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ABSTRACT The integration of space and air components considering satellites and unmanned aerial
vehicles (UAVs) into terrestrial networks in a space-terrestrial integrated network (STIN) has been envisioned
as a promising solution to enhancing the terrestrial networks in terms of fairness, performance, and
network resilience. However, employing UAVs introduces some key challenges, among which backhaul
connectivity, resourcemanagement, and efficient three-dimensional (3D) trajectory designs of UAVs are very
crucial. In this paper, low-Earth orbit (LEO) satellites are employed to alleviate the backhaul connectivity
issues with UAV networks, where we address the problem of jointly determining backhaul-aware 3D
trajectories of UAVs, resourcemanagement, and associations between users, satellites and base stations (BSs)
in an STIN while satisfying ground users’ quality-of-experience requirements and provisioning fairness
concerning users’ data rates. The proposed approach maximizes a novel objective function with joint
consideration for BS’s load and fairness, which can be categorized as a non-deterministic polynomial time
hard (NP-hard) problem. To tackle this issue, we leverage a reinforcement learning framework, in which
our problem is modeled as a multi-armed bandit problem. Accordingly, BSs learn the environment and its
dynamics and then make decisions under an upper confidence bound based method. Simulation results show
that our proposed approach outperforms the benchmark methods in terms of fairness, throughput, and load.

INDEX TERMS Space-terrestrial integrated networks, space-air-ground integrated networks, unmanned
aerial vehicles, fairness, reinforcement learning, community networks.

I. INTRODUCTION
With the recent advancements in the satellite, aerial, and
terrestrial networks, future space-terrestrial integrated net-
works (STINs) are expected to ubiquitously employ intel-
ligence and heterogeneity as a foundation for new Internet
infrastructures. STINs have a great potential of improving
the quality of experience (QoE) for all satellite-dependent
Internet users and services in metropolitan, rural, and remote
areas across the world [1].

Currently, satellite-dependent Internet users suffer from
various Internet access interruptions, while autonomous solu-
tions to effectively resolving the access issues are lacking in
the literatures. The 3rd generation partnership project (3GPP)
study group on the fifth generation of telecommunication
networks (5G) [2] and International Telecommunications
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Union (ITU) focus group on machine learning (ML) for
future networks including 5G (FG-ML5G) [3] have identified
some general architectures for future networks, but no actual
solutions have been proposed yet. One way to address this
challenge is through fault compensation techniques using
aerial components considering unmanned aerial vehicles
(UAVs), where alternative links can be put in service to
overcome link outage issues in an STIN. One or more UAVs
can be purposed to temporarily provide alternative links to
ensure continuous underlying connections in case of link
outages between satellite and terrestrial components. Further-
more, UAVs can assist terrestrial networks in providing ubiq-
uitous connectivity for under-served and under-connected
areas (e.g., rural and disaster-affected areas) [4]. In these
cases, to achieve high QoE provided by a UAV-assisted
link, throughput and fairness as two important performance
metrics need to be met at the same time. In other words,
it is not desirable to serve certain users most of the time
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while leaving others under-served on the network. With the
expected global coverage using the advanced STIN, the Inter-
net users, including those in rural and remote communities
will have increasing reliance on the available connectivity
options provided by an STIN. In this case, STINs that ensure
the fault compensation and fairness are indispensable compo-
nents as the bedrocks of serving the next-generation Internet
infrastructure.

A. RELATED WORK
Space-terrestrial networks have been used in some applica-
tions which are referred as ‘‘alternative networks’’ in RFC
7962 [5]. Such alternative networks are considered to be
self-managed and self-sustained. The RIFE project [6] has
explored an architecture for a sustainable Internet access
consisting of a satellite backhaul and information-centric net-
working (ICN) fronthaul. Recently, the integration of satellite
and telecommunications networks have also been discussed
under the umbrella of space information networks (SINs)
or space-air-ground integrated networks (SAGINs), where
the recent low-Earth orbit (LEO) satellite constellation and
UAVs are new components for realizing backhaul links. In the
rest of the paper, we will consider SAGIN as a variant of
STIN, and use two terms interchangeably.

