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ABSTRACT In this paper, we propose a machine learning−based mobility robustness optimization algo-
rithm to optimize handover parameters for seamless mobility under dynamic small-cell networks. Small
cells can be arbitrarily deployed, portable, and turned on and off to fulfill wireless traffic demands or energy
efficiency. As a result, the small-cell network topology dynamically varies challenging network optimization,
especially handover optimization. Previous studies have only considered dynamics due to user mobility
in a specific static network topology. To optimize handovers under dynamic network topologies, together
with user mobility, we propose an algorithm consisting of two steps: topology adaptation and mobility
adaptation. To adapt to a dynamic topology, the algorithm obtains prior knowledge, which presents a belief
distribution of the optimal handover parameters, for the current network topology as coarse optimization.
In the second step, the algorithm fine-tunes the handover parameters to adapt to user mobility based on
reinforcement learning, which utilizes the knowledge obtained during the first step. Under a dynamic
small-cell network, we showed that the proposed algorithm reduced adaptation time to 4.17% of the time
needed by a comparative machine–based algorithm. Furthermore, the proposed algorithm improved the user
satisfaction rate to 416.7% compared to the previous work.

INDEX TERMS Transfer learning, distributed reinforcement learning, small cell on/off, self-organizing
network, handover optimization.

I. INTRODUCTION
The small cell technologies have been considered an essential
approach to high network capacity and high spectrum reuse in
order to accommodate traffic demands in the fifth-generation
(5G) era and beyond 5G [1], [2]. The small cell is a low-
power, low-cost, and ready-to-use prototype of a base sta-
tion [3], thus network providers can activate their small cells
in a planned or unplanned manner in crowded places (such
as shopping malls, stadiums, and downtown streets [4]) to
improve the user’s quality of experience.

To reduce administrative expenses from frequent param-
eter optimizations, a small-cell network is equipped with
an autonomous solution called self-organizing network
(SON) [3], [5]. The necessary for implementing SON for
small-cell networks is highlighted by potential features, such
as coverage and capacity optimization, energy efficiency,
interference reduction, mobility load balancing (MLB),
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mobility robustness optimization (MRO), automatic neighbor
relations, and random access optimization [6], [7]. To ensure
reliable and efficient operation of small cells, the handover
procedure should be optimized by MRO to guarantee seam-
less mobility throughout the small-cell network. The objec-
tive ofMRO is minimizing handover failures due to radio link
failures (RLFs) and retaining the number of ping-pongs as
low as possible. Since RLFs disturb the user experience and
ping-pongs induce resource-consuming signaling in a short
time, RLFs and ping-pongs should both be minimized by
optimizing handover parameters.

Unfortunately, small-cell network topology is non-static
due to the arbitrary operation of small cells, such as pow-
ering on and off by personal usage or by network operators,
to adapt to traffic loads and energy-saving demands [8].When
network topology changes, wireless environments, such as
cell boundaries and interference, also vary according to the
network topology, thus affecting handover optimization and
performance [9]. Fig. 1 shows an example of a variable net-
work topology when cells are switched on and off. Because
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FIGURE 1. Dynamic topologies with cells switching on and off (a) two
cells are switched on, and (b) three cells are switched on.

of cell 3’s activation, the coverage of cells changes and han-
dover parameters should be modified accordingly to adapt
user mobility [9]. Thus, handover optimization for seamless
mobility under dynamic topology and user mobility is a
challenging issue in small-cell networks.

To optimize handover parameters, previous MRO algo-
rithms have considered user mobility adaptation under static
deployment of small cells [6], [10]–[13]. In [10]–[12],
the authors improved handover performance by adjusting
time-to-trigger (TTT) and handover offset. The algorithms
are rule-based and take into account negotiation between
RLFs and ping-pongs. A more flexible optimization policy
that regulates cell individual offsets (CIOs), which considers
local-specific handover optimization, was introduced in [13].
In [6], the authors proposed an algorithm that manipulates
TTT, handover offset, and CIOs together to improve handover
performance. The algorithm achieved an impressive handover
performance without a negotiation between RLFs and ping-
pongs.

To handle dynamic wireless environments, machine
learning techniques have been applied to optimize han-
dover parameters. In previous researches, reinforce-
ment learning (RL) was applied to adjust handover
parameters [14]–[17]. In the RL algorithm, the learning agent
interacts with the outside environment to choose the optimal
action based on a reward received from the environment [18].
Studies in [14]–[16] considered a model-free RL, which
models the reward as a load level (for MLB) and handover
performance (for MRO), and which chooses an action to
modify handover parameters (TTT and hysteresis) for a
given environmental state according to fixed policies. In [17],
the authors utilized fuzzy-based policies with RL-based
algorithms to change handover offsets in order to improve
handover quality. Even though the algorithms in [14]–[16]
adjusted handover parameters while considering dynamic
user mobility, they were applied only to a static network

topology. Furthermore, one cost of these algorithms is low
convergence to adapt to the dynamic wireless environment,
since they need a large number of training samples for expe-
rience. Therefore, optimizing handover parameters under
dynamic small-cell networks, where network topology as
well as mobility are both dynamic, still poses challenges for
wireless network optimization.

In this paper, we propose a machine learning−based algo-
rithm that includes a transfer learning–based algorithm to
adapt to dynamic network topologies, along with a dis-
tributed reinforcement learning–based algorithm to adapt to
time-variant UE mobility by optimizing handover parame-
ters. The transfer learning−based algorithm harvests prior
knowledge of optimization tasks, which includes an estima-
tion or belief distribution of optimal handover parameters, for
adapting to a variable topology. For adapting to user mobility,
in each cell of a particular sub topology, the RL-based mobil-
ity adaptation algorithm utilizes the prior knowledge to opti-
mize three handover parameters (TTT, hysteresis, and CIO)
together. Via simulation and analysis, we verify our proposed
algorithms under a dynamic topology, random mobility, and
irregular deployment of small cells, and we show that the
proposed algorithm can transiently optimize handover param-
eters to guarantee the target handover performance.

The remainder of this paper is organized as follows.
Section II discusses handover models and issues in small-cell
networks. Section III presents a framework of the pro-
posed machine learning–based algorithm, which include a
transferred learning–based algorithm and a reinforcement
learning–based mobility adaptation algorithm. Section IV
shows simulation results and comparisons with relatedworks.
Finally, we conclude this work in Section V.

