshoot should be
as small as possible. In fact, the relationship between the
three parameters of PID control and rise time, setting time
and percentage of overshoot is described in detail in the
literature [55].

It can be seen from Figure 14 and Table 9 that sev-
eral algorithms can control the four-axis flight system, but
MM-MADRL has obvious advantages in all aspects.

Next, to test the stability and accuracy of MM-MADRL,
let us set the height to H = 20 m and H = 40 m and use

FIGURE 15. MM-MADRL tuning result for a height of 20 m.

FIGURE 16. MM-MADRL tuning result for a height of 40 m.

TABLE 10. Simulation result data.

MM-MADRL to adjust the parameters, yielding the follow-
ing results, as shown in Figures 15 and 16:

According to Figures 15 and 16, the specific data are shown
in Table 10.

Table 10 shows the specific data for H = 20 and H = 40.
The proposed MM-MADRL algorithm can successfully tune
the PID parameters even after changing the height.

The test results show that when the MM-MADRL algo-
rithm performs PID parameter automatic tuning, the tuning
effect is good, and the stability and accuracy are excellent.

VOLUME 9, 2021 78809



H. Zhang et al.: New PID Parameter Autotuning for Nonlinear Systems Based on MM-MADRL Algorithm

The simulation results show that the MM-MADRL algorithm
proposed in this paper can perform the automatic tuning of
PID parameters in a nonlinear system and achieves good
results, with excellent performance in all aspects.

VI. CONCLUSION AND DISCUSSION
In this paper, under the framework of the basic monkey
swarm algorithm combined with multiagent deep reinforce-
ment learning, i.e., the proposed MM-MADRL algorithm,
the simulation results show that this algorithm has a good
effect in the automatic adjustment of PID parameters in a
nonlinear system. Additionally, the stability and accuracy are
very good. Compared with traditional intelligent algorithms,
it has certain advantages. Thus, it provides a new direction
for PID parameter tuning.

However, based on the simulation part, it can be seen that
this research also has some areas for improvement. First,
in terms of the average calculation time, although the final
result obtained by the algorithm is excellent, there is still
more room for improvement in the average convergence
time. Second, for the automatic tuning of PID parameters,
the number of parameters is small. Therefore, to improve
the MM-MADRL algorithm and use it to solve other more
complex and higher-dimensional systems or problems will be
a future research direction.

Therefore, in future work, more in-depth improvements to
the somersault step of the MM-MADRL algorithm, estab-
lishing better connections between intelligent individuals and
applying the algorithm to other higher-dimensional systems
will become the main directions of future research.

REFERENCES
[1] J. Pongfai, X. Su, H. Zhang, and W. Assawinchaichote, ‘‘A novel optimal

PID controller autotuning design based on the SLP algorithm,’’ Expert
Syst., vol. 37, pp. 1–15, Apr. 2019.

[2] M. A. Johnson and M. H. Moradi, ‘‘PID control,’’ in The Control Hand-
book. Piscataway, NJ, USA: IEEE Press, 1996, pp. 198–209.

[3] M. Jamil, A. Waris, S. O. Gilani, B. A. Khawaja, M. N. Khan, and
A. Raza, ‘‘Design of robust higher-order repetitive controller using phase
lead compensator,’’ IEEE Access, vol. 8, pp. 30603–30614, 2020.

[4] W. Assawinchaichote, ‘‘A non-fragile H∞ output feedback controller for
uncertain fuzzy dynamical systems with multiple time-scales,’’ Int. J.
Comput., Commun. Control, vol. 7, no. 1, pp. 8–19, 2012.

[5] N. Kaewpraek and W. Assawinchaichote, ‘‘H∞ fuzzy state-feedback con-
trol plus state-derivative-feedback control synthesis for photovoltaic sys-
tems,’’ Asian J. Control, vol. 18, no. 4, pp. 1441–1452, Jul. 2016.

[6] J. Pongfai, W. Assawinchaichote, P. Shi, and X. Su, ‘‘Novel D-SLP
controller design for nonlinear feedback control,’’ IEEE Access, vol. 8,
pp. 128796–128808, 2020.

