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ABSTRACT In this paper, a method for calculating the received power in a radio-frequency wireless power
transfer system with array antennas is proposed. The received power is derived based on the superposition
of the electric fields that radiate from individual transmitter (Tx) elements and are captured by each
receiver (Rx) element. That is expressed in a finite series form with the radiation patterns of an element
considering mutual coupling in the array and corresponding distances between the elements of Tx and Rx.
Unlike conventional methods (such as the Friis and Goubau formulas), this approach is able to calculate
the received power precisely in both Fresnel and far-field regions. It is also efficiently applicable to various
cases, such as those involving beamforming and with varying positions of Rx. The calculated results using
this method are applied to a 5.2 GHz WPT system with array antennas and verified through comparisons
with both simulation and experimental results.

INDEX TERMS Array antenna, beamforming, Fresnel region, Friis formula, received power, wireless power
transfer, power transmission efficiency.

I. INTRODUCTION
W ireless power transfer (WPT) technology has been used
recently in various applications, such as mobile devices,
wearable devices, implantable medical devices, and electrical
vehicles. However, most of these applications adapt station-
ary wireless charging methods based on inductive coupling or
resonant coupling [1], [2], meaning that there remains some
inconvenience for users. On the other hand, radio-frequency
(RF) WPT, sometimes referred to as microwave power
transmission (MPT), can transfer wireless energy to a
receiver (Rx) over a long and wide range. Even with low
WPT efficiency, defined as the ratio of the total received
power (PR) reaching the Rx antenna to the total transmitted
power (PT ) radiated from the transmitter (Tx) antenna, it is
possible to increase the WPT efficiency by applying an array
with multi-elements as Tx or Rx antenna. In addition, beam-
forming technology with an array antenna ensures wireless
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power transfers in specific directions [3]–[5]. Accordingly,
many studies related to array antennas and beamforming have
been conducted in an effort to improve the RF WPT effi-
ciency [6]–[10]. RF WPT technology based on beamforming
also enables immediate responses to changes in the posi-
tion of Rx and transmits the wireless power to a number of
devices with a single Tx system. This is why it is suitable for
charging various low-power devices and is utilized for wire-
less sensor networks (WSNs) with Internet of things (IoT)
devices [11]–[16].

The WPT efficiency is a key indicator for estimating the
performance of a RFWPT system. Specifically, PR is directly
related to the circuit performance of the Rx applications.
Hence, before designing a WPT system, it is important to
predict the WPT efficiency and PR to determine the goals
of the system and their applications. When carrying out an
experiment after implementing an actual system, accurately
calculated result data must be obtained to verify the experi-
mental result. The Friis formula [17] is the most well-known
formula for obtaining the PR. It is composed of a simple
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FIGURE 1. RF wireless power transfer (WPT) system with array antennas.

proportional expression and therefore makes it easy to cal-
culate PR intuitively. However, because this is a valid for-
mula in the far-field region, considerable errors occur in
near-field regions relative to the size of the Tx antenna (such
as Fresnel and reactive regions [18]). For example, the WPT
efficiency result by Friis formula has a value of more than
100% if the power transmission distance is very close to the
wavelength. In the 1960s, Goubau [19] developed a WPT
efficiency formula that complements this Friis formula [20].
This formula does not yield results that exceed 100% WPT
efficiency regardless of the distance value, meaning that the
Goubau formula can determine a more accurate PR compared
to the Friis formula. These two formulas have been widely
used because they are simple; nevertheless, they result in sig-
nificant errors in the Fresnel and reactive region. Therefore,
various methods of analysis of the WPT efficiency or PR
have been investigated to secure more accurate results in the
Fresnel region [21]–[26].

