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ABSTRACT Multiply-Accumulate (MAC) operation is the backbone of Least Mean Squares (LMS)
digital adaptive filters. Implementing LMS on hardware platform as a Fully Dedicated Architecture (FDA)
multiplier becomes bottleneck for higher order filters, prompting high area, cost and power requirements and
hence renders the design unsuited for practical implementation. In this paper, we have proposed a composite
design that makes use of Distributed Arithmetic (DA) to replace the bottleneck multiplier with memory
units that store Partial Products (PPs) to emulate multiplication. The depth of these memory units tends to
exponentially grow as the filter order rises. To manage that, we have used Half Memory algorithm (HM)
and Offset Binary Coding (OBC) to refine the structure of PPs such that the memory size is reduced at least
by a factor of 4 for the same filter order. The proposed design improves system’s Throughput, Critical Path
Delay, Power Consumption and FPGA Resource Utilization. However, it introduces Latency in both the
output and update segments of the LMS algorithm. To provide an option between resource utilization and
latency, we have suggested a mechanism to halve the originally produced latency by the Parallel Processing
of input bit steam w.r.t even and odd bits. Moreover, we have also proposed a method that reduces the latency
of update module at the slight expense of other design attributes. The fundamental structure of the proposed
design is flexible owing to the dynamic memory structure as well as the option to choose between latency
and resource minimization. Simulations have been carried out in Xilinx Vivado and conclusions have been
drawn by comparing both FDA and DA based designs. Results for a 16-tap filter indicate a remarkable
improvement in Throughput, Area Utilization and Power Consumption by 18%, 5% and 3.5% respectively
at the expense of 4× escalated latency. The Half Latency method allowed the latency to drop 2× but with
slightly elevated power and area attributes.

INDEX TERMS Adaptive filter, distributed arithmetic (DA), half memory algorithm (HM), least mean
square (LMS), offset binary coding (OBC).

I. INTRODUCTION
Adaptive Finite Impulse Response (FIR) filters find many
applications in DSP systems like system identification and
equalization [1], noise-echo cancellation [2] and adaptive
feedback cancellation [3] etc. Adaptive filters come in many
forms and the choice of a particular type and order of filter
is solely dependent upon the application under consideration.
The working mechanism of an adaptive filter is composed
of 2 modules, feedforward or FIR output module and feed-
back or weight-update module. For each input, the output
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module computes the FIR output of the filter and the update
module calculates the new weights for the next input. In this
way, the weights keep on updating until the error becomes
zero, which means that the system has converged and the
weights cease to update. The error term is the algebraic dif-
ference of output and desired signal. Output is the weighted
sum of current and preceding input samples.

Typically, adaptive filters are a sub-part of larger sys-
tems e.g. communication systems such as Software-Defined
Radios (SDR) [4], cognitive radios [5], biomedical sys-
tems [6] etc. These systems are gradually shifting towards
re-configurable platforms such as Field-Programmable Gate
Arrays (FPGAs) for hardware implementation [7], [8] due
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to the fact that FPGAs provide much faster floating point
operations, sophisticated analog resources, hard memory
controllers, ample amount of embedded resources, short
time-to-market, high computational speed and flexibility [9].

While implementing such systems, and particularly adap-
tive filters, the hardware architecture can face area and tim-
ing constraints if designed using traditional Fully Dedicated
Architecture (FDA). As the name suggests, FDA implies
a one-to-one mapping of each arithmetic operation with a
dedicated hardware unit. The required number of units is
directly proportional to the order of the filter. For higher order
filters, FDA implementation becomes unfeasible due to the
limited number of multipliers in a DSP system. Moreover,
the dedicated architecture demands higher area, budget and
power requirements. This compels us to search for alternative
designs for LMS adaptive filters. On hardware, multipliers
are much more resource-hungry as compared to adders which
motivates us to search for multiplier-less designs.

Distributed Arithmetic (DA) is a digital design algorithm
that allows us to implement multiplication without actually
using a physical multiplier. The basic mechanism of DA
is to replace a multiplier by a Lookup-Table (LUT), which
holds the pre-calculated Partial Products (PPs). In case of
adaptive filters, the contents of LUTs are a function of
tap weights, which we need to keep updating for each
input. Hence, the contents of LUTs will be replaced by the
newly calculated PPs. This can be a complicated task due
to the limited access ports of memory as well as area and
cost constraints associated with memory size. Therefore,
we examine algorithms like Half Memory (HM), Offset
Binary Coding (OBC) and Half Latency (HL) to compensate
for these obstructions. In this article, we propose a novel
design aiming to improve the area, cost, critical path delay,
power consumption, resource utilization and throughput of an
LMS adaptive filter at the expense of latency. Cost and area
advantages of DA based multiplier-less design are compared
in [10] with multiplier-based designs.

The rest of the paper is structured in the following manner:
Section II discusses the relevant literature, Section III sheds
light on the background knowledge required, Section IV elab-
orates the proposed designs, Section V presents the results
based on simulations and Section VI concludes the paper.

II. LITERATURE REVIEW
The resource optimization advantage of DA intrigued the
researchers and several multiplier-less LMS designs were
proposed. In [11], Cowan et al. presented a conventional
memory based DA architecture for output calculation. They
used an accumulator based combinational approach for
weight update process. In [12], Allred et al. adopted a
memory based shift-accumulate approach to implement LMS
algorithm and used an auxiliary LUT for the update process.
They showed their design to have a high throughput when
compared to the traditional architecture. The conventional
DA based design allows a resolution of just a single cycle
irrespective of filter order, hence a latency equal to the width

of input bits B is introduced into the system. Tiwari et al. [13]
used a block structure to compute the partial products in a
single cycle by employing multiple memory units, allowing
the latency to drop to a single cycle. Extending the approach
of divided LUT method, Zhou and Shi [14] proposed a
pipelined architecture by placing pipeline registers at adder
and memory outputs. Their simulation results showed a high
speed and low hardware requirement. Tasleem et al. [15]
further improved the speed and resource consumption by
using an adder tree to accumulate the results of all memory
units. They used multiplexed memory units for both out-
put and weight update operations of the filter. Updating the
memory, however, is a computationally complex process as
it consumes further clock cycles. Prakash and Shaik [16]
proposed a parallel architecture for weight update mechanism
by using a register-adder treemechanism instead of amemory
unit, thus requiring less memory resources and reducing the
time consumed by update mechanism.

