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ABSTRACT This work develops a novel limit cycle model predictive controller aimed at harmonic
compensation. The proposed nonlinear controller embeds the dynamics of a circular limit cycle of a
supercritical Neimark-Sacker normal form directly into its cost function. This enables the controller to
steer the state dynamics into a fundamental harmonic shape in systems where a periodic solution is desired.
The proposed cost function structure is analyzed for possible convex formulations that could lead to more
effective methods for solving the optimization problem. A simulation study in the field of electric power
systems integrated with renewable energy resources is given. The new controller is used to set the reference
of the compensation current of an active power filter to address the harmonic distortion in the grid. The
results show that the controller can mitigate the harmonic disturbance content in voltages and currents to the
required levels while maintaining the correct amplitudes at the desired fundamental frequency.

INDEX TERMS Predictive control, nonlinear systems, limit-cycles, optimization, convex functions.

I. INTRODUCTION
Harmonic compensation is important for various fields,
of which two come to mind immediately. The absence of
frequencies in vibrations of mechanical systems, especially
the resonance frequency, is as interesting as the absence of
oscillations in electrical systems other than the fundamental
frequency.

In the operation of electrical grids, harmonic compensation
plays a crucial role in power quality improvements. Different
approaches exist of which most are associated with active
power filters (APFs), particularly shunt active power filters
(SAPFs). To control SAPFs, the quasi-standard is to use
instantaneous symmetrical component (ISC), instantaneous
reactive power (IRP) (also known as pq) in the α-β domain,
or synchronous reference frame (SRF) in the dq0 reference
frame, to generate the reference compensation current, typi-
cally paired with a low-pass filter (LPF) and a proportional–
integral (PI) controller [1]–[3].
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approving it for publication was Di He .

For selective harmonic compensation, performance can
be improved with proportional–integral resonant (PI-R) con-
trollers instead, as seen in [4]. More advanced approaches
proposed the control of distributed generation sources by use
of parallel control of the voltage amplitude and harmonic
compensation, [5], or by hierarchical control, [6]. However,
selective approaches increase in computation complexity as
more harmonics are considered since each requires an indi-
vidual controller, [7]. For non-selective harmonic compen-
sation, which is the aim of the proposed method, the most
widely used among the advanced control schemes are repeti-
tive control (RC), slidingmode control (SMC), and predictive
control, [7].

Repetitive control, although originally proposed for the
control of a proton synchrotron [8], was developed in numer-
ous papers over the last years for the control of APFs. In [9]
a repetitive controller was proposed, which compensates
selected current harmonics. A special feedback structure was
designed for power electronic applications in [10]. A plug-in
discrete-time repetitive algorithm for current-harmonic com-
pensation was proposed in [11], where detailed design, anal-
ysis, and application of the controller can be found. In [12]
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an approach of a digital repetitive plug-in controller for
odd-harmonic discrete-time periodic references and distur-
bances was proposed, which does not introduce a high gain
at frequencies for which it is not needed, therefore improv-
ing robustness. A different approach to reducing the gain
at high frequencies was reported in [13]. Repetitive control
algorithms which can cope with varying frequency of the
periodic signal were proposed in [14]–[16]. To reduce the
computational effort [17] proposed a controller with an inner
PI control loop running at a sampling rate identical to switch-
ing frequency and an external plug-in repetitive control loop
with a reduced sampling rate.

The concept of SMC emerges from the study of variable
structure control systems pioneered at the Russian Institute
of Control Sciences starting in the late 1960s, [18], [19]. The
first implementations for APFs started in the 1990’s, [20].
Due to its robustness towards disturbances and parameter
variations, the method has been widely adopted. However,
the chattering caused by its large switching gain can lead
to instability, hindering power quality. To reduce the chat-
tering phenomena, an integral sliding mode control (ISMC)
approach that focuses only on the harmonic components and
uses a boundary layer as a switching function is proposed
in [21]. More recently, in [22], a complementary sliding
surface is introduced to further reduce chattering and increase
accuracy, alongside an adaptive backstepping radical basis
function neuronal network estimator for disturbances.

In the case of predictive control for SAPF, approaches
using a deadbeat model predictive control (DBMPC) scheme
to ensure fast dynamics and high accuracy have been pro-
posed in [23], [24]. Regarding selective harmonic compensa-
tion, in the field of vibration control, the proposed control
techniques range from standard linear quadratic regulator
(LQR) controllers up to model-based approaches as given
in [25] where a nonlinear model predictive control (NMPC)
is used with constraints to ensure the absence of specific
frequencies in the output of a system.

This work proposes a Limit cycle model predictive control
(LCMPC), a new NMPC approach aimed towards systems
with periodic dynamics where a single fundamental fre-
quency at a specific amplitude is desired. The LCMPC aims
to leverage the target system’s periodic behavior for its pre-
dictions while using the attractor dynamics of a stable circular
limit cycle to ensure a fundamental harmonic shape of the
targeted states at a specific amplitude and frequencies. The
potential of the limit cycle dynamics has already been proven
for other grid applications, e.g., the dVOC for grid-forming
from [26], where a Van der Pol oscillator is used.

Initial research on the LCMPC was presented in [27],
where an overview of the basic components of the control
principle and some early results were shown. The present
work aims at considerably extending this previous contribu-
tion by including more in-depth analysis and development
of the control principle, giving a more exhaustive theory
foundation. These extensions will be further detailed in the
following paper structure overview.

Starting at Section II, this section extends on the previous
contribution giving the required proofs behind the formula-
tion of the supercritical Neimark-Sacker bifurcation normal
form used by the controller, as well as a detailed analysis
of the critical points of the radius governed by these dynam-
ics. Section III gives the full derivation of the LCMPC cost
function formulation and a detailed proof of its connection to
the limit cycle dynamics. In Section IV, a convexity analysis
of the cost function is added, where the current research
paths in this aspect are explored. Section V presents a more
exhaustive analysis of the previous APF application example,
where more detailed results are given, including an additional
convexity numerical test and a qualitative comparison against
other control approaches. Finally, Section VI draws the con-
cluding remarks that bring together the LCMPC analysis
while setting up the future research directions.