II. SYSTEM MODELS
We consider a hierarchical SON that supervises small cells,
as shown in Fig. 2. Two types of SONs are: the centralized
SON (cSON) and the decentralized SON (dSON). While a
cSON is located at network management for network-wide
optimization, dSONs are implemented in the small cells
for local adaptation. The cSON receives information from
dSONs to monitor network-wide information in order to opti-
mize the network globally [19]. When a new cell is activated,
the dSON of this cell receives initial settings from the cSON,
which includes cell identification (ID), handover parameters,
neighboring cell information, and other control parameters.

To manage energy saving and the arbitrary on/off manner
of small cells, dSONs send notifications to the cSON before
the corresponding cells are deactivated. The cSON monitors
the network topology in order to produce coarse adjustments.
The cSON also communicates with smart traffic monitoring
systems [20] to monitor the environmental context, such
as average user speed and traffic flows on the streets. For
mobility management, small cells communicate with their
neighbors via Xn interface to share information [21]. Nearby
small cells exchange user information, such as handover
information and failure notification messages [21]. Based on
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FIGURE 2. A scenario with a small-cell network and its SON.

the recorded data and the cSON’s support, the dSON adapts to
dynamicmobility by optimizing handover parameters locally.

Considering a nominated UE located at distance di (in
meters) from cell i, the received power for such a distance
can be modeled as

mi = ptxd
−α
i νG−10 ,

where ptx is the transmission power of a cell,G0 is a reference
value that accounts for a fixed propagation loss, α is the
attenuation exponent characterizing the level of attenuation
of a specific propagation environment, and ν is the fading
factor. During a course of movement, the UE eventually
or periodically sends signal measurements such as refer-
ence signal received power (RSRP) to the serving cell. The
received measurement data are used for evaluating the qual-
ity of the wireless connection. The signal-to-interference-
plus-noise ratio (SINR) is calculated based on the measure-
ments. The SINR, γ , is defined as

γ =
mi∑

j 6=i mj + N0
, (1)

wheremi andmj are linear values for the RSRP of the serving
cell and other cells, respectively, as measured by the UE, and
N0 is thermal noise [9], [10], [22]. SINR is used by UEs to
detect an RLF, which happens if the SINR remains below a
predefined threshold, Qout, for a certain period of time. Thus,
the cell coverage is determined based on Qout.

III. HANDOVER PROCEDURE PROBLEM FORMULATION
In the 3rd Generation Partnership Project (3GPP) standards,
a handover procedure starts based on measurement reports
from a UE to a serving cell for a handover decision. UEs
periodically measure RSRPs of all discovered cells, and
eventually or periodically send measurement reports to the
serving cells when certain conditions hold. There are six
intra-frequency event measurements, designated from A1 to
A6, in the 3GPP standards [23]. Each event measurement

is used for a specific application of a SON, like mobility
management and neighbor discovery [6], [7], [24].

For triggering a handover, the A3 event is selected since it
is based on the better relative signal quality between cells [6],
[9]. The A3 event is triggered when the RSRP of a neighbor-
ing cell becomes better than that of the serving cell, based
on a certain offset. The UE sends report measurements to the
serving cell for a handover after the TTT timer has expired.
The condition for triggering the measurement report is

Mj + Ocnij + Ofnij > Mi + Ocpij + Ofpij + Off+ Hys,

(2)

whereMi andMj (on the decibel (dB) scale) are the measured
RSRPs of serving cell i and neighboring cell j, respectively,
i.e., Mi = 10 logmi and Mj = 10 logmj. Hys is the hysteresis
parameter to prevent oscillation of condition (2) due to fading,
and Off is A3Offset for this event. Offsets Ocnij and Ocpij
are individual CIOs of cell i for cell j. While the Hys and
A3Offset affect handovers to all neighbors, the CIOs assign
different handover offsets to each neighbor. In this paper,
we set the CIOs’ Ofnij and Ofpij to zero, since we consider
intra-frequency handover. Condition (2) is rewritten as

Mj +1ij > Mi, (3)

where1ij is the equivalent CIO of serving cell i for neighbor-
ing cell j, which is given as1ij = Ocnij−Ocpij−Off−Hys. In
practice, cell i has many neighboring cells; hence, we denote
the set of neighboring cells of cell i as Hi.

To mathematically model the handover procedure, we use
geometry elements: a straight line for the user trajectory, and
Apollonian circles for A3-event coverage and transmission
ranges [9]. An example of a successful handover from cell i
to cell j is shown in Fig. 3(a). User positions (projected
from the user trajectory to the x-axis) and time stamps are
denoted as an ordered pair (tn, xn) indicating where and when
measurement events occur. The trajectory is characterized
by slope angle θ and x-intercept b. Fig. 3(b) depicts a user
trajectory and its intersects with Apollonian circles of A3 and
RLF measurement events of two cells [9]. Specifically, C,
D, E, and F are the intersections of the user trajectory and
the A3-event circle of cell i, the RLF-event circle of cell i,
the A3-event circle of cell j, and the RLF-event circle of
cell j, respectively. The A3-event circle for the handover
from cell i to cell j is adjustable according to 1ij, while
the RLF-event circles of cells are different, depending on
the network topology [9]. To scrutinize handover problems,
we project C, D, E, and F onto the line segment between cell i
and cell j, which are denoted xC, xD, xE, and xF, respectively,
and derive various conditions leading to handover problems.
We note that x1 and x2 in Fig. 3(a) are xC and xD in Fig. 3(b),
respectively.

In Fig. 3(a), when condition for A3 event in (3) is satisfied
within the TTT period at (t3, x3), the UE sends ameasurement
report to cell i triggering a handover from cell i to cell j.
Themeasurement report carries RSRPs of all discovered cells
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FIGURE 3. A successful handover.

where the RSRPs satisfies condition (3) with regard to cell i.
Then, cell i chooses the best neighboring cell based on the
reported RSRPs and triggers a handover to the chosen cell.
However, if the SINR is lower than threshold Qout for time
duration τR, which is the timing length for RLF detection [9]
that starts at (t2, x2), the wireless links are dropped leading to
an RLF at time (t4, x4), and the handover fails.