DA based designs show remarkable performance improve-
ment for small number of filter taps. However, as the filter
order grows, the memory size also starts to exponentially
grow resulting in reduced efficiency. Researchers found out
that the memory growth can be considerably reduced by
encoding the input in a different manner. In [17], Prakash
et al. used offset binary coding scheme to represent the binary
input as ±1. The resulting DA design was able to reduce
the memory size by half with minimum resource overhead
in the form of adders and combinational circuit. They used
dedicated memories for output and update modules. In [18],
Tasleem et al. kept the newest and discarded the oldest input
samples to update the memory. They managed to reduce
the memory size by 1.2×. A three-stage pipelined design
was by proposed by Prabakaran and Yada [19] using offset
binary coding with an adaptation delay of two. They used a
CSA for partial product computation instead of the conven-
tional shift-accumulate approach, thus reducing the delay and
increasing the throughput. In contrast to offset binary based
encoding, Vinitha and Sharma [20] proposed to use Canonic
Signed Digit (CSD) encoding scheme to represent the input
and hence managed to develop an LUT-less DA design. They
used a Wallace tree adder to further reduce the complexity
of partial product computation. In [21], Tsunekawa et al.
proposed to use a 2’s complement representation for input
encoding, improving the convergence characteristics of the
filter. Guo and DeBrunner [22] proposed an unconventional
memory addressing scheme by using coefficients to access
the memory instead of input samples and the memory con-
tents were generated as a combination of input samples
instead of coefficients. This allowed a parallel computation
of output with the new weights thus reducing the latency.
They managed to reduce the memory usage by 1.45×. They
further improved their design [23] by reducing the memory
usage by 2× and eliminating excessive adders in the cir-
cuit. Takahashi et al. [24] proposed to split the memory into
sub-memories using half memory algorithm with OBC based
DA design to further reduce the memory size.
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In general, three basic methods exist for practical imple-
mentation of LMS adaptive filters. The simplest one involves
dedicated multipliers and adders for each MAC operation
which is quite costly in terms of area, cost and critical
path. The second method involves the replacement of bottle-
neck multipliers with memory unit(s) using simple DA with
bit-serial approach. This method suffers from exponential
memory growth for higher order filters. The third approach
is to encode the binary inputs with 2’s complement, CSD or
the more common OBC scheme to reduce the memory size
by half. Design choice also involves the LUT-less approach
which replaces the memory units with multiplexers, hence
more combinational logic is involved [25]. The major prob-
lem is that whenever we move towards the implementation of
higher order filters, either latency or memory shows expen-
sive results. Ideally, we want to find a balance between these
two parameters.

In this paper, we present a basic scheme to improve the
existing OBC based DA implementation of LMS filter. Our
design is inspired by [24] and uses half memory algorithm
to dynamically reduce the memory size. This means that the
designer can control memory size by adjusting the number of
memory units and access bits w.r.t filter taps. We derive the
mathematical expressions for the proposed design in light of
the LMS algorithm. We also present a variant to the basic
scheme by proposing the parallel processing of input bits,
thus reducing the latency to half at the expense of minimum
resource overhead. Our design achieves at least 4× reduced
memory size.

III. BACKGROUND
In order to understand the proposed architecture we need
to lay some groundwork. This section briefly discusses the
relevant algorithms that are associated with the proposed
design.

A. LMS ALGORITHM
LMS algorithm was proposed by Widrow-Hoff in 1959.
It employs a special case of gradient descent algorithm i.e.
steepest descent to minimize the objective function. Accord-
ing to the LMS algorithm for adaptive filters, filter output is
the weighted sum of the current and the previous input sam-
ples. Furthermore, the weight-update mechanism is based on
the multiplication of computed error with the corresponding
input samples. In simpler words, we say that MAC operation
is the spine of LMS algorithm.

LMS algorithm is regulated by Equations 1, 2 and 3 for
output y, error e and weight h computation respectively:

y[n] =
N−1∑
k=0

hk · x[n− k] (1)

e[n] = d[n]− y[n] (2)

hk [n+ 1] = hk [n]+ (µ · e[n] · x[n− k]) (3)

where x represents the input signal, N represents the num-
ber of filter taps, n belongs to 0 · · ·N − 1, d denotes the

Algorithm 1 LMS Algorithm
1: Initialize N , d and µ
2: k ← 1 to N
3: hk ← random
4: while 1 do
5: n← current iteration
6: Shift x[n− k] to x[n− k + 1] for all k
7: x[n]← Input
8: y[n]← hk [n]× x[n− k] for all k
9: e[n]← y[n]− d
10: hk [n + 1] ← hk [n] + (µ × e[n] × x[n − k])

- for all k
11: y[n]→ Output
12: end while

desired/target output and µ represents the step-size or filter
convergence coefficient. The characteristics and implications
of the step size and delayed coefficient adaptation are stud-
ied in [26] with regards to the convergence speed and sys-
tem stability. Equation 1 regulates the output of the filter
by the accumulation of the products of filter weights with
corresponding filter inputs. Equation 2 is used to calculate
the error as the difference between the current and desired
outputs. Equation 3 shows the weight-update process which
is a function of error and the current and previous inputs.
The resulting terms are moved by the step-size and added
to the corresponding previous weights to acquire the updated
weights.

The pseudo code for LMS algorithm is as follows:

B. FULLY DEDICATED ARCHITECTURE
On hardware, when we intend to implement an algorithm
whose equations are well defined, the basic human instinct
is to assign a computational unit to each corresponding oper-
ation. This one-to-one mapping of arithmetic operations on
hardware is called Fully Dedicated Architecture. For LMS
adaptive filter, the Equations 1, 2 and 3 define the algorithm.
These equations clearly show that the filter can be imple-
mented by simple MAC operations. Since FDA prompts a
single computational unit against a single operator, all the
computations are performed in a single cycle. For instance,
if we are required to implement a 4-tap filter (N = 4), we need
four multipliers and three adders for output calculation, one
subtractor for error computation and five multipliers and four
adders for calculation of newweights. The output is generated
in the same cycle as the input is provided.