II. LIMIT CYCLE FOR MAPS
The proposed controller relies on the dynamics of
discrete-time systems where a periodic behavior can arise,
namely a limit cycle (see Appendix A).

A. NEIMARK-SACKER BIFURCATION NORMAL FORM
A particular limit cycle case for maps is given as follows.
Consider the normal form of the Neimark-Sacker bifurcation
in polar coordinates

rk+1 = rk + µrk + αr3k , (1a)

θk+1 = θk + φ, (1b)

with parameters {µ, α, φ} ∈ R, in discrete time k ∈ Z, with
sampling time τ = t

k , [28].
A system transformation to analyze the phase-space

dynamics is proposed as follows.
Proposition 1: The phase space of the normal form in (1)

is described by the second-order discrete-time system in
Cartesian coordinates

xk+1 =
(
1+ µ+ αxT

k xk
)
Rφxk , (2)

where

x =
[
x1 x2

]T
, (2a)

Rφ =
[
cos (φ) − sin (φ)
sin (φ) cos (φ)

]
. (2b)

Proof: Let the transformation from polar to Cartesian
coordinates be given by

x1 = r cos (θ) , (3a)

x2 = r sin (θ) . (3b)

From (3) it follows that

r =
√
x21 + x

2
2 , (4a)

θ = arctan
(
x2
x1

)
. (4b)
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Replacing (4) in (1) leads to

rk+1 =
√
x21,k + x

2
2,k

(
1+ µ+ α

(
x21,k + x

2
2,k

))
, (5a)

θk+1 = arctan
(
x2,k
x1,k

)
+ φ. (5b)

Given the trigonometric identities

sin (a± b) = sin (a) cos (b)± cos (a) sin (b) , (6a)

cos (a± b) = cos (a) cos (b)∓ sin (a) sin (b) , (6b)

expressing the Cartesian coordinates transformation in (3) in
terms of (5) and applying the identities in (6) results on

x1,k+1 =
(
1+µ+α

(
x21,k + x

2
2,k

))(
x1,k cos(φ)−x2,k sin(φ)

)
,

(7a)

x2,k+1 =
(
1+µ+α

(
x21,k + x

2
2,k

))(
x2,k cos(φ)+x1,k sin(φ)

)
.

(7b)

Finally, rearranging (7) into vector form using (2a) and (2b)
for factorization leads to (2).

B. SUPERCRITICAL NEIMARK-SACKER BIFURCATION
A particular case of the Neimark-Sacker bifurcation is
defined as follows.
Definition 1: When µ > 0, α < 0 and φ > 0, the normal

form in (1) undergoes a supercritical Neimark-Sacker bifur-
cation, leading to an unstable fixed point at the origin and a
stable unique circular limit cycle surrounding it, [29].

A supercritical Neimark-Sacker bifurcation with a unique
circular limit cycle of radius one can be observed in Fig. 1.
The red arrows denote the vector field that describes the
dynamics of the system as given in (2). It can be observed that
the system trajectories tend towards the circular limit cycle
centered around the origin. As an example, five trajectories
starting along the line x1 = x2 are shown. The blue-filled
circles denote the starting point of the trajectories, while the
solid blue lines show the evolution of their trajectories, with
blue dots markings their discrete steps and arrows pointing
their direction. The trajectories starting around the limit cycle
are attracted towards it. However, this is not the case for the
one at the origin, which remains at that unstable fixed point.

From the system parameters, the radius of the circular limit
cycle can be calculated as follows.
Proposition 2: The radius of the unique stable circular

limit cycle of the supercritical Neimark-Sacker normal form
from Definition 1 for (1) is given by

ρ =

√
−
µ

α
. (8)

Proof: Replacing rk by ρ in (1a) leads to

rk+1 =

√
−
µ

α
. (9)

Depending on the trajectory initial conditions, further crit-
ical points can be identified.

FIGURE 1. Supercritical Neimark-Sacker bifurcation normal form phase
portrait with µ = 0.05, α = −0.05, τ = 0.2 ms, and φ = 2π50τ .

Proposition 3: Trajectories starting at a radius of

ρ0 =

√
−
(1+ µ)
α

, (10)

of the supercritical Neimark-Sacker normal form from Defi-
nition 1 for (1), lead to the unstable fixed point at the origin.

Proof: Replacing rk by ρ0 in (1a) leads to

rk+1 = 0. (11)

Proposition 4: Trajectories starting at a radius greater
than

ρ∞ =

√
−
(2+ µ)
α

, (12)

of the supercritical Neimark-Sacker normal form from Defi-
nition 1 for (1), will diverge in magnitude towards∞.

Proof: Let

rk = ρ∞ + ε, (13)

where ε > 0. Replacing (13) in (1a), leads to

rk+1 = (ρ∞ + ε)
(
−1+ 2αερ∞ + αε2

)
. (14)

From Definition 1 it follows that α < 0, thus

rk+1 = − (ρ∞ + ε)
(
1+ 2|α|ερ∞ + |α|ε2

)
. (15)

Therefore |rk+1| > |rk |, where |rk+1| − |rk | increases as
the discrete time k →∞, thus |r| → ∞.

Fig. 2 shows the iterative evolution of the radius map
as given by (1a) at different starting points for µ = 0.05
and α = −0.05. The critical points: |ρ|, |ρ0|, and |ρ∞|; are
represented by the markers: asterisk, square, and circle, cor-
respondingly. The behavior observed agrees with the analysis
done in the previous propositions for each critical point.
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FIGURE 2. Supercritical Neimark-Sacker bifurcation normal form radius
map evolution with µ = 0.05 and α = −0.05.

Radius starting points with magnitudes below ρ0 will tend
towards ρ, points with a magnitude between ρ0 and ρ∞ will
also tend towards ρ but alternate in sign, and points with a
magnitude greater than ρ∞ will diverge.
This behavior is also observed in Fig. 1, which uses the

same parameters, where the region of attraction surrounding
the circular limit cycle ensures that all neighboring trajecto-
ries lead to it. Therefore, once the states reach the limit cycle,
they will remain in this periodic orbit with a fundamental
harmonic shape of radius ρ and angular frequency ω = φ

τ
,

see (3). These dynamics are the foundation of the proposed
controller cost function, as shown in Section III.