A. UNDESIRABLE HANDOVER CONDITIONS
There are two types of undesirable handover: RLFs and ping-
pongs. While ping-pongs are similar to repeated success-
ful handovers among cells, an RLF causes failed handover
attempts based due to one of three reasons: a too-late, a too-
early, or a wrong-cell handover [6], [21]. Utilizing the user
trajectory and parameters in Fig. 3(b), we explain conditions
for undesirable handovers. A too-late handover occurs when
the moving depth of the UE during TTTi with average veloc-
ity v in the network, which is xC+vTTTi cos θ , is longer than
the coverage that cell i allows for τR, which is xD+vτR cos θ .
After an RLF, the UE tries to reconnect to cell j, which is the
best neighbor of cell i for theUE. Cell j notifies cell i about the
RLF via theXn interface, and cell i recognizes a handover that
was too late. The condition under which a too-late handover
happens is expressed by

xC + v (TTTi − τR) cos θ > xD (C1),

A too-early handover happens when a UE joins target cell j
too early after a successful handover, and the connection is
immediately dropped because of a poor SINR (γ ≤ Qout).
This failure occurs shortly after a successful handover from
cell i to cell j, and the UE camps to cell i again because it

is still within cell i coverage. Therefore, the total moving
depth during TTTj and τR, which is xC+v

(
TTTj + τR

)
cos θ ,

is too short to enter the coverage of cell j, which is at xF.
In addition, a duration for TTTj that is longer than τR causes
an RLF in cell j. After the RLF, the source cell recognizes the
too-early handover based on handover history. The condition
under which a too-early handover occurs is

xC + v
(
TTTj + τR

)
cos θ ≤ xF (C2), and TTTj > τR,

where xF is the projection of F onto the line segment between
cell i and cell j, as depicted in Fig. 3(b). A wrong-cell
handover is detected when an RLF occurs shortly after a
successful handover to the target cell, and then, the UE
reconnects to another cell that is neither the serving cell nor
the target cell. Since a wrong-cell handover is identical to a
too-early handover except for the reconnection, we merge the
wrong-cell problem into the too-early problem.

In contrast to RLFs, a ping-pong maintains the link con-
nection. However, it repeats the handover from cell i to cell j
multiple times or even among multiple cells within a short
time [24]. To cause a simple ping-pong (i.e., the pattern
i–j–i, which counts as one ping-pong) the moving depth
during TTTi and TTTj, which is xC+v

(
TTTi + TTTj

)
cos θ ,

should not exceed the A3-event coverage of cell j, which is
at xE, to guarantee a handover back to cell j again; and TTTj
must not be greater than τR to avoid an RLF at cell j. The
condition for a ping-pong is described as

xC + v
(
TTTi + TTTj

)
cos θ ≤ xE (C3), and TTTj ≤ τR,

where xE is the projection of E onto the cell i-cell j line
segment, as shown in Fig. 3(b). The rapid pace of handovers
wastes system resources, such as time and signaling proce-
dures [5]. Even though ping-pongs do not cause RLFs, a reg-
ular requirement for handover optimization always includes
minimizing ping-pongs as much as possible. The scenario for
a ping-pong looks similar to the too-early handover problem,
but ping-pongs do not cause RLFs.

B. OPTIMAL HANDOVER PARAMETERS
As explained in the conditions for undesirable handovers,
when handover offset 1ij increases, too-late handovers
happen less often and too-early handovers occur more
often. Similarly, too-late handovers happen more often and
too-early handovers occur less oftenwhen handover offset1ij
decreases. Therefore, there is a lower bound on1ij to prevent
too-late handovers, and an upper bound on 1ij to eliminate
too-early handovers.

The lower bound of 1ij, 1
†
ij, is obtained by solving

1
†
ij = argmin

Omin≤1ij≤Omax

1ij

s.t. xC + v (TTTi − τR) cos θ ≤ xD, (4)

whereOmin andOmax are the maximum and minimum values
of1ij, respectively. The upper bound,1∗ij, of1ij, is obtained
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FIGURE 4. Examples of dynamic small-cell network handovers.

as follows

1∗ij = argmax
Omin≤1ij≤Omax

1ij

s.t. xC + v
(
TTTj + τR

)
cos θ > xF,

xC + v
(
TTTi + TTTj

)
cos θ > xE. (5)

The optimal range for 1ij exists when 1†
ij ≤ 1∗ij. The

condition for the existence of the optimal range of handover
parameters was explained in Lemma 1 in [9]. If the optimal
range exists (i.e.,1†

ij ≤ 1
∗
ij), optimal handover parameters is

chosen in between the lower bound 1†
ij and the upper bound

1∗ij. Otherwise (i.e., 1
†
ij > 1∗ij), we would probably choose

a value based on a predefined policy. In this paper, we chose
the average of the lower bound and the upper bound of the
optimal handover offset as the approximate optimal value,
which is (1†

ij + 1
∗
ij)/2, regardless of the existence of the

optimal range.

C. PROBLEM FORMULATION FOR DYNAMIC NETWORK
TOPOLOGY
The dynamic on/off switching characteristic of small cells
affects handovers, since the wireless environment (e.g., cell
boundaries, topology, and interference) changes accordingly.
In Fig. 4, we show an example of a handover failure where a
new cell (cell 3) is powered on for a given network with two
small cells. In Fig. 3(a), the UE should be handed over from
cell 1 to cell 2 if there are only two cells. Due to the activation
of cell 3, the UE is handed over to cell 3 at (t1, x1). However,
at (t6, x6), the UE cannot be handed over successfully from
cell 2 to cell 3. This is because handovers among cell 1,

FIGURE 5. The proposed machine learning−based algorithm for dynamic
small-cell networks.

cell 2, and cell 3 are no longer optimized due to the different
topology.

We define the topology T of a small-cell network as a set of
cells that are identified by cell ID as well as cell location. For
instance, T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} means that there
are 10 cells with IDs from 1 to 10 deployed in the small-cell
network. Also, we define a cluster of neighboring cells, Ti,
as a sub-topology of cells in the small-cell network such that
T = ∪Ki=1Ti if there are K sub-topologies. For example,
T1 = {1, 2, 3} means that sub-topology T1 contains three
neighboring cells: cell 1, cell 2, and cell 3.