Figure 1 shows the generic block diagram for FDA imple-
mentation of LMS filter. There are two main modules for
output calculation and weight adaptation respectively and a
smaller unit for error computation. Figure 1 also shows the
flow of the algorithm, which is directed from output calcu-
lation to error computation to weight adaptation. Figure 2
shows the circuit diagram of each module, in accordance
with LMS equations. Figure 2 (a) shows the implementation
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FIGURE 1. Generic block diagram of fully dedicated architecture for LMS
adaptive filter.

of output module for a 4-tap filter, which includes dedicated
multipliers and adders along-with registers to store previ-
ous inputs. Figure 2 (b) shows the error computation unit,
which is always the same regardless of filter order. Finally,
Figure 2 (c) shows the weight update module, which also
includes dedicated multiplication and addition units.

The main advantage of FDA is the availability of output
within a single clock cycle i.e. no output latency irrespective
of the filter order. Moreover, the design is fairly simple and
straight-forward to implement. However, the higher the fil-
ter order gets, the more the number of computational units
required and the more the consumption of area and power.
Moreover, an FPGA/DSP system has a limited number of
resources available, hence we become short of adders and
multipliers. Another drawback of FDA implementation is the
rise in Critical Path Delay (CPD) of the system with a rise in
filter order. Therefore, FDA implementation of LMS adaptive
filter is not feasible for real-time systems, particularly for
higher order filters.

C. DISTRIBUTED ARITHMETIC ALGORITHM
In FDA design, multiplier is the most resource-hungry com-
putational unit owing to its complex design. As multiplier is
the bottleneck of FDA, we seek an alternative to it and hence
shift towards a multiplier-less design. Distributed Arith-
metic (DA) makes use of the fact that multiplication is simply
the shifted accumulation of Partial Products (PPs). Hence,
it proposes the multiplier to be replaced by a memory/look-
up-table (LUT) which holds all the possible Partial Products
(PPs). In each cycle, one of these PPs is retrieved from
the LUT based on a single bit of input and fed to a shift
accumulator. In this manner, all input bits are processed one-
by-one to finally generate the multiplication result.

In case of digital filters, each multiplier is associated with a
single weight and a single current/previous input, with a total
of N multipliers being used for output computation. Hence,
to adjust all multiplication units within a single LUT, the PPs
are stored as a linear combination of the filter weights. This
prompts to use one bit from each of the current and the N −1
previous inputs to access the LUT. The output of LUT is fed
to a shift accumulator. This process is repeated for all bits of
the input one by one and hence an output latency equivalent

to the number of input bits is introduced into the system. This
delivers us the FIR output of the filter.

Similarly, multipliers of the update module are also
replacedwith an LUT.However, in this case the PPs are stored
as a combination of input samples instead of tap weights.
Equation 3 dictates how these PPs are generated. The update
module introduces a latency directly proportional to the num-
ber of filter taps. FromEquation 2, it is obvious that the update
module does not start working until the output is generated
from the output module. Therefore, the total latency of the
system is equivalent to the sum of individual latency of both
modules.

The memory is finite and its depth is determined by:

Memory_Depth_DA = 2N (4)

For instance, if we intend to implement a 4-tap filter,
the memory-depth would be 24 = 16 and a four bits wide
address would be required to access this memory.

Equation 4 shows that the memory depth is exponentially
proportional to the filter order N. Higher filter order also
induces a higher latency into the update module. Therefore,
high latency and exponential memory growth are the major
concerning points of standalone DA based filters as they take
a toll on system’s area, resources and latency despite improv-
ing the CPD. This pushes us to search for other solutions to
address these drawbacks.

D. HALF MEMORY BASED DA ALGORITHM
To address the exponential memory growth of DA based
design, we examine the Half Memory (HM) algorithm,
which states that the contents of a single memory can be
divided among 2 or more sub-memories, the combined size
of whose is less than the original. Each sub-memory is
accessed by its own unique address. During a single iteration,
all sub-memories are addressed once and their results are
accumulated such that they return the same result as that
of original memory. Hence at the expense of more adders,
we can reduce the memory size at least by half.

The name half memory is ambiguous as it suggests the
division of original memory into just two sub-memories.
Rather, the HM-DA method allows us to divide the memory
into multiple sub-memories. This is regulated by Equation 5:

R = N/M (5)

whereM represents the number of desired memory units and
R is the number of address bits required per memory.

For a 4-tap filter withM = 2 and hence R = 2, we require
two sub-memories with four locations each. Both memories
are accessed by a 2-bit address. However, if we were to
changeM to four, we would require four sub-memories with
two locations each. All memories would require a single
address bit for access.
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FIGURE 2. Module-level circuit diagram of fully dedicated architecture for a 4-tap LMS adaptive filter.

E. OFFSET BINARY BASED DA ALGORITHM
In order to further improve the exponential memory growth
of DA, we look into another algorithm by the name of Offset
Binary Coding (OBC) scheme. Similar to 2’s complement
representation of a binary number, this method also proposes
a new representation of binary numbers. OBC is regulated by
the following function:

OBC =

{
+1,when 2’s complement representation is 1
−1,when 2’s complement representation is 0

This means that all ones in a bit stream are represented
as +1, while all zeros are represented as −1. Following this
concept, the PPs stored in the LUT are modified in such a
way that the first half of them become the exact negative
of the remaining second half. This allows us to drop one of
these halves, thus reducing the memory by two and the access
bits by one. The dropped PPs are still accessible to us as
the dropped access bit allows us to determine if to directly
pass the memory contents or take their negative first. Hence,
we are able to fully execute the DA algorithm while only
keeping half of its original memory size.