Modified Friis and Goubau formulas with correction terms
have also been proposed [21], [22], respectively. In one
study [23], in order to decrease the difference between the
theoretical and calculated results, the WPT efficiency reflect-
ing the synthesis loss in an Rx array was introduced. These
studies could yield improved accuracy of the results in the
Fresnel region but require the radiation patterns of the Tx and
Rx antennas. Therefore, they are limited because the simu-
lation or measurement of the array pattern is also difficult if
the array antenna is large. In other works [24]–[26], methods
by which to predict the WPT efficiency were introduced
based on the relative distances between individual elements.
These approaches make efficient assessments because they
do not require simulations or measurements for a large array
antenna. However, cases involving beamforming by adjusting
the magnitude or phase of the feed signal were not addressed.

Using commercial EM simulation tools results in very
accurate outcomes, as doing so makes it possible to model
the configuration of Tx and Rx antennas and the channel

environments and to simulate the WPT. However, depending
on the computer specifications, the size of the analytical
model that can be simulated is limited. If the size of the
antenna compared to the wavelength is large or the power
transmission distance is long, an EM simulation takes a long
time and occasionally such a simulation may be impossible.
Becausemost RFWPT systems utilize large array antennas to
achieve high WPT efficiency and aim to transmit power over
long distances, it is quite restrictive to apply this method to
various WPT scenarios. Therefore, it is necessary to develop
a simple as well as accurate method to calculate the WPT
efficiency and the PR value for scenarios such as those with
beamforming and changes of the Rx position.

In this paper, a method by which to calculate PR and the
WPT efficiency for a RF WPT system with array antennas is
proposed. In Section II, the principle of the proposed method
is explained. The formulas with which to determine PR and
the WPT efficiency are derived by analyzing electromagnetic
interactions based on the superposition of the electric fields
radiated from individual Tx elements and captured at each Rx
element. Section III applies the proposed method to a variety
of WPT scenarios while varying the transmission distances,
the type of antenna, the number of array elements, the Rx
positions, and the beamforming directions and compares
these results to those by the Friis and Goubau formulas and an
EM simulation. Measurement results are also shown to verify
the results derived when using the proposed method, with an
analysis of the results also carried out in Section IV.

II. PRINCIPLE OF THE PROPOSED METHOD
Fig. 1 shows a RF WPT system with a Tx array antenna and
an Rx array antenna. Here, it is assumed that no obstacles
exist around the Tx antenna and the Rx antenna or between
the two. The numbers of the array elements in Tx and Rx are
M and N , and the indexes of the elements in Tx and Rx array
are expressed as m and n, respectively. In this figure, En,m
is the electric field radiated from the m-th Tx element and
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delivered to the n-th Rx element, and En,m is the magnitude
of En,m. Rn,m = ân,mRn,m is the position vector of the n-th
Rx element based on the (xm,ym,zm) coordinate system with
the center of them-th Tx element as the origin. When E is the
electric field and η is the wave-impedance, the time-averaged
magnitude of the Poynting vector in free space is expressed
as the power density W = |E|2/2η [27]. Accordingly, En,m
in Fig. 1 is

En,m =
√
2ηWn,me−j(kRn,m−βm). (1)

In (1), k is the wave-number and βm denotes the excited phase
of the m-th Tx element. e−j(kRn,m−βm) shows the phase of the
electric field according to the distance (Rn,m) and initial phase
(βm). Wn,m is the received power density from the m-th Tx
element to the n-th Rx element and is therefore expressed
as follows (2), as shown at the bottom of the next page: If
Rn,m is in the far-field region of them-th Tx element, the Friis
formula can be applied to calculate the received power from
the m-th Tx element to the n-th Rx element [17], [18]. Thus,
the denominator of (2) is

λ2PtmGtm
(
θn,m, φn,m

)
Gr n

(
θm,n, φm,n

)(
4πRn,m

)2 . (3)

Here, λ is the wavelength and Ptm is the excited power
to the m-th Tx element. Gtm (θn,m,φn,m) is the realized gain
of the co-polarization of the m-th Tx element in the direction
of the n-th Rx element and Grn (θm,n,φm,n) is the realized
gain of the co-polarization of the n-th Rx element in the
direction of them-th Tx element. Consequently, (2) is derived
as follows:

Wn,m =
λ2PtmGtm

(
θn,m, φn,m

)
Gr n

(
θm,n, φm,n

)(
4πRn,m

)24πRn,m2
(4)

Both Gtm (θn,m,φn,m) and Grn (θm,n,φm,n) are determined
by the relative location and direction between the Tx m-th
element and the Rx n-th element according to the spacing
and the position of the element in the array. According to (1)
and (4), En,m of the electric field based on the response of the
n-th Rx element to individual Tx elements is finally derived
as

En,m =

√
2η
PtmGtm

(
θn,m, φn,m

)
Gr n

(
θm,n, φm,n

)
4πRn,m2

×
λ

4πRn,m
e−j(kRn,m−βm). (5)

Based on the definition of the power density which can be
obtained byW = |E|2/2η, the power of the electric field (E)
at distance R away from the source is P = 4πR2|E|2/2η.
Because the total electric field delivered to the n-th Rx ele-
ment is expressed as the superposition of the electric field
(En,1, En,2, · · · , En,M ) radiated from the M -elements of the
Tx array, the received power Prn of the n-th Rx element can
be derived as (6)–(9), as shown at the bottom of the next page.

According to (5) and considering that θm,n = θn,m,
φm,n = −φn,m, (6) is expressed in a finite series form,

as follows (7), with the radiation patterns of Tx and Rx single
elements. Given that this principle is equally applicable to all
N -elements in the Rx array, the total received power (PR)
can be expressed as (8), assuming that each instance of indi-
vidual power received is synthesized without loss. The total
transmitted power (PT ) radiated from the Tx array is then∑M

m=1 Ptm . Finally, in the RF WPT system with the Tx array
and the Rx array, as shown in Fig. 1, the WPT efficiency can
be derived as follows (9).

Because this proposed formula (9) originates from the
power relationship between the Tx and Rx elements based
on the gain (Gtm , Grn ) of the single antenna, it is valid in
the far-field of the single array element. When the largest
dimension of an array antenna is Da and the largest dimen-
sion of the single antenna element of the array is De, Da is
generally much longer than De such that 2De2/λ� 2Da2/λ,
meaning that the proposed formula (9) can be utilized if the
power transmission distance is in the far-field region of the
single antenna element, regardless of whether or not it is
in the far-field region of the array antenna. Also, Gtm and
Grn in (9) can be used in this condition because they are
gains of the single antenna element. Therefore, the proposed
method can be applied even in the near-field region (such
as Fresnel region) of the array antenna if the condition of
the transmission distance being in the far-field region of the
single Tx element (> 2De2/λ) is met.

Theoretically, the proposed formula (9) can utilize to a
WPT system based on an array antenna with a metamate-
rial or metasurface if the radiation pattern of the individual
radiating elements in the array can be obtained (by mea-
surement or a simulation). In contrast, it is not appropriate
to apply the proposed method to a WPT systems which is
difficult to derive the radiation patterns of radiating elements
as they have the variable performance depending on the
situation. For examples, in a reflective array antenna with
a metasurface [28], the radiation pattern of the individual
radiating elements of the reflective array varies according to
the direction of the feed antenna. In other case, it is difficult to
apply the proposed calculation method to the Rx metasurface
array antenna with active elements [29], because the radiation
pattern of the individual radiating elements in the Rx array
could change depending on the performance of the diodes for
the variable input power.

III. VERIFICATION OF THE PROPOSED METHOD
In this section, the proposed method derived from Section II
is applied for a variety of WPT scenarios while varying
the transmission distances, Rx positions, and the beamform-
ing directions. Results from the method are compared with
that of an EM simulation and conventional formulas. Here,
we assume a WPT system with a Tx 8 × 8 array and a Rx
2 × 2 array, as shown in Fig. 2, as an example. The Tx
array and the Rx array are both composed of simple patches
operating at 5.8 GHz with a 0.5λ0 spacing, and λ0 is the
wavelength of the operating frequency. The Fresnel region
(0.62

√
D3/λ0 < and < 2D2/λ0, where D is the longest length
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FIGURE 2. WPT system with a transmitter (Tx) of 8× 8 array and a
receiver (Rx) of 2× 2 array.