We formulated a handover optimization problem consider-
ing the dynamic network topology as:

minimize f (TTT,Ocn,A3Offset, T )

subject to 0ms ≤ TTT ≤ 5120ms,

−24 dB ≤ Ocn ≤ 24 dB,

−15 dB ≤ A3Offset ≤ 15 dB,

where T is the network topology, and f is a cost function of
handover optimization. In this paper, the cost function takes
into account a statistic of undesirable handovers (e.g., too-
late, too-early, and ping-pong handovers).

IV. MACHINE LEARNING-BASED MRO
To minimize undesirable handovers in dynamic small-cell
networks, we propose a machine learning–based MRO algo-
rithm. The flowchart of the proposed algorithm is described
in Fig. 5. The algorithm consists of two steps: topology
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adaptation at cSON and mobility adaptation at dSONs.
A cSON obtains prior knowledge of optimization tasks. The
prior knowledge can be an estimation or a belief distribution
of the optimal handover parameters for the new network
topology. The cSON dispatches the prior knowledge to the
dSONs to speed up convergence of the learning processes at
the dSONs. Then, the dSONs fine tune the handover param-
eters to quickly adapt to mobile environments.

A. TRANSFER LEARNING−BASED DYNAMIC NETWORK
TOPOLOGY ADAPTATION ALGORITHM
To adapt to a dynamic network topology, we apply the con-
cept of transfer learning, which exploits prior knowledge
about one learning task to solve related tasks in order to
achieve better optimization and fast convergence. The TL
concept is defined as follows. Given source domain Ds,
learning task Ls, a target domain Dt, and the learning task
L t, transfer learning enhances the accuracy of the target
predictive model in Dt using the knowledge from Ds and
Dt when Ds

6= Dt and/or Ls 6= L t [25]. To apply TL,
we choose network topology T as the domain that varies
dynamically, and the learning task is identical for all network
topologies, which optimizes handover parameters to adapt to
the dynamic wireless environment. Our ultimate goal is to
transiently optimize handovers for a new network topology by
utilizing knowledge about previous topologies. The TL-based
algorithm addresses three questions:when prior knowledge is
needed, how that prior knowledge is established, and what
prior knowledge is transferred between different learning
tasks.

1) TOPOLOGY SIMILARITY DETECTION
Prior knowledge is transferred when a network topology
changes due to cells switching on and off. When the net-
work topology changes, cell borders are different changing
the handover situation. Our proposed algorithm utilizes prior
knowledge to transiently optimize parameters of dynamic
networks while previous algorithms focused on a static net-
work topology and neglected prior knowledge. At the cSON,
the TL-based algorithm extracts features from the old topol-
ogy, T old, which are similar to the new topology, T new. The
similarity between the old and new topologies is determined
based on small cells’ locations and their neighbors. A cell
in the new topology is matched to a cell in the old topology
if their neighboring cells are similar; otherwise, mismatched
despite of the same cell identifications.

To determine how similar topology T new is to topology
T old, the proposed algorithm uses the locations and neigh-
bors of the recent on-and-off cells, which are stored in set
UON/OFF. For each cell i in UON/OFF, the algorithm groups
cell i with its neighboring cells in topology T new to form
a sub-topology (Ti). The dissimilar parts between T old and
T new are sub-topologies that contain the recent on/off cells,
whereas the similar parts are sub-topologies that do not have
neighboring relations to the recent on/off cells.

Algorithm 1 TL-Based Dynamic Network Topology Adap-
tation Algorithm

1: Select cells that were recently on and off in T old to make
set UON/OFF.

2: for cell i ∈ UON/OFF do
3: Group cell i with its neighboring cells to obtain

sub-topology Ti
4: if Ti ∈ TDB then
5: Transfer prior knowledge to cells in Ti
6: else
7: Transfer the estimated optimal handover parameters

to cells in Ti (Algorithm 3)
8: Store Ti in TDB
9: end if
10: end for
11: Retain the current handover parameters and knowledge

for the remaining cells in T new

12: Go to the mobility adaptation algorithm by dSONs
(Algorithm 4)

Algorithm 2 Geometry-Based Computation for the Upper
Bound and Lower Bound of CIO
1: Input: TTTi, 1ji, TTTj, b, θ , v, and locations of cells
2: Output: 1†

ij and 1
∗
ij

3: Compute positions D and F with γmin, and E with 1ji
4: for each 1ij value in a learning range do
5: Compute position C with 1ij
6: if (C1) is satisfied then
7: 1

†
ij← 1ij and break

8: end if
9: end for
10: for each 1ij value in a learning range do
11: Compute position C with 1ij
12: if (C2) and (C3) are satisfied then
13: 1∗ij← 1ij and break
14: end if
15: end for

2) KNOWLEDGE ACQUISITION
When the similarities and dissimilarities between T old and
T new are obtained, to determine what knowledge should
be transferred to cells in T new, Algorithm 1 searches
sub-topologies Ti that contain the recent on/off cells through-
out the topology database TDB. Database TDB contains the
structures of sub-topologies that have already appeared, and
prior knowledge, which are belief distributions of optimal
handover parameters for each stored sub-topology. If Ti is in
TDB, the cSON sends the prior knowledge to each cell in Ti.
Otherwise, the cSON forwards estimated optimal handover
parameters to each cell in Ti and stores Ti in TDB for future
queries. For similar parts between T old and T new, current
parameters and knowledge are kept unchanged.

If prior knowledge is unavailable for new sub-topologies,
the estimation algorithm estimates the optimal handover
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Algorithm 3 Optimal Handover Parameterd Estimation
Algorithm
1: Input: TTTi, 1ji, TTTj, a range of θ , a range of b, and

locations of cells
2: Output: 1̂opt

ij and 1̂opt
ji

3: 1̂
opt
ji ← 1ji

4: for each value of θ and b in the specified ranges do
5: Compute 1∗ij and 1

†
ij for cell i given 1̂opt

ji (Algo-
rithm 2)

6: end for
7: Compute 1̂†

ij and 1̂
∗
ij via (6) and (7)

8: 1̂
opt
ij ←

(
1̂∗ij + 1̂

†
ij

)
/2

9: for each value of θ and b in the specified ranges do
10: Compute 1∗ji and 1

†
ji for cell j given 1̂opt

ij (Algo-
rithm 2)

11: end for
12: Compute 1̂†

ji and 1̂
∗
ji via (6) and (7)

13: 1̂
opt
ji ←

(
1̂∗ji + 1̂

†
ji

)
/2

14: Return to Line 4 until 1̂opt
ij and 1̂opt

ji converged, then
round them to the nearest value standardized by 3GPP.

parameters of all cell pairs in the network while considering
other cells’ locations, because the optimal parameters vary
according to cell locations [9]. Considering two nominated
neighboring cells, cell i and cell j (i, j ∈ Ti), to estimate
optimal parameters for handovers by cell i to cell j, the lower
bound (1†

ij) and the upper bound (1∗ij) of 1ij are estimated
by solving optimization problems (4) and (5), respectively
(Algorithm 2). Problems (4) and (5) are formulated with the
condition (C1), (C2), and (C3), and thus, the solutions depend
on user trajectory, cell locations and settings, and TTT.