The difference between HM-DA and OBC-DA is that the
latter does not provide a mechanism to split the memory
into sub-memories. Nor does it allow depletion of memory
by a factor of more than 2. HM-DA is dynamic in this
regard.

IV. PROPOSED ARCHITECTURES
In this paper, we combine the techniques studied in the previ-
ous section to propose efficient real-time implementation of
LMS adaptive filter. We propose 2 different variants to our
scheme; Offset Binary Coding & Half Memory based Dis-
tributed Arithmetic algorithm (OBC-HM-DA, occasionally
referred to as Type-I) which is oriented towards the mini-
mization of resource utilization. And Offset Binary Coding
& Half Memory with Half Latency based Distributed Arith-
metic algorithm (OBC-HM-HL-DA, occasionally referred
to as Type-II) which is focused more towards the latency
reduction. For convenience, first we will discuss the out-
put module for both methods and then the update module
separately.

A. TYPE I: OBC-HM-DA DESIGN
Having examined the details of prerequisite mechanisms,
naturally the first instinct is to merge HM and OBC algo-
rithms into the DA based design to minimize resource uti-
lization and improve design and timing attributes. For this
purpose, we first derive the equations for DA based LMS
algorithm. Applying a bit-serial approach to input sample
x[n], it becomes:

x[n] = −xB−1[n]+
B−2∑
b=0

xb[n] · 2b−(B−1) (6)

Then applying sample-wise operation to hk , Equa-
tion 1 becomes:

y[n] =
N−1∑
k=0

hk

[
− xB−1[n− k]

+

B−2∑
b=0

xb[n− k] · 2b−(B−1)
]

(7)

Equation 2 remains the same while Equation 3 takes the
following form:

hk [n+ 1] = hk [n]+ µ · e[n] ·
[
− xB−1[n− k]

+

B−2∑
b=1

xb[n− k] · 2b−(B−1)
]

(8)

where B is the number of input bits and xB−1 is the MSB of
the input. Equations 7 and 8 represent the output and update
methods respectively for DA based LMS algorithm.

Equation 7 is used to derive the PPs to be stored in memory
for DA based filter. The depth of this memory is defined by
Equation 4. For a 4-tap filter, a memory with sixteen locations
is required. Each location is accessed by a 4-bit wide binary
address. Table 1 shows the contents against each address for
the aforementioned filter. The left column in the table shows
the bit-serial addressing scheme such that a0 is the LSB. The
table demonstrates that the PPs are a linear combination of
filter weights. Equation 8 regulates the weight-update mech-
anism of the adaptive filter, which will be discussed later in
detail.
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TABLE 1. Memory contents of a 4-tap DA based LMS adaptive filter.

FIGURE 3. Circuit diagram of shift-register bank for distributed arithmetic
based LMS adaptive filter @ N, B = 4.

In order to access the memory, single bits from each
of the current and previous inputs are merged together
to formulate the address. To accommodate the bit-serial
processing of x[n − k], they are stored in unique shift-
registers, such that the first register is directly connected
to the input and each register is connected to its following
register. This hierarchy of shift-registers is shown in Figure 3
for a 4-bit, 4-tap adaptive filter. The LSB of each register
(aN ) is used to access the memory. The bit corresponding
to the original input (a0) is regarded as the LSB of the
access bits.

In every clock cycle, a PP is retrieved from the mem-
ory using the access bits and fed to the shift-accumulator
and then the shift-registers are bit-serially shifted once
to the right. The reason for using a shift-accumulator
corresponds to the multiplication algorithm itself, which
implies that every next PP is shifted once w.r.t its preced-
ing PP. Once all the bits in a shift-register are processed,
the result of the shift-accumulator is stored as the output
y[n] of the filter. The structure of the shift-accumulator
is shown in Figure 4. The term initial_value is asso-
ciated with the PP stored at the first location in the
memory.

The next step is to integrate the HM algorithm into DA.
HM algorithm does not entirely alter the shape of DA
architecture, rather it splits up a larger singular memory
into multiple smaller memories in a manner that reduces
the overall size of the memory. Hence, the DA equa-
tions need to be slightly modified to adjust the split-
ting element in HM-DA. Equations 7 and 8 are thus

FIGURE 4. Circuit diagram of shift-accumulator for distributed arithmetic
based LMS adaptive filter.

modified as:

ym [n] =
N−1∑
k=0

hkm

[
− xB−1m [n− k]

+

B−2∑
b=0

xbm [n− k] · 2
b−(B−1)

]
(9)

hkm [n+ 1] = hkm [n]+ µ · e[n] ·
[
− xB−1m [n− k]

+

B−2∑
b=1

xbm [n− k] · 2
b−(B−1)

]
(10)

where m = 0, 1, . . .M − 1. The PPs are now generated w.r.t
Equation 10 and the weights are updated using Equation 10.
The memory depth is again defined by Equation 4, however,
the perception of N is changed to Nm. So, Equation 4 takes
the following form:

Memory_Depth_HM-DA = 2Nm (11)

Equation 10 shows that in HM-DA, each memory is asso-
ciated with a unique set of tap-weights. For instance, for a
filter with N = 4 andM = 2, we use two memory units such
that the first two taps are associated with the first memory and
the remaining two with the second memory. Hence, Nm = 2
is used in Equation 11 for both memories. This renders the
depth of each memory to be 22 = 4. Therefore, the total
memory locations are reduced from 16 to 8 by merging the
HM algorithm with the DA based design.

The memory access method does not require any addi-
tional resources. The only modification made is that the
shift-register bank is divided into the same number of
sub-banks as the sub-memories. In this way, a unique set of
shift-registers is used to access each memory. The organiza-
tion of shift-registers is exactly the same as shown in Figure 3.
The contents from each memory are then accumulated which
generates the complete PP that was required. This PP is then
fed to the shift-accumulator to generate the output.

Finally, we incorporate the OBC algorithm into HM-DA,
formulating the OBC-HM-DA design. To represent 0 as −1,
2’s complement of x[n] is shown below:

−x[n] = x[n]+ 1
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FIGURE 5. Generic block diagram of the output module of the proposed architecture for LMS Adaptive Filter.