III. LIMIT CYCLE MODEL PREDICTIVE CONTROL
This section comprises the different building blocks of the
proposed LCMPC approach. The objective of the controller
design is to embed the dynamics of the circular limit cycle
explored in Section II within its control law.

A. COST FUNCTION KERNEL FORMULATION
Typically, a model predictive control (MPC) relies on the
minimization of a cost function J ∈ R over a finite predic-
tion horizon Hp ∈ N to calculate its control action, [30]. For
the LCMPC, the cost function is defined as

J (X) = XTQ2X+ 2αXT
(
L ◦

(
XXTQ4

))
X

+α2XT
(
L ◦

(
XXT

(
L ◦

(
XXT

)))
X
)
, (16)

where ◦ is the Hadamard product and

X =
[
xT
k+1 xT

k+2 · · · xT
k+Hp

]T
, (16a)

Q2 =



(1+ µ)2 I2×2 − (1+ µ)RT
φ 02×2 · · ·

− (1+ µ)Rφ
(
1+ (1+ µ)2

)
I2×2

. . .
. . .

02×2
. . .

. . .
. . .

...
. . .

. . .
. . .

...
. . .

. . .
. . .

...
. . .

. . .
. . .

02×2 · · · · · · · · ·

· · · · · · · · · 02×2
. . .

. . .
. . .

...

. . .
. . .

. . .
...

. . .
. . .

. . .
...

. . .
. . .

. . . 02×2
. . .

. . .
(
1+ (1+ µ)2

)
I2×2 −(1+ µ)RT

φ

· · · 02×2 −(1+ µ)Rφ I2×2


,

(16b)

L =



12×2 02×2 · · · · · · 02×2

02×2
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 12×2 02×2
02×2 · · · · · · 02×2 02×2


, (16c)

Q4 =



(1+ µ) I2×2 02×2 · · · · · · · · · 02×2

−Rφ
. . .

. . .
. . .

. . .
...

02×2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . (1+ µ) I2×2 02×2

02×2 · · · · · · 02×2 −Rφ 02×2


,

(16d)

with dimensions, X∈R2Hp, Q2∈R2Hp×2Hp, L∈R2Hp×2Hp,
and Q4∈R2Hp×2Hp; where

{
0j×j, 1j×j, Ij×j

}
∈Zj×j
≥0 are matri-

ces of zeros, ones, and identity respectively. In this formu-
lation, the future state signals vector X can be seen as the
decision variable of the nonlinear optimization problem

min
X
J (X). (17)

Theorem 1: Let

X? = argmin J , (18)

be the solution of the optimization problem in (17). If and
only if J (X?) = 0, then the optimal solution vector of future
state signals X? obeys the discrete-time dynamics of the
Neimark-Sacker normal form in (2).

Proof: Rearranging (2) to the right-hand side leads to
the kernel

02×1 = xk+1 − (1+ µ)Rφxk − αRφxkxT
k xk . (19)
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Making a scalar product of the transposed kernel in (19)
times itself expands to

xT
k+1xk+1 − (1+ µ) x

T
k+1Rφxk + (1+ µ)

2 xT
k xk

−αxT
k+1Rφxkx

T
k xk − (1+ µ) x

T
kR

T
φxk+1

+α (1+ µ) xT
k xkx

T
k xk − αx

T
k xkx

T
kR

T
φxk+1

+α (1+ µ) xT
k xkx

T
k xk + α

2xT
k xkx

T
k xkx

T
k xk . (20)

Stacking the consecutive states in (20) as
Zk =

[
xT
k xT

k+1

]T
, a cost function can be defined as

Gk (Zk) = ZT
k

[
(1+ µ)2 I2×2 − (1+ µ)RT

φ

− (1+ µ)Rφ I2×2

]
Zk

+ 2αZT
kL0ZkZT

k

[
(1+ µ) I2×2 02×2
−Rφ 02×2

]
Zk

+α2ZT
kL0ZkZT

kL0ZkZT
kL0Zk , (21)

where

L0 =

[
I2×2 02×2
02×2 02×2

]
. (21a)

This cost function quantifies the squared error of two
consecutive states with respect to the normal form dynam-
ics from (2), thus defining a nonlinear shape residual. This
expression can be extended from time k + 1 up to the whole
prediction horizon Hp by a consecutive sum of the squared
error expression in (21), such that

k+Hp∑
n=k+1

Gn (Zn (X)) = J (X) , (22)

where

Zn (X) =
[
04×2(n−k−1) I4×4 04×2(k+Hp−1−n)

]
X, (22a)

is an affine vector function in X that reduces the future
state vector to only two consecutive state predictions. This
formulation is the expanded form of (16).

If and only if J (X?) = 0, then every summand in (22)
is Gn (Zn (X?)) = 0, since it is a sum of squared errors.
Therefore, for any pair of consecutive states in X? for n = k ,
given asZn=k (X?) = Z?k , the nonlinear shape residual in (21)
is Gk

(
Z?k
)
= 0; thus following the dynamics of (2) since the

right-hand side of (19) is also zero.

B. LINEAR SYSTEM PREDICTIONS
The proposed cost function in (16) enforces the dynamics of
the autonomous nonlinear system in (2) onto a set of future
state signals X. These future state signals, in a predictive
control setup, will belong to the dynamics of a target sys-
tem, which will be steered by the controller input. For this
approach, the target system is assumed to be linear, with
dynamics defined as follows.

Definition 2: The dynamics of a discrete-time linear sys-
tem are given by the state-space equations

xk+1 = Axk + Buk + Fvk , (23a)

yk = Cxk + wk , (23b)

with state vector x ∈ Rn, control input u ∈ Rm, mea-
sured input disturbance v ∈ Rd , output y ∈ Rr , out-
put disturbance w ∈ Rr , system matrix A ∈ Rn×n, input
matrix B ∈ Rn×m, measured input disturbance matrix
F ∈ Rn×d , and output matrix C ∈ Rr×n.
Therefore, for a digital controller such as the MPC,

the discrete-time linear system in (23a), can be used to
iteratively formulate the future state trajectories x̂ up to a
prediction horizon of Hp in terms of the future control input
sequence û. From now on, the hat symbol ˆ above a signal
denotes that it is a prediction.