[7] A. Sungthong and W. Assawinchaichote, ‘‘Particle swam optimization
based optimal PID parameters for air heater temperature control system,’’
Procedia Comput. Sci., vol. 86, pp. 108–111, Jan. 2016.

[8] S. Ruangsang and W. Assawinchaichote, ‘‘A novel robust H∞ fuzzy
state feedback plus state-derivative feedback controller design for non-
linear time-varying delay systems,’’ Neural Comput. Appl., vol. 36,
pp. 6303–6318, Oct. 2019.

[9] J. Günther, E. Reichensdörfer, P. M. Pilarski, and K. Diepold, ‘‘Inter-
pretable PID parameter tuning for control engineering using gen-
eral dynamic neural networks: An extensive comparison,’’ 2019,
arXiv:1905.13268. [Online]. Available: http://arxiv.org/abs/1905.13268

[10] J. Fišer and P. Zítek, ‘‘PID controller tuning via dominant pole placement
in comparison with ziegler-nichols tuning,’’ IFAC-PapersOnLine, vol. 52,
no. 18, pp. 43–48, 2019.

[11] N. P. Putra, G. J. Maulany, F. X. Manggau, and P. Betaubun, ‘‘Attitude
quadrotor control system with optimization of PID parameters based
on fast genetic algorithm,’’ Int. J. Mech. Eng. Technol., vol. 10, no. 1,
pp. 335–343, 2019.

[12] J. Xu, ‘‘An expert PID control algorithm based on anti-integration satura-
tion,’’ in Proc. IEEE 2nd Adv. Inf. Technol., Electron. Autom. Control Conf.
(IAEAC), Mar. 2017, pp. 1536–1539.

[13] F. Kang and Y. B. Liang, ‘‘Research on modeling and simulation
of expert_PID controlled servo system based on matlab/s-function,’’
in Applied Mechanics and Materials. Kapellweg, Switzerland: Trans
Tech, vol. 347, pp. 604–609, 2013. [Online]. Available: https://www.
scientific.net/Home/Contacts

[14] B. Zhou, S. Xie, and J. Hui, ‘‘H-infinity control for T-S aero-engine
wireless networked system with scheduling,’’ IEEE Access, vol. 7,
pp. 115662–115672, 2019.

[15] M. Farahani, S. Ganjefar, and M. Alizadeh, ‘‘Intelligent control of SSSC
via an online self-tuning PID to damp the subsynchronous oscillations,’’ in
Proc. 20th Iranian Conf. Electr. Eng. (ICEE), May 2012, pp. 336–341.

[16] I. Carlucho, M. De Paula, S. A. Villar, and G. G. Acosta, ‘‘Incremental Q-
learning strategy for adaptive PID control of mobile robots,’’ Expert Syst.
Appl., vol. 80, pp. 183–199, Sep. 2017.

[17] A. G. Alexandrov and M. V. Palenov, ‘‘Adaptive PID controllers: State of
the art and development prospects,’’ Autom. Remote Control, vol. 75, no. 2,
pp. 188–199, Feb. 2014.

[18] Y. Liao, L.Wang, Y. Li, Y. Li, and Q. Jiang, ‘‘The intelligent control system
and experiments for an unmannedwave glider,’’PLoSONE, vol. 11, no. 12,
Dec. 2016, Art. no. e0168792.

[19] Z. Jing, ‘‘Application and study of expert PID intelligent control,’’ in Proc.
IOP Conf. Mater. Sci. Eng., 2019, vol. 563, no. 4, Art. no. 042084.

[20] C. Vorrawan, W. Assawinchaichote, Y. Shi, and X. Su, ‘‘Fuzzy-modeled
prescribed performance integral controller design for nonlinear descriptor
system with uncertainties,’’ IEEE Access, vol. 8, pp. 89520–89533, 2020.

[21] S. Ruangsang andW. Assawinchaichote, ‘‘Control of nonlinear Markovian
jump system with time varying delay via robust H∞ fuzzy state feedback
plus state-derivative feedback controller,’’ Int. J. Control, Autom. Syst.,
vol. 17, no. 9, pp. 2414–2429, 2019.