UAVs can assist cellular networks in providing reli-
able connectivity in under-connected areas such as rural
and disaster-affected areas where terrestrial communication
infrastructure is often damaged and/or there is no existing
ground infrastructure. One of the major issues in integrating
UAVs into terrestrial networks in the role of aerial base
stations (BSs) is optimizing their three-dimensional (3D)
locations and managing radio resource which can adapt to
the dynamics of the networks. The existing works have stud-
ied a number of problems related to UAV-enabled systems
including UAV placement, trajectory design and resource
allocation problems such as in [7]–[10]. To maximize the
data rates of users, a joint user association and UAV hori-
zontal location problem was investigated in [7]. The problem
was modeled as a mixed-integer non-convex optimization
problem, and was decomposed into two sub-problems. Then,
an iterative algorithm was employed. In [8], the problem
of the 3D trajectory design and resource allocation for a
single solar-powered UAV was investigated. The objective of
the optimization problem was to maximize the throughput
of the system during a finite period of time. An adaptive
UAV deployment approach was proposed in [9], in which
a single UAV adjusts its location in one-dimensional (1D)
and two-dimensional (2D) planes to maximize the average
throughput of users. In [10], the altitude of a single UAV was
optimized to achieve reliable communication and maximum
coverage by minimizing the outage probability. Accordingly,
a height-dependent closed-form expression for the outage
probability was derived.

In more practical scenarios, the recent works have con-
sidered multiple UAVs and/or integration of UAVs into ter-

restrial networks such as in [11]–[16]. In [11], the authors
derived approximate expressions for the coverage probabil-
ity and average achievable rate for UAVs located at fixed
altitudes. In [12], a set of UAVs were deployed as relays
to provide reliable wireless connection for ground users.
In order to improve the spectrum efficiency of the system,
the 2D trajectories of the UAVs were optimized. In [13],
the coverage area for UAVs in the presence of co-channel
interference was maximized. In [14], a set of UAVs were
deployed to assist a macro BS (MBS) in downlink for over-
load situations. To solve the problem in a distributed manner,
reinforcement learning algorithms were proposed. In [15],
a number of UAVs were distributed in a 3D space to sup-
port terrestrial networks during temporary mass events or
post-disaster situations. The problem of 3D placement of
UAVswas decomposed into two separate sub-problems: i) 2D
placement to find the horizental locations of UAVs, and ii) 1D
optimization to adjust the altitudes of UAVs. Firstly, it was
assumed that the altitudes of UAVs are fixed at random val-
ues. Then, using a K -means algorithm the locations of UAVs
in the horizontal plane were determined, in which a prior
knowledge of the users’ locations is required. However, this
assumption on the availability of users’ locations is imprac-
tical in real time situations, and providing it for UAVs can
be very challenging. Finally, the altitudes of UAVs were opti-
mized given the 2D locations of UAVs. In [16], UAVs coexist
with small BSs (SBSs) to maximize the satisfaction of users
with provided data rates through optimizing the 3D locations
of UAVs. To this end, two heuristic algorithms based on
the genetic algorithm and particle swarm optimization were
developed. In [17], the problem of resource allocation for
UAV networks was investigated. However, the trajectories
of UAVs were predefined according to the pre-programmed
flight plans.

Another main design challenge in UAV-assisted network-
ing is the backhaul connectivity which is not addressed in
the aforementioned work. The authors in [18] obtained the
placement of a single UAV, in which ground BSs provide
backhaul connectivity for the UAV. In [19], UAVs receive
backhaul data from a MBS, in which a non-orthogonal mul-
tiple access (NOMA) scheme was employed for the back-
haul transmissions. To maximize the sum rate of users, a
mechanism for optimizing the location of UAVs and resource
allocation in the MBS and UAVs were proposed. In [20],
the 2D placement of UAVs and resource allocation prob-
lem were investigated, in which UAVs are connected to
the core network through a cellular BS. The problem was
decomposed into UAV placement and resource allocation
sub-problems which are solved using iterative algorithms.
In [21], a MBS provides the backhaul connectivity for UAVs
in the system, in which they aim at maximizing their through-
put through optimizing their 2D trajectories based on a learn-
ing algorithm. In [22], the problem of the backhaul operation
dynamic link rerouting for UAV-based relay networks was
investigated. In [23], a set of ground BSs provide backhaul
connectivity for a single UAV. To maximize the total network
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profit, the problems of the UAV’s location and bandwidth
allocation to users were addressed. To solve the problems,
a heuristic algorithm with low computational complexity was
developed. The authors in [24] addressed the problem of
resource allocation for an integrated network of a single satel-
lite, ground BSs and UAVs, in which the satellite and MBSs
provide backhaul connectivity. The problem is formulated as
a competitive market aiming at maximizing the total profit in
the system, and an iterative heavy ball algorithm is applied to
find the solution. However, the 3D locations of UAVs were
not optimized jointly with the resource allocation problem.
In [25], the authors proposed an interference management
algorithm to maximize the overall sum rate gains in down-
link by optimizing the user-UAV association and resource
allocation. To consider the dependency between backhaul
and access links, a binary model was employed, in which if
the received signal to interference plus noise ratio (SINR) at
backhaul links are below a certain threshold, there will be no
transmission in access links. In [26], a set of LEO satellites
provide backhaul connectivity for a set of ground and aerial
BSs which serve users in downlink. To maximize the system
throughput, the UAVs aim at optimizing their trajectories, and
also all the BSs manage the radio resource.