Assuming an initial state vector xk and a prediction for the
future measured input disturbances v̂, [30]; the linear system
prediction equations can be formulated as

X (U) = 9xk +2U+ 0V, (24)

where

X =
[
x̂T
k+1 · · · x̂T

k+Hp

]T
∈ RnHp , (24a)

9 =
[
AT (

A2
)T

· · ·
(
AHp

)T]T
∈ RnHp×n, (24b)

2 =


B 0r×m · · · 0r×m
AB B · · · 0r×m
...

...
. . .

...

AHp−1B AHp−2B · · · B

∈ RnHp×mHp,

(24c)

U =
[
ûT
k · · · ûT

k+Hp−1

]T
∈ RmHp , (24d)

0 =


F 0r×d · · · 0r×d
AF F · · · 0r×d
...

...
. . .

...

AHp−1F AHp−2F · · · F

∈ RnHp×dHp,

(24e)

V =
[
v̂T
k · · · v̂T

k+Hp−1

]T
∈ RdHp . (24f)

By constraining the solution space of the optimization
problem in (17) with these linear system prediction equations,
the decision variable changes to the future control input U as

min
U

J (X (U)), (25)

s.t. X (U) = 9xk +2U+ 0V, (25a)

thus aligning the optimization problem solution with the
controller action via U and reducing the phase space to the
target system dynamics embedded in (25a).
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C. INPUT FOURIER APPROXIMATION
The LCMPC objective is to ensure that the target system state
signals have a fundamental harmonic shape, thus compensat-
ing for any harmonic distortion in them. In this context, it is
assumed that the future control input sequence û is periodic
and therefore can be approximated for a fixed bandwidth up
to the hth harmonic by

û(kτ ) ≈
h∑

n=1

fn sin (nωkτ)+ gn cos (nωkτ) , (26)

with Fourier coefficients fn ∈ Rm and gn ∈ Rm for the nth

harmonic of the fundamental angular frequency ω. Extend-
ing this approximation in vector form to match the dimen-
sions of U in (24d), starting at discrete-time k = 0 up
to k = Hp − 1, leads to

U = (M⊗ Im×m)P+O, (27)

where⊗ is the Kronecker product andO are the higher-order
terms the hth harmonic and

M =


0 · · · 0

sin (ωτ) · · · sin (hωτ)
... · · ·

...

sin
(
ωτ

(
Hp−1

))
· · · sin

(
hωτ

(
Hp−1

))
∣∣∣∣∣∣∣∣∣ · · ·∣∣∣∣∣∣∣∣∣

1 · · · 1
cos (ωτ) · · · cos (hωτ)

... · · ·
...

cos
(
ωτ

(
Hp−1

))
· · · cos

(
hωτ

(
Hp− 1

))
∈RHp×2h,

(27a)

P =
[
fT1 · · · f

T
h | g

T
1 · · · gT

h

]T
∈ R2mh. (27b)

Using (27) as a future control input sequence set, a set of
future state signals X̆ neglecting O can be formulated with
the linear system predictions in (24) as

X̆ (P) = 9xk +2(M⊗ Im×m)P+ 0V. (28)

Assuming that the future control input sequenceU in (25a)
is periodic in 2π

ω
and contains only harmonics up to the hth

order, then X (U) = X̆ (P).
Following this assumption, the solution space of the deci-

sion variable X in the optimization problem (17) can be
further reduced as long as 2mh < mHp. In this configura-
tion, X will be limited to harmonic combinations given by
the Fourier coefficients in P as an input, thus reformulating
the optimization problem into

min
P

J (X (P)), (29)

s.t. X (P) = 9xk +2(M⊗ Im×m)P+ 0V. (29a)

This Fourier approximation approach, while restricting the
controller action, also can reduce the search space of the opti-
mization solver considerably. Ultimately, it brings a trade-off
that will be specific to each application, where the harmonic
band upper-limit h will be the tuning parameter.

FIGURE 3. Limit cycle model predictive control block diagram.

Finally, Fig. 3 shows the block diagram of the LCMPC
considering all the features described throughout this section.
The LCMPC block requires two inputs to check the equality
constraint in (29a), the state vector estimation x́ from the
observer block and a prediction of the future measured input
disturbance v̂ for the next prediction horizon from the pre-
dictor block. By finding the optimal P? that solves the mini-
mization problem in (29), the LCMPC block can calculate the
optimal input u using the Fourier parameterization in (27),
which then will be provided to the plant block in the next
period. The plant block represents the real system, which is
expected to follow the linear dynamics introduced in (23).
The plant block output measurements y are then processed
by the observer to update the state vector estimation x́ for the
next period, thus closing the control loop.

IV. CONVEXITY ANALYSIS
By looking at the high-order terms of the LCMPC cost
function in (16), it can be concluded that the optimization
problem posed in (29) is neither a linear programming nor a
least-squares problem. However, the possibility that (29) is a
convex problem should be investigated because of the effec-
tive methods for solving them, [31]. Therefore, a convexity
analysis of (29) is carried out in this section.

A. COST FUNCTION DECOMPOSITION
This convexity analysis approach revolves around the follow-
ing definition.
Definition 3: Let a function g : Rm

7→ R be a composition
of the function f : Rn

7→ R with an affine map such that

g (x) = f (Ax+ b) , (30)

where A ∈ Rn×m, and b ∈ Rn; with its domain defined
as dom g = {x |Ax+ b ∈ dom f }. If f is convex, then g is
also convex, [31]
Theorem 2: If the squared kernel cost function Gk (Zk)

in (21) is convex in Zk then the cost function J (X (P)) of the
optimization problem in (29) is convex in P.