[22] F.-J. Lin, H.-J. Shieh, L.-T. Teng, and P.-H. Shieh, ‘‘Hybrid controller with
recurrent neural network for magnetic levitation system,’’ IEEE Trans.
Magn., vol. 41, no. 7, pp. 2260–2269, Jul. 2005.

[23] V. Kachitvichyanukul, ‘‘Comparison of three evolutionary algorithms: GA,
PSO, and DE,’’ Ind. Eng. Manage. Syst., vol. 11, no. 3, pp. 215–223,
Sep. 2012.

[24] E. Anene and G. K. Venayagamoorthy, ‘‘PSO tuned flatness based control
of a magnetic levitation system,’’ in Proc. IEEE Ind. Appl. Soc. Annu.
Meeting, Oct. 2010, pp. 1–5.

[25] G. Chen, Z. Li, Z. Zhang, and S. Li, ‘‘An improved ACO algorithm
optimized fuzzy PID controller for load frequency control in multi area
interconnected power systems,’’ IEEE Access, vol. 8, pp. 6429–6447,
2020.

[26] S. Kansit and W. Assawinchaichote, ‘‘Optimization of PID controller
based on PSOGSA for an automatic voltage regulator system,’’ Procedia
Comput. Sci., vol. 86, pp. 87–90, Jan. 2016.

[27] S. K. Nguang, W. Assawinchaichote, P. Shi, and Y. Shi, ‘‘H∞ fuzzy filter
design for uncertain nonlinear systems with Markovian jumps: An LMI
approach,’’ in Proc. Amer. Control Conf., vol. 3, 2005, pp. 1799–1804.

[28] S. Panda, B. Mohanty, and P. K. Hota, ‘‘Hybrid BFOA–PSO algorithm for
automatic generation control of linear and nonlinear interconnected power
systems,’’ Appl. Soft Comput., vol. 13, no. 12, pp. 4718–4730, Dec. 2013.

[29] K. Premkumar and B. V. Manikandan, ‘‘Fuzzy PID supervised online
ANFIS based speed controller for brushless DC motor,’’ Neurocomputing,
vol. 157, pp. 76–90, Jun. 2015.

[30] R. K. Sahu, S. Panda, and N. K. Yegireddy, ‘‘A novel hybrid DEPS
optimized fuzzy PI/PID controller for load frequency control of multi-
area interconnected power systems,’’ J. Process Control, vol. 24, no. 10,
pp. 1596–1608, Oct. 2014.

[31] K. Premkumar and B. V. Manikandan, ‘‘Bat algorithm optimized fuzzy
PD based speed controller for brushless direct current motor,’’ Eng. Sci.
Technol., Int. J., vol. 19, no. 2, pp. 818–840, Jun. 2016.

[32] R.-Q. Zhao and W.-S. Tang, ‘‘Monkey algorithm for global numerical
optimization,’’ J. Uncertain Syst., vol. 2, no. 3, pp. 165–176, 2008.

[33] L. J. Ke and X. Q. Wang, Reinforcement Learning, 1st ed, Beijing, China:
Tsinghua Univ. Press, 2019, pp. 1–176.

78810 VOLUME 9, 2021



H. Zhang et al.: New PID Parameter Autotuning for Nonlinear Systems Based on MM-MADRL Algorithm

[34] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. ICML, Jun. 2014,
pp. 387–395.

[35] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
in Proc. ICLR, 2016, pp. 1–14.

[36] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ 2017,
arXiv:1706.02275. [Online]. Available: http://arxiv.org/abs/1706.02275

[37] Y. D. Song, Y. Q. Zhang, and J. H. Zhang, ‘‘Research on the golden
section method used in the optimization and tuning technology of PID
parameters,’’ J. Xi’an Univ. Eng. Sci. Technol., vol. 21, no. 2, pp. 262–266,
2007.

[38] J. L. Meza, V. Santibanez, R. Soto, and M. A. Llama, ‘‘Fuzzy self-
tuning PID semiglobal regulator for robot manipulators,’’ IEEE Trans. Ind.
Electron., vol. 59, no. 6, pp. 2709–2717, Jun. 2012.