FIGURE 3. 2D radiation patterns of a single patch element on the
(a) xz-plane and (b) yz-plane.

of the antenna) of this Tx antenna is from 0.43 to 3.3 m [18].
The Rx 2× 2 array is located at (x ′, y′, z′) as the origin of the
Tx center.

Fig. 3 shows the 2D radiation patterns for co-polarization
of the single patch element of the Tx and Rx array accord-
ing to whether mutual coupling is considered. The radiation

pattern without mutual coupling refers to the pattern when
the single patch stands alone in free-space. On the other hand,
the radiation pattern with mutual coupling is the pattern when
the patch is within the array, considering mutual interference
with neighboring patch elements in the array. As shown
in Fig. 3, distortion of the radiation pattern arises due to the
mutual coupling.

A. NON-BEAMFORMING (Uniform EXCITATION)
Fig. 4 shows the WPT efficiency results when using the
proposed method with (9), the conventional methods, and
the EM simulation. It is assumed that a uniform signal is
fed to each Tx antenna and that the main beam is formed
in the +z-direction. For the position of Rx (x ′, y′, z′), x ′ and
y′ are 0 and only z′ (the transmission distance in this case)
is changed. CST Microwave Studio Software is used in the
simulation. The conventional methods in this paper are the
Friis formula [17] of (10) and the Goubau formula [19], [20]
of (11). Gt is the gain of the Tx 8 × 8 array antenna, Gr
is the gain of the Rx 2 × 2 array antenna, and the values
are 22.86 dBi and 10.75 dBi, respectively. Here, the R is the
distance between the centers of Tx and Rx, and in this case
R = z′. In (11), At and Ar correspond to the aperture area
of the Tx antenna and to that of the Rx antenna, respectively.
These values can be correspondingly expressed as Gt and Gr
by A = G λ2

4π [18].

PR
PT
= Gt

(
θ ′, φ′

)
Gr
(
θ ′,−φ′

) ( λ

4πR

)2

(10)

PR
PT
= 1− e

−
At Ar
(λR)2 (11)

As the power transmission distance exceeds 0.052 m
(=2De2/λ), the WPT efficiency in Fig. 2 is able to be cal-
culated by the proposed formula (9). Here, M = 64, N =
4, Pt1 = Pt2 = · · · = Pt64 , and β1 = β2 = · · · = β64.
The values of θn,m, φn,m, and Rn,m are determined by the

Wn,m =
the received power from m-th Tx element to n-th Rx element

4πRn,m2 (2)

Prn =
4π
2η

∣∣Rn,1En,1 + . . .+ Rn,mEn,m + . . .+ Rn,MEn,M ∣∣2. (6)

Prn =
(
λ

4π

)2
∣∣∣∣∣
M∑
m=1

√
PtmGtm

(
θn,m, φn,m

)
Gr n

(
θn,m,−φn,m

)e−j(kRn,m−βm)
Rn,m

∣∣∣∣∣
2

(7)

PR =
N∑
n=1

Prn =
(
λ

4π

)2 N∑
n=1

∣∣∣∣∣
M∑
m=1

√
PtmGtm

(
θn,m, φn,m

)
Gr n

(
θn,m,−φn,m

)e−j(kRn,m−βm)
Rn,m

∣∣∣∣∣
2

(8)

PR
PT
=

(
λ

4π

)2

N∑
n=1

∣∣∣∣ M∑
m=1

√
PtmGtm

(
θn,m, φn,m

)
Gr n

(
θn,m,−φn,m

) e−j(kRn,m−βm)
Rn,m

∣∣∣∣2
M∑
m=1

Ptm

(9)
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FIGURE 4. WPT efficiency with respect to the distance between Tx and Rx.

relative locations and directions of the Tx and Rx elements.
Here,Gtm (θn,m,φn,m) andGrn (θn,m,−φn,m) in (9) are obtained
from the radiation patterns of their corresponding elements
depending on the θn,m and φn,m.