To find the optimal range of a CIO, positions D, E, and
F are computed for a given user trajectory determined by
tuple (θ, b). Then, we can find 1†

ij by trying each offset
value (i.e., alternating position C) until condition (C1) is
satisfied. Similarly, 1∗ij is find by trying each offset value

until condition (C2) and (C3) are met. Bound values 1†
ij and

1∗ij depend on various parameters, such as θ , b, 1ji, TTTi,

and TTTj. Hence, we express 1†
ij and 1

∗
ij as f

†
ij (θ, b,TTTi)

and f ∗ij (θ, b,1ji,TTTi,TTTj), respectively, to represent such
dependencies. Since a user trajectory varies according to
(θ, b), we estimate the lower bound and the upper bound for
the CIO of cell i for cell j as follows1

1̂
†
ij = E

[
f †ij (2,B,TTTi)

]
, (6)

1̂∗ij = E
[
f ∗ij (2,B,TTTi,1ji,TTTj)

]
, (7)

where E is the expectation, and random variables 2 and B,
respectively, take values of θ and b following uniform distri-
butions [9], [26]. The estimated optimal value of1ij (1̂

opt
ij ) is

the average value of 1̂†
ij and 1̂

∗
ij, i.e., 1̂

opt
ij =

(
1̂∗ij + 1̂

†
ij

)
/2.

1A closed form of optimal CIO values were presented in Theorem 3 in [9]

Algorithm 4 Distributed Reinforcement learning−based
Mobility Adaptation Algorithm
1: if prior knowledge are available then
2: Initialize handover parameters according to the trans-

ferred knowledge from cSON by (12)
3: else
4: Initialize handover parameters according to the esti-

mated parameters
5: end if
6: Select action (Algorithm 5)
7: Receive data NLij , NEij , and NPPij ,∀j ∈ Hi
8: if timer for receiving handover statistics has expired then
9: Compute RLij , REij , RRi, and Rij by (9), (10), (8),

and (11), respectively
10: Measure environment state sij, ∀j ∈ Hi (Algorithm 6)
11: Update knowledge by (14)
12: if RRi > ThRR then
13: Select action aij, ∀j ∈ Hi (Algorithm 5)
14: end if
15: Reset the timer and flush all counters of cell i, then

return to Line 6
16: else
17: if network topology changes then
18: Go to the TL-based algorithm (Algorithm 1)
19: else
20: Return to Line 6
21: end if
22: end if

To optimize handovers from cell j to cell i, the algorithm
finds 1̂opt

ji for cell j using a similar process similar to the

given 1̂opt
ij . The processes for computing 1̂opt

ij and 1̂opt
ji are

repeated until convergence. The results are rounded to the
nearest values that follow the 3GPP standard [23]. Algo-
rithm 3 estimates the optimal handover parameters for one
cell pair. When the estimation is completed, the algorithm
selects another cell pair in Ti until completing all the cell pairs
in Ti. Utilizing the prior knowledge, the distributed mobility
adaptation algorithm adjusts handover parameters.

B. DISTRIBUTED REINFORCEMENT LEARNING-BASED
MOBILITY ADAPTATION ALGORITHM
The mobile environment also varies due to UE mobility, and
therefore, we propose an RL-based algorithm for dSONs
(Algorithm 4) to fine-tune handover parameters given the
knowledge transferred from the cSON, which is a estimation
or a belief distribution of optimal handover parameters. Basi-
cally, the algorithm perceives the environment state based
on handover optimization costs (e.g., too-late handovers,
too-early handovers, and ping-pongs), and chooses an action
to optimize handover parameters (e.g., TTT and CIOs) in
accordance with the measured state by utilizing prior knowl-
edge. The knowledge is updated based on optimization costs
to reflect the belief distribution of optimal values for the given
state.
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At the dSON, the mobility adaptation algorithm initializes
the handover parameters based on the knowledge transferred
from the cSON (Algorithm 5). Then, the algorithm computes
the optimization costs after the timer for handover statistics
has expired. The costs are the ratios of the number of unde-
sirable handovers (e.g., too-late and too-early handovers) to
the total number of handover attempts. Based on the costs,
the algorithm perceives the environment states (Algorithm 6)
to choose an action in order to adjust parameters accordingly.
Furthermore, with the computed costs and the environment
state, the algorithm updates the knowledge to adapt to the
environment.

To check whether parameter adjustments are necessary,
the algorithm compares the RLF rate with the target perfor-
mance ThRR. The RLF rate for handovers from cell i to all
neighboring cells, RRi, is given as

RRi =

∑
j∈Hi NTLij + NTEij∑

j∈Hi Ntotalij
, (8)

whereNTLij ,NTEij , andNtotali are the numbers of too-late han-
dovers, too-early handovers, and all handover attempts from
cell i to cell j, respectively. If RRi exceeds ThRR, Algorithm 5
selects optimal actions to adjust the handover parameters of
cell i in order to handle mobility. After adjusting handover
parameters, the adaptation algorithm resets the timer and
flushes all the counters for handover statistics. If the network
topology changes, the current optimization process switches
to the TL-based algorithm (Algorithm 1). The mobility adap-
tation algorithm is described in details after the algorithm
elements definitions.

1) ELEMENTS OF THE ALGORITHM
To adapt to mobility from cell i to cell j, the mobility adap-
tation algorithm includes four elements: environment state
sij ∈ S, which is a finite set of environment states; action
aij ∈ A(sij), which is a finite set of actions that depend
on the current state, sij; database Q(aij), which provides the
belief distribution of optimal parameters; and cost function
Rij, which reflects the quality of an action in a given state.
Basically, the algorithm chooses the optimal action in set
A(sij) for state sij to minimize the handover cost based on
a belief distribution of optimal actions. The belief distribu-
tion of optimal actions is updated using optimization costs.
Environment states, actions, and the cost function are defined
step-by-step in the following paragraphs.