Proof: Since X (P) is affine in P, as seen in (29a),
it follows from Definition 3 that J (X (P)) is convex in P
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if J (X) is convex in X. Thus reducing the convexity analysis
to J (X) as expressed in (16).
The cost function J (X) can be expressed as the sum

of individual cost functions Gn (Zn (X)) as shown in (22).
Since convexity is preserved under a positive weighted
sum, [31], it follows that the overall sum J (X) is convex inX,
if the summands Gn (Zn (X)) are convex in X. Furthermore,
given thatZn (X) is affine inX, as seen in (22a), the analysis is
reduced to show if an arbitrary summand Gn (Zn) is convex
in Zn. For n = k , this is equivalent to showing if Gk (Zk),
as given in (21), is convex in Zk .
Definition 4: Given a function f ∈ C2, the function is con-

vex if and only if its domain dom f is convex and its Hessian
is positive semidefinite, ∇2 f (x) � 0,∀x ∈ dom f , [31].
Definition 5: Given a symmetric matrix A ∈ Rn×n, it is

called positive semidefinite if xTAx ≥ 0,∀x 6= 0. Thus even
its minimum eigenvalue is not negative, λmin (A) ≥ 0, [31].
Proposition 5: The squared error cost function Gk (Zk)

in (21) is not convex in Zk .
Proof: In order to test for convexity via the second-order

convexity condition from Definition 4, first the Hessian
of Gk (Zk) is calculated as

∇
2Gk (Zk) = 2

[
(1+ µ)2 I2×2 − (1+ µ)RT

φ

− (1+ µ)Rφ I2×2

]
+ 4αL0Zk

(
ZT
k

[
2 (1+ µ) I2×2 − RT

φ

−Rφ 02×2

])
+ 2α

(
ZT
k

[
2 (1+ µ) I2×2 − RT

φ

−Rφ 02×2

]
Zk

)
L0

+ 4α
[
2 (1+ µ) I2×2 − RT

φ

−Rφ 02×2

]
Zk
(
ZT
kL0

)
+ 2α

(
ZT
kL0Zk

)[2 (1+ µ) I2×2 − RT
φ

−Rφ 02×2

]
+ 24α2

(
ZT
kL0Zk

)
L0Zk

(
ZT
kL0

)
+ 6α2

(
ZT
kL0ZkZT

kL0Zk
)
L0. (31)

According to Definition 5, if there exists a Z?k such
that λmin

(
∇

2Gk
(
Z?k
))
< 0, then ∇2Gk

(
X?k
)
is not positive

semidefinite, and thus Gk (Zk) is not convex in Zk .
Given the same parameters as in the examples in Section II,

µ = 0.05, α = −0.05, τ = 0.2ms, and φ = 2π50τ .
Let Z?k =

[
2 − 2 − 4 4

]T, then
∇

2Gk
(
Z?k
)
=


−8.1574 4.8017 − 0.4488 − 0.8298
4.8017 − 8.5593 − 0.7670 − 0.5492
−0.4488 − 0.7670 2 0
−0.8298 − 0.5492 0 2

,
(32)

rounded to 4 digits after the decimal point. The calculated
Hessian has a negative eigenvalue of λmin = −13.1702 and a
relatively low condition number κ = 6.5656. Thus by coun-
terexample Gk (Zk) is not convex in Zk .
Remark 1: Even though Proposition 5 states that Gk (Zk)

is not convex in Zk , and thus Theorem 2 can no longer be

used to show that J (X (P)) is convex in P, its inverse is
not true, since it is a sufficient but not necessary condition.
Therefore, J (X (P)) can still be convex in P.

B. CONVEXITY REDUCED TO A LINE
This approach derives from a fundamental property of convex
functions defined as follows.
Definition 6: Given a function f : Rn

7→ R, such func-
tion is called convex if dom f is a convex set and if for
all x1, x2 ∈ dom f , and θ with 0 ≤ θ ≤ 1, it follows that

0 ≤ θ f (x1)+ (1− θ) f (x2)−f (θx1 + (1− θ) x2) , (33)

which is known as Jensen’s inequality, [31].
Proposition 6: For a function f , a cost function H can be

defined as

H (E) =MθEf
(
Mx1E

)
+ (1− θ) f

(
Mx2E

)
− f

(
MθEMx1E+ (1−MθE)Mx2E

)
, (34)

where

E =
[
θ xT

1 xT
2

]T
(34a)

θ = MθE, (34b)

x1 = Mx1E, (34c)

x2 = Mx2E, (34d)

for x1, x2 ∈ dom f , and θ with 0 ≤ θ ≤ 1, such that the
solution of the optimization problem

min
E
H (E), (35)

must not be negative H (E?) ≥ 0 to ensure that f is convex.
Proof: The cost function in (34) is equivalent to the

right-hand side of Jensen’s inequality in (33). Therefore,
a negative optimal cost H (E?) < 0 will lead to an infringe-
ment of the inequality, thus showing that f is not convex.

The optimization problem in (35) reduces the convexity
analysis to two points in a line, as defined by the parameters
of Jensen’s inequality in (33). This approach can be used
to find a numerical counterexample that shows if the cost
function J (X (P)) of the optimization problem in (29) is not
convex in P. Since J (X (P)) includes constraints that require
a system to be defined as in (23a), a numerical test was carried
out for the application example system in Section V-E.

V. APPLICATION EXAMPLE
The electrical power system is transitioning from a
demand-driven system to a generation-driven system due
to the increasing share of renewable energy sources. These
sources, mainly wind and photovoltaic systems, are con-
nected to the power grid via power converters. One of the
challenges this new technology poses is the introduction of
harmonic distortion into the grid due to the switching power
electronic devices involved [32]. To cope with this, a APF
can be used to compensate for undesired frequencies, where
the control of the reference compensation current is key, [2].
The standard control techniques (ISC, IRP, and SRF) among
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FIGURE 4. Microgrid circuit diagram.

TABLE 1. Microgrid circuit parameters.

more advanced approaches to operate a APF were already
introduced in Section I. The following application example
will illustrate how the proposed LCMPC controller can be
used to operate a APF for harmonic compensation.

A. ELECTRIC GRID CIRCUIT MODEL
To illustrate the potential of the controller, a simple microgrid
is defined as shown in Fig. 4. The system is designed for
a fundamental frequency of f = 50Hz with a 400V con-
nection to an external distribution grid, represented by the
ideal supply voltage vs. Parallel to it is the APF line for
the controller compensation input, represented by the ideal
controlled current source ic. Next to it is the controlled ideal
current source id that introduces the harmonic distortion to
the point of common coupling (PCC). Finally, on the right
side as the compensation target is the system series RLC load
with current il and voltage vl . Table 1 shows the parameters
of the system.