As shown in Fig. 4, the results calculated using the pro-
posed method are in good agreement with the EM simu-
lation results. Note that the accuracy of the derived result
is guaranteed by applying the radiation pattern consider-
ing the mutual coupling in Fig. 3. On the other hand,
in the Fresnel region (especially when the distance < 1 m),
the results by the Friis formula have a large error with the
EM simulation result. The Goubau results produce values
that are smaller than those by Friis, but the errors are also
significant.

Figs. 5(a) and (b) show the results of the WPT efficiency
when the Rx is a 4 × 1 dipole array and an 8 × 1 dipole
array, respectively. It is assumed that the Tx antenna is the
8 × 8 patch array, identical to the Tx in Fig. 2, and that
the Rx dipole arrays of 4 × 1 and 8 × 1 are composed
of 5.8 GHz half-wavelength dipole elements whose gain are
2.2 dBi. As when calculating (9) for the case of Fig. 4,
the radiation patterns applied to the calculation consider the
mutual coupling of the each array element (Tx: patch, Rx:
dipole). In these cases, the results of the proposed calcu-
lation method are in good agreement with the EM simula-
tion results, much more than the conventional calculation
method. As shown in Fig. 4 and Fig. 5(a), even with an
identical number of Rx array elements, it can be seen that
the received power can change depending on the arrangement
of the array or the type of antenna element used. According
to the calculated and simulated results in Figs. 5(a) and (b),
when the number of Rx elements is doubled, the received
power increases, but does not double. This occurs because
the received power of the individual Rx elements according
to their positions in the array differs. As a result, regardless of
the type or number of array antennas, it can be seen that the
proposed calculation method is useful for analyzing various
WPT scenarios.

FIGURE 5. WPT efficiency with respect to the distance between Tx and Rx
when the Rx is (a) a 4× 1 dipole array and (b) an 8× 1 dipole array.

B. BEAMFORMING
Array technology is often used with Tx antennas in a WPT
system because this technology facilitates beamforming in
a desired direction with a desired beam-shape by adjusting
the magnitude and phase of the signal fed to each array
element. In this section, the WPT efficiency is calculated
according to Rx position, considering for beamforming in
a specific direction. Fig. 6 presents the information of the
phase of the signal and the power excited to each of the Tx
8 × 8 array elements in Fig. 2. Fig. 6(a) shows the excited
phase-set (βm) for steering the main beam in the direction of
θs = 30◦ and φs = 0◦, and Fig. 6(b) is the excited power-set
(Ptm ) when applying -18 dB Taylor weighting for side-lobe
reduction, leading to the formation of a beam pattern such as
that in Fig. 6(c).
When Rx is placed at two different positions, Fig. 7 dis-

plays the result after calculating the WPT efficiency with
respect to the z-position (z′) of Rx. Fig. 7(a) shows a case
in which Rx is located in the beamforming direction (θ ′ =
θs = 30◦, φ′ = φs = 0◦). Fig. 7(b) presents the results
when Rx is placed in front of Tx (θ ′ = 0◦, φ′ = 0◦);
consequently, θs 6= θ ′ and φs 6= φ′. Even when considering
the phase and power fed to the Tx-elements, the results by the
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FIGURE 6. Excitation information and radiation pattern of the Tx 8× 8
array in Fig. 2: (a) excited phase-set, (b) excited power-set, and (c) 2D
radiation pattern on the φ = 0◦ plane.

proposed method are more consistent with the EM simulation
results than those by the conventional methods. In particular,
according to Fig. 7(b), theWPT efficiency results when using
the Friis and Goubau formulas are close to 0% in both the
near- and far-field regions. Nevertheless, as shown in the EM
simulation results, in the Fresnel and reactive regions, little
power is received even if the Rx is not located in the direction
of the main beam; this is also confirmed by the results of the
proposed method.