Taking 2’s complement of Equation 6, it becomes:

−x[n] = −xB−1[n]+
[ B−2∑
b=0

xb[n] · 2b−(B−1)
]
+ 1 (12)

Now according to the OBC scheme:

x =
1
2
[xi − (−xi)] (13)

where xi − xi = OBCi. Putting Equation 6 and 12 in Equa-
tion 13:

x[n] =
1
2

[{
− xB−1[n]+

B−2∑
b=0

xb[n] · 2b−(B−1)
}

+

{
− xB−1[n]+

B−2∑
b=0

xb[n] · 2b−(B−1) + 1
}]

(14)

Simplifying Equation 14:

x[n] =
1
2

[
− xB−1[n]− xB−1[n]

+

B−2∑
b=0

(xb[n]− xb[n]) · 2b−(B−1) − 1
]

(15)

Using notation xi − xi = OBCi in Equation 15:

x[n] =
1
2

[
− OBCB−1 +

( B−2∑
b=0

OBCb · 2b−(B−1)
)
− 1

]
(16)

Now placing x[n] found in Equation 16 into Equa-
tions 9 and 10, we get the output and update equations as
follows:

ym [n] =
1
2

N−1∑
k=0

hkm [n]
[
− OBCB−1m

+

( B−2∑
b=0

OBCbm ∗ 2
b−(B−1)

)
− initial_value

]
(17)

hkm [n+ 1] = hkm [n]+ µ · e[n] ·
1
2

[
− OBCB−1m

+

( B−2∑
b=0

OBCbm ∗ 2
b−(B−1)

)
− 1

]
(18)

TABLE 2. Contents of memory1 for a 4-tap OBC-HM-DA LMS adaptive
filter.

TABLE 3. Contents of memory2 for a 4-tap OBC-HM-DA LMS adaptive
filter.

where initial_value is associated with the sum of the contents
stored at the first location in the all the memory units placed
in the design.

The PPs are generated w.r.t Equation 17 and the memory
depth is now defined by:

Memory_Depth = (2Nm )/2 (19)

Memory contents for a Type-I filter design with N = 4
and M = 2 are shown in Tables 2 and 3. The memories have
a total of 2 locations each, which is justified by Equation 19.
The analysis of the contents of these memories show that the
PPs are still a linear combination of filter weights with an
additional division term which is justified by Equation 17.
It is important to note that this division is by a constant factor,
which does not require an actual divider on hardware, rather a
simple right shift does the job. When we compare the simple
DA based memory contents shown in Table 1 with Type-I
based contents shown in Tables 2 and 3, we observe that the
latter has reduced the memory locations from 16 to a total of
just 4, i.e a remarkable 4× reduced memory space. Moreover,
the width of the memory access bits is also reduced from 4 to
just 1.

Figure 5 shows the generic block diagram for the out-
put module of Type-I design. The input x[n] is fed to the
shift-register bank, whose architecture is shown in Figure 3.
It is important to note that the MSB of input must always be
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FIGURE 6. Circuit diagram of OBC-HM based distributed arithmetic architecture for a 4-tap LMS adaptive filter.

TABLE 4. No. of memory units vs memory locations.

inverted, as justified by the negative sign in Equation 17. The
number of registers in the bank is equal to the number of filter
taps N . The width of each register is equal to the number of
input bits B. The LSBs of these registers are used to access
the memory units. But they are first fed to a conditional bit
inverter, which decides to either invert the address or not,
in order to cater for the dropped PPs as explained in the
background section. The output of the bit inverter unit is
used to access the memory units. The contents retrieved from
the memory are fed to a conditional 2’s complement unit,
which is associated with the conditional bit inverter block.
And finally, the contents are fed to the shift-accumulator to
generate the output y[n]. The structure of shift-accumulator
is shown in Figure 4.

In order to better understand the Type-I design, we intend
to explain it with an example. Consider a 4-bit, 4-tap (B = 4,
N = 4) filter as shown in Figure 6, which presents the
circuit diagram of the filter based on Type-I architecture.
The following steps show the hardware setup of the output
module:
• We first select a suitable number of sub-memories. The
choice of the number of memories is regulated by B in
powers of 2. Table 4 shows that a single memoryM = 1
is not be appropriate as the memory size becomes 16 and
could still be reduced. If we use four memories M = 4,
the memory becomes redundant as the same size can be
achieved using lesser units. Hence, it is suitable to use
two memories M = 2, which provides the minimum
number of locations in minimum number of units.

• Based on the values ofN andB, a total of 4 shift-registers
of 4 bits each are required. Based on the value of M ,
these registers are grouped into two banks of two regis-
ters each, as shown in Figure 6.

• In a shift-register bank, the output of first register is
used to access the corresponding memory unit while the

output of the second register status_MSB acts as a flag
to activate the conditional bit inverter and conditional 2’s
complement units shown in Figure 5.

• Tables 2 and 3 show the contents of Memory 1 and
Memory 2 respectively.

• status_MSB flag is fed as a control signal to the inverter
placed against the address bit.

• Memory output is fed to a 2’s complement unit which is
also controlled by status_MSB.

• ForM = 2, a single adder is required to accumulate the
contents of bothmemories, to form the desired PP, which
is then fed to the shift-accumulator.

• The final output is received after B number of cycles,
which is 4 in this case.

To summarize, OBC-HM-DA replaces the dedicated
multipliers and adders of FDA with memory unit(s) and
shift-accumulator respectively, considerably reducing system
resource utilization. The reduced number of components
in the critical path allows the design to work at a much
higher frequency. The memory size is reduced from 2N to
M × 2R−1 when compared to traditional DA based design,
with no difference in latency. On the other hand, a latency
of B clock cycles is introduced when compared to the FDA
implementation.