The simplification of ic and id as ideal controlled current
sources is done to achieve a linear model of the system
since the focus of the application example is on the con-
troller performance rather than model complexity. Therefore,
a continuous-time state-space model of the system can be
formulated as

Px (t) = Acx (t)+ bcu (t)+ Fcv (t) , (36a)

yk = Ccx (t) , (36b)

with state vector x =
[
ql il

]T, where ql is the charge of the
load current il ; input u = ic; measured input disturbance vec-
tor v =

[
id vs

]T; and output vector y = [vc il
]T, where vc is

the voltage of the capacitor C2. The parameters of the model
are

Ac =

 0 1

−
1

C2L2
−
R2 + R1
L2

 , (36c)

bc =
[
0

R1
L2

]T
, (36d)

Fc =

 0 0
R1
L2

1
L2

 , (36e)

Cc =

 1
C2

0

0 1

 . (36f)

B. NORMAL FORM SYSTEM TRANSFORMATION
As stated in Definition 1, the supercritical Neimark-Sacker
bifurcation normal form will drive the state dynamics to a
circular shape of radius ρ as defined in (8). This means that
each state will have a fundamental harmonic shape over time.

This particular configuration is the key to use the LCMPC
for harmonic compensation. However, to implement it, both
states in the target system must tend towards the same ampli-
tude, ρ. This is not necessarily the desired outcome in the
application example system of (36), where ql and il could
have different target amplitudes. Therefore, a system transfor-
mation to scale both states in (36) to have the same amplitude,
in this case for simplicity ρ = 1, is performed as

x̃ = T−1x, (37)

where

T =
[
0 ρvC2
ρi 0

]
, (37a)

and ρv and ρi are the desired steady-state undisturbed ampli-
tudes of vc and il respectively. This transformation applies to
all the state-space parameters of (36), leading to

Ã = T−1AcT, (37b)[
b̃ F̃

]
= T−1

[
bc Fc

]
, (37c)

C̃ = CcT. (37d)

Finally, since the LCMPC requires a discrete-time
model, the transformed state-space model is taken to
discrete-time using the zero-order-hold method for a given
sampling time τ ; leading to the final state-space parameters:
A, b, F, and C.

C. SIMULATION SETUP
The study simulated 10 s of grid operation, which amounts
to 500 fundamental periods at a sampling time of τ = 200µs.
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For the controller, the prediction horizon was set to two
fundamental periods asHp = 200, and the limit cycle param-
eters were: µ = 10−1, α = −10−1, and φ = 2π f τ . Regard-
ing the input disturbance current, the study was split into two
disturbance scenarios: A and B. For scenario A, the uncon-
trollable measured input disturbance current was defined as
follows

idA (t) = 2 sin
(
3ωt + arctan

(
4
3

))
+ 3 sin

(
5ωt + arctan

(
3
4

)
+
π

2

)
, (38)

to reflect the typical harmonic content found in nonlinear
loads such as rectifiers, while the harmonic upper band for
the input was set to hA = 5 to tighten the search space. For
scenario B, the uncontrollable measured input disturbance
current was defined as follows

idB (t) = 2 sin
(
3ωt + arctan

(
4
3

))
+ 3 sin

(
5ωt + arctan

(
3
4

)
+
π

2

)
+ 2 sin

(
7ωt + arctan

(√
3
))

+ 3 sin
(
9ωt + arctan

(
1
√
3

)
+
π

2

)
, (39)

with the harmonic upper band for the input set to hB = 10
and phase shift of 3π

10 to the supply voltage vs. The idea is
to show the scalability of the approach when including more
harmonics and the effect of different initial phase conditions.

For the LCMPC control closed loop, complete knowl-
edge of the system states was assumed x́ = x (no observer
required); thus, access to the normalized initial values x̃0,
which are also used to define the initial amplitude and phase,
is considered. In the case of the predictor, a moving window
delay of one fundamental period was considered, meaning
that v̂ is assumed to be the same as the last period measured v,
leveraging the expected periodic behavior of the system. For
the feedback policy, a periodic receding horizon strategy was
used to reduce computational time, as introduced in [33].
In this hybrid regime, the optimal input sequence U? is com-
puted once per fundamental period, during which it will be
given to the plant in a feed-forward manner until the new U?

is calculated once the feedback measurements are updated in
the next period. This strategy is viable since only steady-state
periodic disturbances are assumed.

The optimization solver used was fminunc from
MATLAB R©, designed for general unconstrained minimiza-
tion. For this setup, the equality constraints of (29) were
embedded into the cost function; if there would be inequal-
ity constraints, e.g. physical limitations of the actuator,
a different solver would be needed. As optimization algo-
rithm, trust-region was selected with the default opti-
mality and step tolerances of 10−6. This algorithm also allows
for the use of an analytical formulation of the gradient and

Hessian to further accelerate computation. These were calcu-
lated as explained in Appendix B.

The simulations were carried out in an Intel R©CoreTM

i7-9850H CPU@ 2.60GHz with 16 GB of RAM, with oper-
ating systemMicrosoft R©Windows R© 10 Enterprise x64 Edi-
tion version 10.0 build 19041, running MATLAB R© ver-
sion 9.9 R2020b, with the Global Optimization Toolbox
version 4.4.

D. SIMULATION RESULTS
The total computation time of scenario A was 26.44 s, with
an average of 52.88ms per fundamental period, while sce-
nario B took only 19.59 s, with an average of 39.18ms per
fundamental period. This shows that the controller does not
have scalability issues since the changes in initial conditions
seem to have a bigger impact than the number of harmon-
ics considered. Additionally, the average time per period of
both scenarios is within the order of magnitude of the 20ms
computation window of a fundamental period at 50Hz, which
is critical as the controller is further developed towards a
real-time operation setup. In Fig. 5, the simulation results
for scenario A of the first two periods (left column) and the
last two periods (right column) are shown, while for scenario
B, these are shown in Fig 6. From top to bottom, the rows
of signals presented are the outputs, the capacitor voltage vc
and load current il , and the controlled input compensa-
tion current ic. The red dashed signals denote the disturbed
uncompensated response, the green dotted signals denote the
undisturbed (id = 0) uncompensated response, and the solid
blue lines denote the disturbed controlled response. It can
be seen that for both scenarios, both output signals achieve
a fundamental harmonic shape when controlled; however,
there is a slight phase shift when compared to the undisturbed
signals in the first periods, especially in scenario A. This
phase shift can be associated with the initial conditions since
they dictate the initial phase and are affected by the harmonic
disturbance. This effect can be attenuated over time, as seen
in the last two periods where the phase shift is almost gone in
scenario A.