Environment state sij ∈ S is sensed through a perception
stage based on the handover situation tominimize undesirable
handovers. The setS consists of four states (Scio+ , Scio− , Sttt+ ,
and Sttt− ) that indicate the situation when we need to increase
the CIO, decrease the CIO, increase TTT, and decrease TTT,
respectively, from their current values, to handle too-late and
too-early handover issues.

Action aij ∈ A(sij) adjusts the values of TTT and CIO
to minimize undesirable handovers according to current state
sij. Therefore, set A(sij) varies based on state sij. The cost of

Algorithm 5 Action Selection
1: Input: Environment state sij, ∀j ∈ Hi
2: Output: Optimal action a∗ij
3: if sij == Sttt+ then
4: Increase TTT from the current TTT action based on

(13)
5: else if sij == Sttt− then
6: Decrease TTT from the current TTT action based on

(13)
7: else if sij == Scio+ then
8: Increase 1ij from the current 1ij action based on (13)
9: else
10: Decrease1ij from the current1ij action based on (13)
11: end if

too-late handovers from cell i to cell j,RLij , is given as

RLij =
NTLij

Ntotalij
, (9)

The cost of too-early handovers from cell i to cell j is
defined as

REij =
NPPij + NTEij

Ntotalij
(10)

where NPPij denotes the number of ping-pongs from cell i to
cell j. The cost for a handover from cell i to cell j,Rij, taking
into account RLFs and ping-pongs, is given as

Rij = RLij +REij . (11)

Cost Rij is used to update the knowledge of the dSON at
cell i for neighboring cell j.

The knowledge of cell i for cell j is stored in a Q-value
database,2 Q(aij), that maps a parameter value to a real value.
There are one Q-database for TTT and at least one Q-database
for CIO because more than one neighboring cell of a cell
exists. For future usage of prior knowledge, a dSON dis-
patches the Q-databases to the cSON after updating them. In
the next subsections, we explain how the adaptation algorithm
selects optimal actions, determines environment states, and
updates Q-databases.

2) ACTION SELECTION
At the beginning of the network topology, if prior knowl-

edge is available, the optimal action a∗ij of cell i for neighbor-
ing cell j is selected based on a greedy strategy, which is

a∗ij = argmin
aij

Q(aij) (12)

2AQ-value database can be implemented as a table, a neural network (such
as a deep neural network) or a convolutional neural network according to the
complexity of the applications [18]. In this study, we apply the table-based
Q-value database for small-size, discrete-state-space reinforcement learning,
since we applied a state quantization method and proposed an algorithm for
estimating optimal handover parameters. Future work can apply the neural
network−based structure to handle a large or continuous state space, such as
an application for prediction of mobility patterns for efficient handovers [27].
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Algorithm 6 State Perception
1: Input:RLij and REij , ∀j ∈ Hi
2: Output: Environment state sij, ∀j ∈ Hi
3: for each neighboring cell j ∈ Hi do
4: if RLij ≥ REij then
5: sij← Scio+
6: else
7: sij← Scio−
8: end if
9: end for
10: if sij == Scio+ , ∀j ∈ Hi then
11: sij← Sttt− , ∀j ∈ Hi
12: else if sij == Scio− , ∀j ∈ Hi then
13: sij← Sttt+ , ∀j ∈ Hi
14: end if

Otherwise, the dSON applies the estimated optimal han-
dover parameters that were transferred by the cSON.

For forthcoming optimizations, an optimal action is chosen
based on a softmax policy given the perceived environment
state. An action is selected based on a belief distribution.
An action with a higher probability is more likely to be
selected because it is expected to bring better handover per-
formance in the future. The probability of taking an action is
calculated from the Gibbs (or Boltzmann) distribution [18].
For neighboring cell j of cell i, each action aij ∈ A(sij)
for state sij is assigned a probability of selection, p(sij, aij),
as follows

p(sij, aij) =
exp

(
−Q(aij)
τ

)
∑

bij∈A(sij) exp
(
−Q(bij)
τ

) , (13)

where τ is a positive parameter called temperature. A higher
temperature causes the actions to have a more equal prob-
ability, which encourages state space exploration. A lower
temperature leads to a greater difference in the selection prob-
ability for actions, which encourages utilizing prior knowl-
edge. Note that, we apply negative Q-values for the softmax
policy, since it is preferred to a parameter with a low Q-value
rather than parameters with a higher Q-value. The lower the
Q-value for a parameter, the better the handover performance
the parameter is expected to achieve. After choosing optimal
actions, the algorithm waits to obtain handover optimization
costs and environment states from the mobile environment
and updates the knowledge.

3) STATE PERCEPTION
The adaptation algorithm translates the optimization costs

into environment states (Algorithm 6). When a too-late prob-
lem is dominant for handovers to neighboring cell j (i.e.,
RLij ≥ REij ), the environment state for handovers to cell j
is Scio+ , which demands a CIO increment. When a too-early
problem is dominant for handovers to cell j (RLij < REij ),
the environment state for handovers to cell j becomes Scio−
to decrease the CIO. If the environment state for all the

neighboring cells of cell i is Scio+ , the environment state
for each neighboring cell is Sttt− for TTT decrement. This
is because the TTT adjustment affects handovers to all the
neighboring cells of a cell. If the environment state for all
the neighboring cells is Scio− , the environment state for each
neighboring cell is Sttt+ for increasing TTT.

4) KNOWLEDGE UPDATE
Q-databases are loaded with prior knowledge when a network
topology changes and prior knowledge is available at the
cSON for the current network topology. During mobility
adaptation, to update the knowledge of a dSON about cell i
for neighboring cell j, Q(aij), we apply a temporal difference
method that considers observed environment state sij, current
action aij, and optimization cost Rij [18]. The knowledge
update is as follows

Q(aij) = (1− β)Q(aij)+ β(Rij + λ max
a′ij∈A(s

′
ij)
Q(a′ij)), (14)

where β ∈ (0, 1] is the learning factor and λ ∈ [0, 1] is
the discount rate. A β learning factor of 1 means that the
latest knowledge is considered, while the prior knowledge
is ignored. A β of zero means there is no learning at all.
Discount rate λ that is close to 1 increases the importance of
the prior knowledge in the received cost. After Q-databases
have been updated, they are dispatched to the cSON for future
utilization with dynamic network topologies.