On the other hand, fairness provisioning is one of the major
objective in wireless networks. Adaptive system design with-
out considering fairness may cause poor service to some users
since resource may be distributed to users with relatively
good channel conditions. In this regard, when adaptive sys-
tem design strategies are employed, fairness issue is required
to be taken into account. Specifically, there are different
fairness criteria such as max–min fairness [27], proportional
fairness [28], and Jain’s index [29]. However, the aforemen-
tionedwork has not taken into account the issue of the fairness
in SAGINs, and there are a few works in UAV networks
that have considered this issue such as in [30]–[33]. In [30],
the optimal altitude of a UAV was optimized to maximize
the fairness between users. In [31], the authors proposed a
method for UAV control flying at a fixed altitude, in which the
target region is divided into several cells and each cell needs
to be covered by at least a UAV based on a fairness criteria.
In [32], a UAV as a relaywas employed to extend coverage for
two disconnected far vehicles. The 2D trajectory design of the
UAVwas optimized based on the throughput fairness between
vehicles and among different time slots. The fairness issue
is considered in [33], where a proportional fairness metric
is used to maintain fairness among users through optimizing
the location of a single UAV. However, the previous studies
on fairness [30]–[33] have not explicitly considered fairness
in conjunction with load balancing, 3D trajectory of UAVs,
BS-satellite/user-BS association and resourcemanagement in
SAGINs.

B. CONTRIBUTIONS
The main contributions of this paper include to propose a
novel framework for joint 3D trajectory design of UAVs,
BS-satellite/user-BS association, and managing resource

among UAVs and terrestrial BSs while ensuring the fairness
among users and minimizing the load of BSs. Besides, pro-
viding backhaul connectivity is a major challenge especially
for disaster-recovering and rural areas. Thus, we assume
that LEO satellites provide backhaul connectivity to BSs.
To optimize access links, we formulate our problem as a
multi-armed bandit (MAB) problem, in which a reward func-
tion capturing the fairness and load is defined. Our main
contributions include:

• We model a novel framework to jointly address
BS-satellite associations, user-BS association, resource
allocation among BSs, and 3D trajectories of UAVs
within an STIN. Due to the high complexity of the
problem, we decompose it into the backhaul link and
the access link problem. In our system, a set of LEO
satellites provide backhaul connectivity for SBSs and
UAVs. UAVs, as aerial BSs, coexist with SBSs, and both
UAVs and SBSs provide data to ground users in down-
link. Moreover, we assume that users move according to
a mobility model.

• We formulate our problem in access links, i.e., the joint
resource allocation and 3D trajectory design of UAVs,
as a MAB problem, in which SBSs and UAVs aim at
maximizing an objective function capturing the fairness
and the loads of BSs. Meanwhile, UAVs and SBSs
receive the data in backhaul links through connecting the
satellite offering the best signal strength. To take into
account the loads of BSs, we use a rigorous definition
of the load instead of using simple definitions such as
the number of users associated with a BS that do not
properly reflect the loads of BSs.

• To solve our MAB problem, we employ the upper con-
fidence bound (UCB) policy. It can provide an effec-
tive balance between the exploration and exploitation to
adapt the system dynamic without prior and full infor-
mation of the system.

• The simulation results reveal that the proposed approach
generally outperforms the benchmark algorithms in
terms of fairness, throughput and load.