To properly analyze the quality of the compensation, Fig. 7
shows the root mean square (RMS) and the total har-
monic distortion (THD) values of the output signals over
time in a moving window of one fundamental period for
scenario A, while Fig. 8 shows the outcome for scenario
B. Since the dynamic response of scenario B is consid-
erably faster, Fig. Fig. 8 includes zoom boxes for the
first three periods following the first measurement period
to capture these dynamics. In the case of the RMS in
the upper plots of the figures, the output calculations for
both scenarios, denoted by the solid blue signals, are tend-
ing towards their undisturbed steady-state values asymptot-
ically, ρv = 7.88× 10−1V for vc and ρi = 2.47A for il ,
which are denoted by the green dotted lines. For the THD
calculations in the lower plots of the figure, the controller
manages to compensate the harmonic distortion in the output,
denoted by the solid blue signals, from the initial disturbed
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FIGURE 5. Scenario A simulation results for the capacitor voltage vc , load
current il , and compensation current ic .

FIGURE 6. Scenario B simulation results for the capacitor voltage vc , load
current il , and compensation current ic .

uncompensated values of 15.9% for vc and 59.8% for il ,
denoted by the red dashed lines, down to 1.01 × 10−2%
for vc and 2.99 × 10−2% for il by the end of the simulation
for scenario A, while for scenario B it goes from 16.5%
to 0.98 × 10−2% for vc and from 70.3% to 2.95 × 10−2%
for il . These results are considerably below the reference

FIGURE 7. Scenario A RMS and THD results for the capacitor voltage vc
and load current il .

FIGURE 8. Scenario B RMS and THD results for the capacitor voltage vc
and load current il .

limit value of 8% THD for voltages defined in the European
Norm: EN 50160, [34]. In both analyses, scenario B has
considerably faster dynamics than scenario A, as the compen-
sation is achieved almost immediately. This can be mainly
attributed to the change in phase for the initial conditions,
as will be seen in the following figures.
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FIGURE 9. Scenario A normal form transformation states phase space.

FIGURE 10. Scenario B normal form transformation states phase space.

When looking at the results from the phase-space system
transformation of the normal form, as portrayed in Fig. 9
for scenario A and in Fig. 10 for scenario B, the limit cycle
dynamics of the controller become evident. In the phase plots,
the red dashed signals denote the uncompensated disturbed
states, while the solid blue signals denote the compensated
disturbed states. It can be observed how the controlled states
orbit towards the circular limit cycle of radius one at the ori-
gin. This behavior is in agreement with the design parameters
of the controller that lead to the supercritical Neimark-Sacker
bifurcation normal form, as described in Definition 1. Com-
paring both scenarios, the faster dynamics of scenario B
become evident, as the disturbed states converge much faster.
Recalling Fig. 1, this behavior is expected since the further
away from the limit cycle, the more aggressive the attraction
effect is, as shown by the vector field denoted by the red
arrows.

E. CONVEXITY NUMERICAL TEST
As introduced in Section IV-B, the optimization prob-
lem in (35) was set up for the cost function J (X (P))
from (29), subject to the constraints of the system described

TABLE 2. Jensen’s inequality minimization results.

TABLE 3. Jensen’s inequality constrained minimization results.

in Section V-A. A set of results for the optimization prob-
lem H? under different solver configurations from Matlab
Optimization ToolboxTM is given in Table 2.
The results show that the cost functionH? reaches negative

values, thus infringing the Jensen’s inequality in (33), only
when either x?1 and x?2 are too close in magnitude, or θ?

takes an extreme value from its domain 0 ≤ θ ≤ 1. Since
the infringements only occur in these extreme ill-conditioned
scenarios prone to numerical problems, the results are consid-
ered inconclusive. Therefore, to steer the solver search space
away from these extreme solutions, an additional constraint
is formulated as

1min −
‖x1 − x2‖

max (‖x1‖, ‖x2‖)
≤ 0. (40)

This nonlinear constraint ensures that the normalized abso-
lute distance between x1 and x2 is not smaller than 1min.
Implementing this new constraint with1min = 1× 10−3 and
restricting θ to [0.001, 0.999], leads to a new set of results
given in Table 3.

This time, none of the solutions lead to a negative H?;
thus, Jensen’s inequality still holds. Therefore, the convexity
of J (X (P)) in P cannot be rejected by the results of these
numerical simulations for the system in Section V-A.

F. QUALITATIVE COMPARISON
Table 4 gives a qualitative comparison between the LCMPC
and other common APF control approaches, which were
introduced in more detail in Section I.

The classical PI controller in APF applications is equipped
with an LPF making it easy to compute but slow in response
time. It is typically designed for a specific load scenario;
therefore, parameter variations pose accuracy problems.
Overall, the disturbance rejection can be improved with more
elaborate control schemes, [1]–[3].

Repetitive controllers have the advantage of a low compu-
tational burden, although the states of one period need to be
stored. The calculations of the control signal are very efficient
since these are mainly transfer functions. If the harmonic
disturbance is not changing for several fundamental periods,
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TABLE 4. Qualitative comparison of different APF control approaches.

it can be compensated accurately. Repetitive controllers are
tuned for the applications by adapting their filters; thus, only
parameter variations within the specified boundaries can be
addressed. Depending on the aggressiveness of the filters,
there is a trade-off between the robustness of the setup versus
the response time, [9]–[17].

Sliding mode controllers require a relatively low compu-
tation effort in their more simple implementations. The main
appealing attributes of SMC are its fast response and robust-
ness against disturbances and parameter variations. However,
when tuned too aggressively, they can lead to chattering,
which is their main drawback since it affects accuracy and
stability, [20]–[22].