V. NUMERICAL RESULTS AND DISCUSSION
A. SIMULATION ENVIRONMENT
To evaluate the performance of the proposed algorithm
under dynamic networks, we consider a network of 12 small
cells [28], where the topology periodically changes, as shown
in Fig. 6.3 In practice, small cells can be turned on and off
depending on specific strategies, such as energy efficiency
and load balancing [29]–[31]. We show the cell numbers
in Fig. 6(d) for readers to easily compare different net-
work topologies in different periods, where each period is
20 minutes long. For user mobility, we applied a Manhattan
grid mobility model with different user speed (5 km/h and
30 km/h). The probability of going straight is 0.5, and the
probability of taking a left or a right is 0.25 each. The number
of UEs in the simulation was 200. For the default settings,
TTT, hysteresis, A3Offset, and Ocn were set to 256 ms, 3 dB,
0 dB, and 0 dB, respectively [26]. We considered the learning
range for TTT and CIO to be from 0 ms to 480 ms and from
-4 dB to 4 dB, respectively, because outliers easily lead to
undesirable handovers [6], [9].

For a channel model, signal decaying factor α andG0 were
selected at 4.33 and 10 log 14.74 [32]. To model the fading
effect, a log-normal random variable together with a Rayleigh
factor was integrated into the propagation model. The fading

3For denser small-cell network scenarios, Algorithm 1 groups cells to
make sub topologies to optimize handovers. Furthermore, Algorithm 4 fine
tuning parameters to adapt mobility regardless of network topology. Thus,
our algorithm is applicable to ultra-dense small-cell networks.
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FIGURE 6. The dynamic topology of a small-cell network.

variable had a zero mean, and standard deviation σ was
6 dB, as in a typical environment [33]. An omni-directional
antenna was used for all small cells, and transmit power
ptx was 23 dBm. For RLF detection, out-of-sync threshold
Qout was set at −4 dB, and RLF detection time τR was
500 ms [9]. For estimating the optimal handover parame-
ters, we derived ranges for θ and b by uniformly sampling
distributions (0, π/3) and (0, a), respectively, where a is the
inter-site distance between two neighboring cells [9]. For the
adaptation algorithm, β, λ, and τ were set at 0.1, 0.95, and 1,
respectively [34], for utilization of the transferred knowledge.

To evaluate the proposed transfer learning–based MRO
algorithm (MRO-ML), two base lines were considered: the
MRO algorithm based on classification (MRO-ABC) [6],
which adjusts TTT, CIO, and A3Offset to adapt to mobility;
and a Q-learning-based MRO (MRO-Q) [16], which is a
model-free RL algorithm for adjusting TTT and A3Offset.
The target performance for the considered algorithms was set
at 1 % [6].

B. HANDOVER PERFORMANCE UNDER DYNAMIC
NETWORK TOPOLOGY
Fig. 7 shows the performance in terms of RLFs and
ping-pongs in a 5 km/h environment. We observe that
MRO-ML satisfies the target performance, improves han-
dover performance more than MRO-Q and MRO-ABC, and
optimizes RLFs and ping-pongs together. MRO-ML experi-
ences the lowest rise in RLF at the beginning of each period.
This is because MRO-ML utilizes prior knowledge of the
optimal handover parameters for the new topology just before
the new cells are switched on and off.

To evaluate convergence rate of the algorithms under
dynamic a network topology, we computed the average adap-
tation time, which is from the beginning of a topology until
the first time when the algorithm meets the target perfor-
mance, for four considered topologies. The adaptation times

of the algorithms are shown in Table 1. The results show that
MRO-ML owns the shortest adaptation time, 0.25 minutes
on average, to meet the target performance, whileMRO-ABC
andMRO-Q needed 4.75minutes and sixminutes on average,
respectively. With respect to MRO-Q, which is based on the
model-free RL, MRO-ML reduced the adaptation time to
4.17% of MRO-Q, while that of MRO-ABC was 79.17% of
MRO-Q. MRO-ML achieved such a significant improvement
thanks to the optimal parameters’ estimation for a new topol-
ogy, where prior knowledge is unavailable. Since MRO-ML
achieved fast adaptation to topology changes, it is applicable
to dynamic small-cell networks.

To examine how the algorithms fulfill the target han-
dover performance, we calculated a satisfaction rate, which
is the fraction of time in which handover performance
is below the target performance. The results are summa-
rized in Table 2. We observed that MRO-ML satisfies the
handover performance requirements for all the topologies
with the best satisfaction rate, 93.75% on average, while
MRO-ABC and MRO-Q attained 72.5% and 22.5%, respec-
tively, on average. Regarding MRO-Q, MRO-ML improved
the satisfaction rate by 416.7%, while MRO-ABC improved
it by 322.2%. MRO-ML attained such a remarkable improve-
ment because it fine-tunes the handover parameters around
the optimal parameters based on transferred knowledge,
which provides information on optimal values. Unlike MRO-
ML, MRO-ABC and MRO-Q adjust the handover parame-
ters independent of topology changes. Regarding ping-pong
performance, MRO-ML and MRO-ABC were stable, while
MRO-Q fluctuated.

We also studied the impact of user speed to handover
optimization in a dynamic topology. Fig. 8 visualizes the
RLF and ping-pong rates of the algorithms when speed was
30 km/h. Adaptation time and satisfaction rate are presented
in tables 3. MRO-ML owns the shortest adaptation time,
0.75 minutes on average, to meet the handover performance
target, while MRO-ABC andMRO-Q spent 3.25 minutes and
2.25 minutes on average, respectively, to adapt to topology
changes. For the satisfaction of UEs, MRO-ML achieved a
notable satisfaction rate of 96.25%. Regarding ping-pong per-
formance, MRO-MLwas close toMRO-ABC, whileMRO-Q
had more fluctuations. With respect to the 5 km/h environ-
ment, the algorithms experienced fewer ping-pongs because
the upper bound of the handover offset, which is to avoid
too-early handovers and ping-pongs, increases when the user
speed increases [9]. Overall, the results show that MRO-ML
works well at a higher speed and under a dynamic network
topology.