Hence, the proposed method is shown to be effective
when used to calculate the WPT efficiency in both far-field
and Fresnel regions, and it is suitable when applied in the
WPT scenarios of beamforming and in various Rx posi-
tions. Moreover, although the simulation results are reli-
able, conducting EM simulations for all WPT scenarios is
very time-consuming work. On the other hand, the proposed
method requires no additional EM simulations or measure-
ments to obtain the gain or radiation pattern of an array
antenna if theWPT scenario is changed, and it is a reasonable
and efficient method for obtaining results for various WPT
scenarios.

IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENT SETUP
To verify the proposed method experimentally, 5.2 GHz
left-handed circular polarization (LHCP) patch arrays were
designed and fabricated to implement an actual WPT system,

FIGURE 7. WPT efficiency for beamforming in the θs = 30◦ and φs = 0◦
direction when Rx is (a) located in the direction of (θ ′ = 30◦, φ′ = 0◦) and
is (b) not located in the direction of (θ ′ = 0◦, φ′ = 0◦).

as shown in Fig. 8. The Tx system of theWPT system consists
of Tx circuits, a micro-controller (MCU), and an 8× 4 patch
array antenna. The single Tx circuit includes a phase-shifter,
an attenuator, and a power amplifier and is connected to the
single patch element. The MCU controls the phase of the
signal fed to the Tx antenna for beamforming in the desired
direction. The Tx 8× 4 array is composed of patch elements
that operate with LHCP forming at 5.2 GHz (in Fig. 8(b)).
The spacing between the patch elements is 34 mm (0.59λ0),
and the overall size of the array is 272 mm × 136 mm.
The Fresnel region of this 5.2 GHz Tx array is from 0.43 to
3.2 m. A Rx 2 × 3 array is also designed with 5.2 GHz
LHCP patch elements (in Fig. 8(c)), but its geometry differs
from the patch element of the Tx array. It has a total size
of 72 mm × 135 mm, with a horizontal spacing of 0.63λ0
and a vertical spacing of 0.78λ0. Fig. 9 displays the simulated
results of each Tx and Rx element. When considering the
mutual coupling within each array, the radiation patterns of
the Tx and Rx patches are shown in Fig. 9(a) and Fig. 9(b),
respectively, and their corresponding gains are approximately
6.15 dBic and 5.7 dBic.

The WPT experiment was performed changing the Rx
positions (x ′, y′, z′). In order to focus the wireless power on
the Rx positions, phase-sets for beam-focusing were applied
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FIGURE 8. 5.2 GHz WPT experiment: (a) experimental setup, (b) Tx 8× 4
array, and (c) Rx 2× 3 array.

FIGURE 9. 2D radiation patterns of a single element at 5.2 GHz in (a) the
Tx array and (b) the Rx array.

to the Tx array in each WPT scenario. Uniform power
of 0.5 W is supplied to each Tx patch element, and the total
transmitted power (PT ) is 16 W.

B. RESULTS AND ANALYSIS
The received power by the third element in Rx as shown
in Fig. 8(c) was measured with a spectrum analyzer (Agilent
E4440A). The results are described in Fig. 10 and Fig. 11.
When the Tx and Rx are in the line-of-sight (LOS) (x ′=y′=
0), Fig. 10(a) shows the experimental results of the received
power according to the power transmission distance (z′) and
the value of WPT efficiency in Fig. 10(b) was calculated
based on Fig. 10(a). As shown in Fig. 10, the received power
decreases as the distance (z′) increases and the range of the
measured received power was from 9.8 dBm to 22.5 dBm.
As a result, it is apparent that the experiment was well