[39] J. Yu, P. Shi, H. Yu, B. Chen, and C. Lin, ‘‘Approximation-based discrete-
time adaptive position tracking control for interior permanent magnet
synchronous motors,’’ IEEE Trans. Cybern., vol. 45, no. 7, pp. 1363–1371,
Jul. 2015.

[40] A. Noshadi, J. Shi, W. S. Lee, P. Shi, and A. Kalam, ‘‘Optimal PID-
type fuzzy logic controller for a multi-input multi-output active magnetic
bearing system,’’ Neural Comput. Appl., vol. 27, no. 7, pp. 2031–2046,
Oct. 2016.

[41] B. Luo, Y. Yang, and D. Liu, ‘‘Adaptive Q-learning for data-based optimal
output regulation with experience replay,’’ IEEE Trans. Cybern., vol. 48,
no. 12, pp. 3337–3348, Apr. 2018.

[42] C.-F. Juang, ‘‘Combination of online clustering and Q-value based GA
for reinforcement fuzzy system design,’’ IEEE Trans. Fuzzy Syst., vol. 13,
no. 3, pp. 289–302, Jun. 2005.

[43] Q. Wei, L. F. Lewis, Q. Sun, P. Yan, and R. Song, ‘‘Discrete-time deter-
ministicQ-learning: A novel convergence analysis,’’ IEEE Trans. Cybern.,
vol. 47, no. 5, pp. 1224–1237, May 2017.

[44] H. Mao, Z. Zhang, Z. Xiao, and Z. Gong, ‘‘Modelling the dynamic
joint policy of teammates with attention multi-agent DDPG,’’ 2018,
arXiv:1811.07029. [Online]. Available: http://arxiv.org/abs/1811.07029

[45] E. Wei, D. Wicke, and D. Freelan, ‘‘Multiagent soft Q-learning,’’ 2018,
arXiv:1804.09817. [Online]. Available: https://arxiv.org/abs/1804.09817

[46] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6379–6390.

[47] R. E. Wang, M. Everett, and J. P. How, ‘‘R-MADDPG for partially observ-
able environments and limited communication,’’ 2020, arXiv:2002.06684.
[Online]. Available: http://arxiv.org/abs/2002.06684

[48] J. Han, C.-H. Wang, and G.-X. Yi, ‘‘Cooperative control of UAV based on
multi-agent system,’’ in Proc. IEEE 8th Conf. Ind. Electron. Appl. (ICIEA),
Jun. 2013, pp. 96–101.

[49] K. Shao, Y. Zhu, and D. Zhao, ‘‘StarCraft micromanagement with rein-
forcement learning and curriculum transfer learning,’’ IEEE Trans. Emerg.
Topics Comput. Intell., vol. 3, no. 1, pp. 73–84, Feb. 2019.

[50] J. E. Summers, J. M. Trader, C. F. Gaumond, and J. L. Chen, ‘‘Deep
reinforcement learning for cognitive sonar,’’ J. Acoust. Soc. Amer., vol. 143,
no. 3, p. 1716, Apr. 2018.

[51] X. L. Wei, X. L. Huang, T. Lu, and G. G. Song, ‘‘An improved method
based on deep reinforcement learning for target searching,’’ in Proc. 4th
Int. Conf. Robot. Autom. Eng. (ICRAE), Nov. 2019, pp. 130–134.

[52] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ arXiv:1312.5602, Available: https://arxiv.org/abs/1312.5602

[53] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
CoRR, Sep. 2015. [Online]. Available: https://arxiv.org/abs/1509.02971

[54] S. Omidshafiei, J. Pazis, C. Amato, J. How, and J. Vian, ‘‘Deep decentral-
ized multi-task multi-agent reinforcement learning under partial observ-
ability,’’ in Proc. Int. Conf. Mach. Learn., Mar. 2017, pp. 2681–2690.

[55] E. Hub. PID Controller-Working and Tuning Methods.
Accessed: Dec.10, 2015. [Online]. Available: https://www.electronicshub.
org/pid-controller-working-and-tuning-methods/

[56] Z. Bao, J. Yu, and S. Yang, Intelligent Optimization Algorithm and its
MATLAB Example, 2nd ed. Beijing, China, Electronic Industry Press,
2018.