B. TYPE II: OBC-HM-HL-DA DESIGN
The main purpose of Type-I architecture is to improve the
filter design and timing attributes such as CPD, power con-
sumption, throughput and area utilization. However, doing so
introduces a certain latency into the system. In real-time situa-
tions onemay require a design that is not as efficient as Type-I
design but consumes lesser clock cycles to produce the result.
We can say that such a designwill be a trade-off between FDA
and OBC-HM-DA architectures. In light of this argument,
we propose a Type-II design which aims to halve the latency
of the Type-I system with slightly reduced efficiency. For this
purpose, we propose parallel processing of even and odd bits
of input samples which automatically reduces the latency to
half. It is important to note that processing more than two
bits simultaneously results in excessive resource utilization
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FIGURE 7. Circuit diagram of OBC-HM-HL based distributed arithmetic architecture for a 4-tap LMS adaptive filter.

as opposed to even/odd parallel processing which requires
minimum additional resources.

The basic functionality of the system remains the same.
Figure 7 shows the block diagram of the output module. Since
N and B remain the same, the overall space allotted to the
shift-registers also remains the same. However, the config-
uration of shift-registers is changed as shown in Figure 7.
Dual-access memory is used to retrieve PPs simultaneously
for both even and odd bits. Hence, a single memory unit
produces two unique outputs in a single clock cycle, one
w.r.t the even bit and the other w.r.t the odd bit. The bit
inversion and 2’s complement setup is exactly the same
as Type-I. Additional adders are required to accumulate
both the inter-memory and intra-memory contents to for-
mulate the desired PP. It is important point to note that in
traditional multiplication algorithm, the odd bit (LSB) has
lesser weight 20 as compared to the even bit 21. Therefore,
to accommodate parallel processing, a shift operation is per-
formed against the even bits to adjust its weight. Finally,
a shift-accumulator is placed to perform the addition oper-
ation of the filter. Subsequently, the shift operation inside
the shift-accumulator is applied by a factor of 2 to adjust the
parallel bits.

To summarize, OBC-HM-HL-DA is a modification to the
OBC-HM-DA design which aims to reduce the latency B of
the former to B/2. This is done by the parallel processing
of input bits at the cost of minimum resource overhead.
It is important to note that even with the slightly increased
resource utilization, Type-II design is still more efficient
when compared to the traditional FDA design.

C. WEIGHT UPDATE MECHANISM
The preceding section mathematically establishes the basic
algorithm of the proposed architecture. Considering the same

FIGURE 8. Block diagram of the weight update module of the proposed
architecture.

scheme, we propose the weight update module of the adaptive
filter. According to the LMS algorithm, new weights are
calculated after an output is produced as shown in Figure 1.
The error computation mechanism (Equation 2) is based on a
single MAC operation, so we propose to keep its dedicated
design. Similarly, the designer can also choose to retain
the dedicated architecture for weight update module, thus
keeping the overall latency to just B cycles. Alternatively,
we can modify the weight update module (Equation 3) to
eliminate the N dedicated multipliers via DA algorithm as
shown in Figure 8.
The mathematical application of the proposed architecture

on weight update module yields Equation 18. An important
point to note is that the left side of Equation 18 corresponds
to a singular weight. However, the output module requires the
PPs to be saved as a linear combination of filter weights. This
means that additional hardware will be required. To avoid this
trouble, we modify Equation 18 as follows:

gkm [n+ 1] = gkm [n]+
[
µ · e[n] ·

1
2
· A · x

]
(20)
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TABLE 5. Contents of memory 1 of the update module of a 4-tap
OBC-HM-DA adaptive filter.

TABLE 6. Contents of memory 2 of the update module of a 4-tap
OBC-HM-DA adaptive filter.

where g represents the linear combination of weights instead
of a single weight and,

A =


−1 −1
+1 −1
−1 +1
+1 +1


and

x =
[

x[n]
x[n− 1]

]
Tables 5 and 6 show the memory contents of the update

module for a filter with N = 4, B = 4 andM = 2. Table 5 is
associated with Memory 1 of output Module and hence deals
with the first 2 weights only. Similarly, Table 6 deals with
the last 2 weights only and is used to update Memory 2 of
the output module. A and x are derived from Equation 11
and they regulate the accessing scheme of the update module
memories.

V. RESULTS AND DISCUSSION
In this section, we compare and discuss the simulation results
of proposed designs with FDA implementation. We review
their performance in terms of area utilization, power con-
sumption, timing and throughput.

A. FILTER SPECIFICATIONS AND IMPLEMENTATION
DETAILS
All designs were implemented on Virtex-7 FPGA board using
Xilinx Vivado Design Suite 2018. Simulation results and
timing diagrams were generated along with the synthesis
reports. Vivado synthesis tool has the ability to transform
the coded RTL into gate-level representation and generate
analysis reports like timing analysis, resource utilization and
power consumption. This section compares the area, critical
path delay, GMACs, latency, power consumption, resource
utilization and throughput of the designs.

Three different implementations were carried out for fil-
ter lengths of 4, 8 and 16 for FDA, Type-I and Type-II
designs. The convergence coefficient µ was fixed at 0.5 and
the desired/target output was set to be -1. Moreover, all
inputs and tap-weights were 4-bits wide while the output was
8-bits wide. Random test inputs were applied to generate

the outputs. All inputs and filter weights were represented
in Q1.3 fixed point format. Initial weights were set as shown
in Figure 9.

B. OUTPUT AND TIMING DIAGRAM
Simulation results for four clock cycles are shown in Figure 9
for verification. Observe that the output of the proposed
designs is the same as that of the FDA design, hence the
output module of the proposed designs are verified. Figure 9
also shows the updated values of weights in each cycle, which
also emerge to be the same for all methods, hence the update
module is also verified. This establishes that the proposed
designs follow the working principle of the LMS algorithm
to the full extent.