DeadbeatMPCs has a short prediction horizon and is thus a
fast actuation type of optimal controller. This setup allows for
very fast and accurate responses with relatively low compu-
tational effort when unconstrained. However, due to the short
prediction horizon, preventive control actions against peri-
odic disturbances are limited, and as with other model-based
approaches, it is sensitive to unmeasurable parameter
variations, [23], [24].

The LCMPC, similarly to other optimal controllers, allows
for high accuracy and fast response times. The main differ-
ence is that it takes full advantage of periodic behaviors due
to its limit-cycle dynamics and periodic prediction horizon,
which is beneficial against measurable periodic disturbances.
However, computation time is still an issue in its current
state. Even though the optimal input is calculated only once
per period, the online solver is still quite computationally
intensive. Therefore, additional work on convex formula-
tions is still required. As the method is developed further
towards real-time implementation, quantitative comparisons
are planned.

VI. CONCLUSION
The developed LCMPC approach embeds the attractor
dynamics of a stable circular limit cycle directly into its
cost function as a nonlinear shape residual. These dynam-
ics enable the controller to drive a system’s target states
to a fundamental harmonic shape with a specific amplitude
and frequency. This control action is especially beneficial
in applications where a periodic behavior is desired. This
is illustrated in the application example, where the LCMPC
manages to effectively mitigate both harmonic disturbance
scenarios while reaching the correct amplitude in the target

states. This was achieved in both scenarios with minimal
impact to performance and computation time; thus, showing
good scalability characteristics of the controller.

When analyzing the cost function structure, convexity
could not be proved by function decomposition. However,
as shown by the numerical test results, convexity can still
not be discarded since no well-conditioned counter-example
was found. Further analysis is required to determine whether
the cost function optimization is a convex problem or if it
can be transformed into one, particularly when restricting the
decision space to a specific system. This analysis is the key to
enabling the real-time implementation of the LCMPC, e.g.,
a hardware-in-the-loop setup, as convex optimization prob-
lems can be solved online in conventional microcontrollers
with a predictable computational time.

Regarding stability certificates, the presented radius criti-
cal points analysis opens the possibility for further research
on the formulation of operating regions where local asymp-
totic stability could be guaranteed.

From an application perspective, ongoing research is
focused on more complex approaches of disturbance pre-
diction and initial phase estimation, and their effect on
the LCMPC performance, especially in scenarios with uncer-
tainty. Direct comparisons against standard controllers as
well as other MPC approaches are also planned.

Beyond harmonic compensation, other power quality con-
cepts are to be explored. In particular, grid forming converter
control is of special interest, as the periodic dynamics of
limit cycles have proven their efficacy in recent approaches,
i.e., dVOC.

APPENDIX A
PERIODIC ORBITS
Periodic orbits are cycles with oscillatory behavior. For
discrete-time systems, they are defined as follows.
Definition 7: A cycle0 is a periodic orbit if, for all x0 ∈ 0,

it satisfies the map ϕ : X 7→ X, given as

ϕk+T x0 = ϕkx0, (41)

where ϕkx0 = xk for discrete time k ∈ Z and T ∈ Z>0, [29].
The minimal T , which satisfies the properties in Defini-

tion 7, is called the period of the cycle 0, [29]. This means
that if a system starts at x0, after exactly T iterations of the
map, it will return to x0, hence the oscillatory behavior.

For starting points outside the orbit, there is a special case
given as follows.
Definition 8: A periodic orbit 00 is called a limit cycle

if there exists a point in its neighborhood that is not in the
orbit, such that its limit set is exactly 00, as time moves
forward (ω-limit set) or backward (α-limit set), [35].

APPENDIX B
GRADIENT AND HESSIAN
Many algorithms for solving optimization problems, such
as the gradient descent method, greatly benefit from hav-
ing access to an analytical gradient and Hessian of the cost
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function, [31]. This is possible for the proposed cost function
in (16) since it is a twice-differentiable function. The follow-
ing gradient and Hessian derivations have been done using
the symbolic matrix calculus tool from [36], [37].

The gradient of (16) is given as

∂J
∂X
= 2Q2X+ 2αQ4 ((L (X ◦ X)) ◦ X)

+ 4α
(
L
((

QT
4X
)
◦ X

))
◦ X+2α

(
QT

4X
)
◦ (L (X ◦ X))

+ 4α2 (L ((L (X ◦ X)) ◦ (X ◦ X))) ◦ X

+ 2α2 (L (X ◦ X)) ◦ X ◦ (L (X ◦ X)) . (42)

While the Hessian is

∂2 J
∂XiXj

= 2Q2 + 4αQ4 diag (X)L diag (X)

+ 2αQ4 diag
(
(X◦X)T L

)
+ 4α diag (X)L diag (X)QT

4

+ 4α diag (X)L diag
(
XTQ4

)
+ 4α diag

(
L
((

QT
4X
)
◦X
))

+ 2α diag (L (X◦X))QT
4 + 4α diag

(
QT

4X
)
L diag (X)

+ 8α2 diag (X)L diag (X◦X)L diag (X)

+ 8α2 diag (X)L diag ((L (X◦X))◦X)

+ 4α2 diag (L ((L (X◦X))◦X◦X))

+ 8α2 diag ((L (X◦X))◦X)L diag (X)

+ 2α2 diag ((L (X◦X))◦(L (X◦X))) , (43)

where the diag (v) operator gives a square diagonal matrix
with the vector v as its main diagonal.
The gradient can be calculated in terms of the Fourier

approximation of X (P), as expressed in the lifted system
in (29a), applying the chain rule to (42), so that

∂J (X (P))
∂P

=
∂J
∂X

∂X
∂P
=

(
MT
⊗ Im×m

)
2T ∂J

∂X
. (44)

Similarly, the Hessian can be calculated in terms of the
Fourier approximation by applying the second-order chain
rule (Faà di Bruno’s formula) to (43), which leads to

∂2 J (X (P))
∂PiPj

=
∂2 J
∂XiXj

(
∂X
∂P

)2

+
∂J
∂X

∂2X
∂PiPj

=

(
MT
⊗ Im×m

)
2T ∂2 J

∂XiXj
2(M⊗ Im×m) .

(45)
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