C. IMPACT OF THE USER MOBILITY MODEL
To verify the impact of a randommobility model on handover
performance, we chose a random waypoint (RWP) mobility
model to simulate a pedestrian environment. UEs moved at a
speed of 5 km/h in the scenario of 12 active cells (Fig. 6(d)).
Simulation time was 30 minutes long to check how the algo-
rithms handle randomness in mobility.
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FIGURE 7. Handover performance for a speed of 5 km/h.

TABLE 1. Adaption times of the algorithms (in minutes) for a speed of 5 km/h.

TABLE 2. Satisfaction rates of algorithms (%) for a speed of 5 km/h.

TABLE 3. Adaption times (in minutes) of algorithms for a speed of 30 km/h.

The simulation results for RLFs and ping-pongs are
depicted in Fig. 9. We observed that handover performance
fluctuated more than in the Manhattan environment due to

the randomness in the RWP model. However, MRO-ML
still improved handover performance more than the others,
because it estimates the optimal handover parameters at
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FIGURE 8. Handover performance for a speed of 30 km/h.

TABLE 4. Satisfaction rates of algorithms (%) for a speed of 30 km/h.

the very beginning, and adapts to the mobile environment
with the estimated optimal parameters. MRO-ABC achieved
the second-best performance because it fine-tunes the han-
dover parameters according to undesirable handover classi-
fications. MRO-ABC performance was close to MRO-ML
in the long run, but in the beginning, MRO-ML was bet-
ter because it estimates the optimal parameters before the
topology changes. MRO-ML had better performance than
MRO-Q, since MRO-ML utilizes prior knowledge and
fine-tunes the parameters.

D. IMPACT OF CIO RESOLUTION ON HANDOVER
PERFORMANCE
Handover performance is affected by the resolution of CIO
because the optimal handover offset is a real value instead of
an integer, as standardized by the 3GPP [23]. Fig. 10 shows
the way that MRO-ML (specifically Algorithm 3) estimates
the optimal handover parameters for two neighboring cells,

called cell 1 and cell 2. The inter-site distance was 30 m.
TTT1,121, and TTT2 were initialized at 256 ms,−2 dB, and
480 ms, respectively. Other settings, such as transmit power
and antenna gain, were identical for both cells. The estimation
of 1̂opt

12 and 1̂opt
21 took nine iterations to converge. The results

show that 1̂opt
12 and 1̂opt

21 (in dB) were approximately 0.5 and
−1, respectively. This result inspired us to evaluate han-
dover performance for MRO-ML with a finer resolution for
CIO.

To verify the impact of resolution on handover optimiza-
tion, we investigated MRO-ML under the wireless scenario
in Fig. 6(d) with a CIO resolution of 0.5 dB. The results are
compared to those from a resolution of 1 dB, as depicted
in Fig. 9. Fig. 11 shows that the resolution of 0.5 dB improved
handover performance more than the resolution of 1 dB, and
the outcome of the earlier resolution fluctuated less. This is
because the adaptation algorithm provides finer tuning of the
CIO around the optimal values, thus leading to better results.
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FIGURE 9. Handover performance under a random mobility model.

FIGURE 10. Examples of optimal handover parameter estimation. The
number indicates the optimization step.

E. OFFLINE LEARNING
MRO-ML utilizes prior knowledge to optimize handover
parameters, thus the more prior knowledge the algorithm
is provided, the better the performance it can achieve. The
offline learning strategy is applied to create more knowledge
for online learning processes. Thus, performance with the
offline learning is an upper bound of that with the online

FIGURE 11. Handover performance with different CIO resolutions.

FIGURE 12. Prior knowledge for cell 1 with a softmax probability of τ = 1.

learning only. To obtain more prior knowledge for MRO-ML,
we kept simulating the environment of 10 cells in Fig. 6(c)for
five hours and stored the knowledge of the dSONs in the
database of the cSON. The cSON transferred the prior knowl-
edge to the dSON at the beginning of the considered topology.
We depict the belief distribution of the optimal CIOs in the
dSON of cell 1 for its neighboring cells in Fig. 12. The
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FIGURE 13. Comparison between online and offline MRO-ML.

figure shows that the belief distributions of the optimal CIOs
are various, cell-to-cell, due to the cell locations.

We compared the performance of MRO-ML in Fig. 6(c)
referred to as MRO-ML Online, and against MRO-ML
with the transferred five-hour knowledge, called MRO-ML
Offline. The results are depicted in Fig. 13 showing that
MRO-ML Online and MRO-ML Offline performances were
close. Particularly, MRO-ML Online and MRO-ML Offline
achieved satisfaction rates at 85% (13/20) and 90% (18/20),
respectively. Since MRO-ML estimates the optimal handover
parameters in the very beginning of a specific topology, and
fine-tunes the parameters to adapt to user mobility with the
transferred knowledge, the online algorithm is applicable to
real-time handover optimization.

VI. CONCLUSION
In this paper, we proposed a machine learning–based MRO
algorithm, MRO-ML, to minimize undesirable handovers
(handover failures and ping-pongs) under a dynamic network
topology as well as user mobility. To that end, MRO-ML has
two steps: first, to adapt to the changing topology, at a cSON,
a TL-based algorithm estimates the optimal handover param-
eters for the cells in the new topology, and transfers prior

knowledge to dSONs. Then, at dSONs, an RL-based adap-
tation algorithm utilizes the prior knowledge and fine-tunes
the handover parameters around the estimated optimal values
to adapt to dynamic user mobility. We evaluated the proposed
algorithms under a dynamic topology network with dynamic
cell switching on/off scenarios and different mobility models.
With the transfer learning–based algorithm,MRO-ML adapts
to dynamic small-cell topologies in a short time. Simulation
showed that the adaptation time ofMRO-MLwas only 4.17%
of the baseline reference algorithm. Furthermore, by uti-
lizing prior knowledge, MRO-ML adapted to user mobil-
ity better with a stable handover performance, and satis-
fied the performance target at such a significantly improved
rate–416.7%–compared to the baseline algorithm. Finally,
the online MRO-ML performed so closely to the offline
one that the difference was negligible. Therefore, the online
MRO-ML is applicable to real-time handover optimization
for dynamic small-cell networks.
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