Another important design aspect is the occurrence of out-
put w.r.t clock. Figure 10 shows the timing diagram for all
3 designs. The clock starts from 0ns, the red bar represents
a waiting state while the black bar represents the output.
The crossover shows the occurrence of a new event/output.
According to the Timing Diagram, system is initially in a
waiting state, which does not necessarily mean that the sys-
tem is waiting for an input, rather it indicates the processing
phase. The first FDA output appears in the second clock
cycle and preserved until next output has been calculated.
All outputs appear in the same fashion. The reason is that
in the first cycle, the system is processing the first input
and output is available in that cycle, hence the red bar. The
FDA mechanism allows all the processing in a single cycle,
therefore, the output for first input is readily available in
the second cycle and therefore, a latency of 1 clock cycle.
Similarly, the second input is processed in the second cycle
and its result is displayed in the next cycle and so on. The
three finite black bars show the outputs w.r.t the first three
inputs. The last output is preserved for an indefinite period
of time as just four inputs are used for verification and the
system becomes stable at the last output.

Now for the Type-I architecture, a single input bit is pro-
cessed in a single cycle instead of the whole bit stream, hence
the first output appears after four cycles (since 4-bit input).
For the Type-II half latency based architecture, the name is
suggestive enough to tell us that the overall latency of the
system will be reduced to half of that of Type-I design which
becomes 2 clock cycles in this case.

C. TIMING AND DESIGN ANALYSIS
The graph of Figure 11 shows the throughput comparison for
all designs. A clear trend in the graph shows that throughput
for all filters of same taps displays the highest peak at Type-I
and the lowest peak at FDA. Thus, Type-I provides the best
throughput results for any filter order while Type-II, though
not as efficient as the former, still shows a better throughput
performance than FDA.

Table 7 shows the timing and design attributes including
CPD, latency and the number of logic levels for the 16-tap
filter. Analysis of this table shows that Type-I design provides
the shortest CPD but the highest latency, while on the other
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FIGURE 9. Simulation results of the 4-tap filter for FDA, OBC-HM-DA & OBC-HM-HL-DA
designs.

FIGURE 10. Clock based timing diagram of the 4-tap filter for all 3 designs.

FIGURE 11. Throughput comparison of all designs for filters of length 4,
8 and 16.

TABLE 7. Timing and design attributes of 16-tap filter.

hand, FDA is the exact opposite. Meanwhile, Type-II acts
as a compromise between the two with attributes that lie in
between. Also, the proposed designs provide 1.57× lower
logic delay in terms of logic levels of the design. Hence
we conclude that the proposed designs provide an efficient
timing-latency trade-off.

D. POWER CONSUMPTION
Power Consumption is an important performance metric in
the evaluation of a digital design. It directly affects the cost,
energy and temperature of the device. Hence, the lower the
power consumption, the higher the system stability and the

FIGURE 12. A breakdown of power consumption for 16-tap filter.

lower the cost of the system. Basically, there are two types
of power linked to a digital system; dynamic power which
is associated with the switching activity of the components,
and static power which appears due to the leakage current of
the components. In terms of a digital system, dynamic power
is further categorized into consumption w.r.t clocks, signals,
logic and I/O. Figure 12 reports a breakdown of these powers
w.r.t each design for the 16-tap filter.

Figure 13 shows a comparison of the total power consumed
by all 3 designs for 4, 8 and 16-tap implementations. The gen-
eral trend shows that FDA consumes the most power for any
filter length, whereas Type-I consumes the least. Note that the
slope of FDA curve considerably rises as we go from 4-tap
to 16-tap, whereas, Type-I design shows just a marginal rise
in slope. This means that as the filter order rises, the power
consumption of FDA increases rather exponentially while
that of Type-I and Type-II remains fairly linear.

E. RESOURCE UTILIZATION
The foundation of this research was laid on the fact that
multipliers are limited in number in an FPGA/DSP system.
Hence minimizing resource utilization was a driving factor
behind our research. Figure 14 gives an account of overall
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FIGURE 13. Comparison of total power consumed by each design for 4,
8 and 16-tap implementations.

FIGURE 14. Area utilization of all designs for filters of 4, 8 and 16 taps.

TABLE 8. Number of resources utilized for 16-tap implementation.

resource utilization of all designs, according to which the
proposed designs require lesser area as compared to FDA.
Another trend deduced from the bar graph is that the utiliza-
tion efficiency of the proposed designs becomes more and
more significant as the filter order rises.

A breakdown of resource utilization of 16-tap filter is
shown in Table 8. Information regarding the number of slice
registers, number of slice LUTs, number of fully utilized
LUT-FF pairs and number of bonded IOBs is displayed in
this table, regarding both with DSP and without DSP. These
stats establish Type-I to have the lowest area requirement for
any filter length as compared to the other designs.

F. FDA VS PROPOSED DESIGNS
In this subsection, we compare the overall performance of
proposed methods against FDA in light of the graph of
Figure 15. The proposed designs show a 2.18× and 1.84×
reduced CPD as compared to FDA allowing the system to
operate at higher frequency. Meanwhile, the same stats are

FIGURE 15. Performance comparison of all designs w.r.t 16-tap filter.

observed for throughput but in an increasing fashion which
shows that the proposed designs effectively increase the sys-
tem throughput.

Power Consumption of the proposed designs are scaled
down by about 3.5% and 1.9% respectively when compared
to FDA. Recall the graph of Figure 13 in the power consump-
tion section, we established that as filter order increases the
consumption of FDA shows more of an exponential rise as
compared to the linear rise of the proposed designs. Hence
for higher order filters, power consumption stats show even
more promising results for the proposed designs.

Next, the graph shows that the proposed designs achieve a
5% and 4% alleviation in FPGA resource utilization respec-
tively as compared to FDA. The breakdown of area utilization
w.r.t sources, as shown in Table 8, shows about a 2× reduced
utilization of slice LUTs for the proposed designs while the
rest of the components display rather close results.

Finally, in Figure 15, latency results are displayed which
show that FDA, Type-I and Type-II designs require a latency
of 1, 4 and 2 clock cycles respectively to compute one result.
Hence, where FDA lacks in other design attributes, it provides
the best latency and where Type-I achieves the best perfor-
mance in other design attributes, it does so at a cost of 4×
elevated latency. Meanwhile, Type-II acts as a compromise
between the other two architectures.

We also compared the performance of proposed designs
with FDA in terms of Giga Multiply-Accumulate per Sec-
ond (GMACS) as presented in Table 9. The results show
that the DSP performance improves by 2.18× and 1.84× for
Type-I and Type-II designs respectively.