FIGURE 10. Comparison of the results according to the power
transmission distance (z ′): (a) received power of the third element in Rx
and (b) WPT efficiency of the third element in Rx.

performed because the experimental results are in good agree-
ment with the calculation results as well as the EM simu-
lation results. It indicates that the proposed method in this
paper is valid to calculate the WPT efficiency in both Fres-
nel region (0.43 m–3.2 m) and far-field region (> 3.2 m).
In addition, Fig. 11 depicts the experimental results of the
received power according to the position of Rx (x ′, y′, z′) in
the off-axis (x ′ 6= 0). As the position of the Rx deviates from
the center, the measured power decreases, and this can also
be seen in the results of the calculations and simulations.
Accordingly, it proves that the proposed method is quite
accurate and applicable to both Fresnel regions and beam-
forming in various directions. There are small mismatches
between the calculated and measured results, because the
experimental setup was constructed in a laboratory as shown
in Fig. 8(a).

Table 1 shows the time taken to derive the EM simu-
lation and calculation results in Fig. 11. All EM simula-
tions were run on a computer with an Intel Core i7-7820X
3.6 GHz CPU and 128 GB of RAM integrated with two
NVIDIA Quadro P6000 GPUs. Calculations with the pro-
posed method are carried out by utilizing MATLAB. As a
result, using an EM simulation is found to be accurate, but
it takes a considerably long time to derive the result. As the
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FIGURE 11. Comparison of the results according to the position of Rx
(x ′ ,y ′ ,z ′): (a) received power of the third element in Rx and (b) WPT
efficiency of the third element in Rx.

transmission distance increases, the EM simulation time
increases sharply. If the structure of antenna become more
complex, the simulation time can be increased dramati-
cally. On the other hand, the proposed method is able to
obtain accurate results equal to those of the EM simula-
tion, but the time required for the calculation was only
0.8 seconds regardless of the transmission distance. For
the nine WPT scenarios shown in Table 1, a total time of
approximately 62 hours was required for the EM simulation.
In contrast, by using the proposed formula (9), the time
required to derive the equivalent results was only eight
seconds.

In conclusion, themethod proposed in this paper can derive
the received power not only as accurately as an EM simu-
lation but also much faster than an EM simulation. It is a
simple as well as accurate method for calculating the WPT
efficiency and received power for various scenarios, such as
those with varying transmission distances, different types of
antennas, different numbers of array elements, different Rx
positions, and different beamforming directions. Therefore,
the proposed method is more efficient than an EM simulation
when used to predict and analyze the received power in a
WPT system with array antennas.

TABLE 1. Comparison of EM simulation and calculation times required to
obtain the results of PR for the WPT system in Fig. 8.

V. CONCLUSION
In this paper, a method by which to calculate the received
power and WPT efficiency based on wireless power interac-
tions between individual Tx and Rx array elements in a WPT
system with array antennas is investigated. The accuracy of
its calculation is ensured given the use of radiation patterns
distorted by mutual coupling in the array. While applying
the well-known Friis or Goubau formula produces a large
error for the WPT in a near-field region, such as Fresnel and
reactive regions, the proposed method yields reliable results
in both near- and far-field regions. The results calculated by
applying this method to various 5.8 GHz RF WPT scenar-
ios were in good agreement with the results from an EM
simulation. When compared to experimental results with a
5.2 GHz WPT system, the measured and calculated results
showed good agreement. In addition, only a few seconds were
needed to calculate all cases, unlike in the EM simulation.
Accordingly, the proposed method can produce exact results
with rapid calculations. Therefore, it is expected to be actively
utilized during the development of RF WPT systems given
that it reduces the EM simulation time andwas verified exper-
imentally. This will be very helpful to those involved in devel-
oping energy harvesting and power management schemes
for IoT technology based on wireless sensors. Moreover,
the proposed method can be applied to a phased array system
and a MIMO (multiple-input and multiple-output) antenna
system, such as radar and 5G communications.
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