[57] J. Xue and B. Shen, ‘‘A novel swarm intelligence optimization approach:
Sparrow search algorithm,’’ Syst. Sci. Control Eng., vol. 8, no. 1, pp. 22–34,
Jan. 2020.

[58] M. Eatemadi, ‘‘Mathematical dynamics, kinematics modeling and PID
equation controller of quadCopter,’’ Int. J. Appl. Oper. Res., vol. 7, no. 1,
pp. 77–85, 2017.

[59] Y.Mousavi, A. Alfi, and I. B. Kucukdemiral, ‘‘Enhanced fractional chaotic
whale optimization algorithm for parameter identification of isolatedwind-
diesel power systems,’’ IEEE Access, vol. 8, pp. 140862–140875, 2020.

[60] J. A. T. Machado, S. M. A. Pahnehkolaei, and A. Alfi, ‘‘Complex-order
particle swarm optimization,’’ Commun. Nonlinear Sci. Numer. Simul.,
vol. 92, Jan. 2020, Art. no. 105448.

[61] H. Shokri-Ghaleh, A. Alfi, S. Ebadollahi, A. M. Shahri, and S. Ranjbaran,
‘‘Unequal limit cuckoo optimization algorithm applied for optimal design
of nonlinear field calibration problem of a triaxial accelerometer,’’ Mea-
surement, vol. 164, Nov. 2020, Art. no. 107963.

[62] A. Alfi and M.-M. Fateh, ‘‘Intelligent identification and control using
improved fuzzy particle swarm optimization,’’ Expert Syst. Appl., vol. 38,
no. 10, pp. 12312–12317, Sep. 2011.

[63] A. Alfi and H. Modares, ‘‘System identification and control using adap-
tive particle swarm optimization,’’ Appl. Math. Model., vol. 35, no. 3,
pp. 1210–1221, Mar. 2011.

[64] E. S. A. Shahri, A. Alfi, and J. A. T. Machado, ‘‘Fractional fixed-structure
H∞ controller design using augmented lagrangian particle swarm opti-
mization with fractional order velocity,’’ Appl. Soft Comput., vol. 77,
pp. 688–695, Apr. 2019.

HONGMING ZHANG was born in Kunming,
Yunnan, China, in 1993. He received the B.S.
degree in information and communication engi-
neering from the University of Mea Fah Luang,
ChiangRai, Thailand, in 2018, and theM.S. degree
in electronic and telecommunication engineering
from the King Mongkut’s University of Technol-
ogy Thonburi, Bangkok, Thailand, in 2020, where
he is currently pursuing the Ph.D. degree. From
2018 onwards, he researches on PID control sys-

tems, mainly in the aspects of intelligent algorithms and neural networks,
to optimize the PID systems.

WUDHICHAI ASSAWINCHAICHOTE received
the B.S. degree (Hons.) in electrical engineering
from Assumption University, Bangkok, Thailand,
in 1994, the M.E. degree in electrical engineer-
ing from Pennsylvania State University (Main
Campus), PA, USA, in 1997, and the Ph.D. degree
in electrical engineering from The University of
Auckland, New Zealand, in 2004. He is currently
an Associate Professor with the Department of
Electronic and Telecommunication Engineering,

King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok.
He has published a research monograph and more than 20 research articles
in international refereed journals indexed by SCI/SCIE (Clarivate Analytics).
His current research interests include fuzzy control, robust control, optimal
control, system and control theory, computational intelligence, and PID
controller design. He also serves as an Associate Editor for the International
Journal of Innovative Computing, Information and Control, and a Reviewer
for IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE TRANSACTIONS ON

FUZZY SYSTEMS, IEEE TRANSACTIONS ON CYBERNETICS, Neural Computing and
Applications, and IEEE ACCESS.

YAN SHI received the Ph.D. degree in informa-
tion and computer sciences from Osaka Electro-
Communication University, Neyagawa, Japan,
in 1997. He is currently a full-time Professor with
the Graduate School of Science and Technology,
Tokai University, Kumamoto, Japan. His research
interests include fuzzy reasoning and data mining.

VOLUME 9, 2021 78811