G. INTER-COMPARISON OF 4, 8 AND 16-TAP
IMPLEMENTATIONS
We also perform an inter-comparison of 4, 8 and 16-tap filters
as shown in Figure 16. Note that as we move from 4 to 8-
tap filter, the CPD stats show a 1.24× increased delay for
FDA. Similarly, as we move from 8 to 16-tap, the delay
further increases to 1.38×. However, in case of Type-I design,
we observe an increase of 1.10× and 1.12× in the delay.
Similarly, Type-II design shows an elevation of about 1.2×
in both cases. In light of these stats, we deduce that the
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FIGURE 16. Comparison of various performance metrics of all designs
for 4, 8 and 16-tap filters.

TABLE 9. DSP performance comparison based on GMACS.

proposed designs show a more linear and lenient increase in
CPD as compared to FDA. Hence they provide better timing
performance as we move towards higher order filters.

Whenwe compare the power consumption stats in a similar
manner, we find a 1.9% and 4.2% increase in FDA as we
progress through the two graph. Similarly, Type-I shows a
1.5% and 2.3% increase and Type-II shows a 1.9% and 2.6%
rise in power consumption. Now that moving from 4 to 8-tap,
the increment factor is almost the same for all three filters.
However, at moving from 8 to 16-tap, the proposed designs
show a 1.62− 1.83× lesser elevation in power consumption
as compared to FDA.

These stats show a linearly stable behavior of proposed
designs as compared to FDA which appears to exhibit an
exponential performance-drop as we move towards higher
order filters. The improved power and timing performance
of Type-I and Type-II designs also significantly reduce the
system cost. This establishes them as stable, balanced and
cost-effective designs.

H. TYPE-I VS TYPE-II
To compare the proposed designs among themselves,
we again refer to the graph of Figure 15. Based on that,
we work out that Type-I design possesses about 1.2× lower
CPD as compared to Type-II for the 16-tap filter. Thismeans a
1.2× increase in throughput of the former as compared to that
of the latter. With regards to power consumption, the former
requires 1.5% lesser power in contrast to the latter. However,
there is notmuch daylight between the two designs in terms of
resource utilization as Type-I uses just 1% lesser area as com-
pared to Type-I. The reason for this is that the latter does not
require additional memory or registers, just a small combina-
tional logic allows to process the input in a parallel fashion.

TABLE 10. Resource utilization of OBC-HM-DA as compared to other
designs.

TABLE 11. Power consumption and number of slices of ADF5 and
proposed designs for a 16-tap filter.

The last performance metric answers any doubts regarding
the benefits of Type-II design. Regardless the filter length,
it always provides a latency exactly half of Type-I design.
Timing diagram of Figure 10 also shows a clock based devel-
opment of latency. Hence, Type-II design improves system
latency at the cost of minimum resource overhead.

So, the bottom-line is that Type-I (OBC-HM-DA) provides
the most stable and power efficient design as compared to
other designs. Moreover, it also provides the best timing
statistics and the least resource utilization. These properties
lead to lower area and cost requirements for the device. How-
ever, it displays more latency which might not be desirable
at times, for which we proposed the Type-II (OBC-HM-HL-
DA) design, which acts as a compromise between Type-I
and FDA, i.e. it is not as competent as the former in design
attributes but provides better latency, and is still more efficient
than FDA in terms of area, cost, power and timing stability.

I. PROPOSED DESIGNS VS PREVIOUSLY PROPOSED
DESIGNS
In this section, we compare the results of Type-I design
with existing schemes proposed in [12], [15], [17] and [23].
For simplicity, we refer these as ADF1, ADF2, ADF3 and
ADF4 respectively. These designs have used unique FPGA
platforms for implementation. Since each FPGA board has its
own specifications, a fair comparison is not possible. There-
fore we enlist the platform used by each design to compare
their area utilization as shown in Table 10.

We also compare our designs to a Virtex-7 implemented
(same as us) design proposed in [20], referred as ADF5.
Table 11 shows a comparison of power consumption and slice
utilization of ADF5 and OBC-HM-DA. According to these
stats, ADF5 provides a 1.11× and 1.13× better power utiliza-
tion than Type-I and Type-II respectively. On the other hand,
the proposed designs require a 1.45× and 1.36× lesser area
when compared to ADF5. Thus we have a possible trade-off
between area and power utilization. These comparisons show
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that the proposed designs surpass the previously proposed
designs in terms of area utilization.

VI. CONCLUSION
LMS is a sophisticated algorithm for digital adaptive filters
which makes use of MAC operations for output and weight
calculation. Despite the algorithm’s simplicity, its dedi-
cated real-time implementation is costly in terms of limited
resources, especially multiplier which is the most expensive
unit in the design. This paper presents a time-multiplexed
design for multiplier-less implementation of LMS algorithm
using distributed arithmetic, half memory algorithm, offset
binary coding and parallel processing. Based on the design
requirements, two variants of the fundamental architecture
have been proposed:
• OBC-HM-DA (Type-I), to improve the timing and
design attributes such as delay, throughput, power and
resource utilization at the expense of latency.

• OBC-HM-HL-DA (Type-II), to halve the latency
induced by Type-I with slightly reduced performance for
other design attributes.

Vivado was used to implement and synthesize these
designs as well as the traditional dedicated, fully parallel
architecture for reference. Throughput of Type-I and Type-II
architectures showed an improvement of 2.18× and 1.84×
respectively against FDA for a 16-tap filter. Similarly, power
consumptionwas reduced by 3.5% and 1.9%, and area utiliza-
tion by 5% and 4% respectively. Latency being the trade-off,
turned out to be 4 and 2 clock cycles respectively against a
single clock cycle of FDA. Inter-comparison of 4, 8 and 16-
tap filter lengths showed a linear utilization and consumption
approach of the proposed designs in contrast to an exponential
approach of FDA. These statistical comparisons establish
OBC-HM-DA to be a balanced, stable and resource-efficient
design while OBC-HM-HL-DA being the lesser version of
the former but with improved latency.
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