The rest of this paper is organized as follows. In Section II,
we describe our systemmodel and the user association policy.
In Section III, we formulate our problem for BS-satellite
association in backhaul links, and resource allocation and
3D trajectory design of UAVs in access links. Section IV
describes our learning based approach to solve the problem
in access links. In Section V, we evaluate the performance
of our proposed approach. Finally, Section VI concludes the
paper.
Notations: The regular and boldface symbols refer to

scalars and matrices, respectively. For any finite set A,
the cardinality of set A is denoted by |A|. XT denotes the
transpose of matrixX . The floor of a real number x is denoted
by bxc which maps x to the greatest integer less than or equal
to x. The function 1φ denotes the indicator function which
equals 1 if event φ is true and 0, otherwise. RM and log2(.)
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TABLE 1. List of notations.

denote the space of M -dimensional real-valued vectors, and
the logarithm with base 2, respectively. Additionally, Table 1
presents the list of notations.

II. SYSTEM MODEL
We consider a network composed of the LEO satellites,
the UAVs, and the terrestrial BSs to provide service for
ground users in the downlink in a particular area R ∈ R2,
as illustrated in Fig. 1. In the space segment, the set of the
LEO satellites L provide the capacity for the UAVs and the
terrestrial BSs in backhaul links. The set of UAVs is denoted
by U which act as the aerial BSs in the aerial segment, and
fly with speed VU. The ground segment consists of a set
of users K and a set of SBSs S. The UAVs and the SBSs
provide service connectivity over the access links, and the
satellites are expected to cause negligible interference on the
access links. We assume that the total time T is discretized
into N equally spaced time instants with duration Ts which
is chosen to be sufficiently small. Therefore, the locations
of the UAVs are assumed to be constant during each time
instant t .

Let the set of users which are associated to BS b ∈ B at
time instant t ∈ N is denoted by Kb(t), where B = S ∪ U

FIGURE 1. An illustration of the system model.

is the set of total BSs in the system.1 We denote the 3D
coordinates of satellite l ∈ L, BS b ∈ B, and user k ∈ K
at time instant t , respectively, by aLl (t) =

(
xl(t), yl(t), hl(t)

)
,

aBb (t) =
(
xb(t), yb(t), hb(t)

)
, and aKk (t) =

(
xk (t), yk (t), hk

)
.

1In what follows, the term BS denotes both a terrestrial BS and a UAV.
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A. BACKHAUL LINK
Here, we focus on backhaul communication over the
millimeter-wave (mmWave) links. We consider a wireless
backhaul network composed of the set of the LEO satellites
L = {1, . . . , |L|} and the set of the BSs B = {1, . . . , |B|}.

We assume that a circular orbit for the equally distributed
LEO satellites moving in the direction of y-axis at the fixed
altitude HL above the surface of Earth [34]. Let G and ME
denote the gravitational constant and the mass of Earth in
kilograms, respectively. Thus, the orbital speed of the satel-
lites in the orbital plane can be determined as follows [35]:

VL =

√
G ·ME

(HL + RE)
[m/s], (1)

where RE is the radius of Earth in meters. Therefore,
the orbital period of the LEO satellites can be calculated as
follows [35]:

TL =
2π (HL + RE)

VL
[sec]. (2)

We assume that the total bandwidth ωBCK is allocated
for the backhaul communications which is divided into
|L| orthogonal channels equally with bandwidth ωBCK/|L|.
Let fc be the carrier frequency in GHz. Therefore, the free
space path loss model between each satellite l ∈ L and each
BS b ∈ B can be expressed as [36]

Ll,b(t) = 32.45+ 20 log10(fc)+ 20 log10(dl,b(t)) [dB], (3)

where dl,b(t) is the distance between satellite l and BS b at
time t which is determined as follows:

dl,b(t)=
√
(xl(t)−xb(t))2+(yl(t)−yb(t))2+(hl(t)−hb(t))2.

(4)

Let pl and gl,b(t) denote the transmit power of satellite l
and the channel gain between satellite l and BS b at time t
which is given by

gl,b(t) =

{
10
−Ll,b
10 GT

l G
R
b , if dl,b ≤ rmax

b

0, otherwise,
(5)

whereGT
l andG

R
b are the transmit gain of satellite l’s antenna

and the receive gain of BS b, respectively. Here, rmax
b indi-

cates the maximum distance of a satellite above the horizon
of BS b, in which the satellite and the BS are able to commu-
nicate. Parameter rmax

b can be calculated as follows [37]:

rmax
b =

√
2.rb,O.rb,L + r2b,L, (6)

where rb,O and rb,L denote the distance of BS b from Earth’s
center and the minimum distance from a satellite to BS b,
respectively.

According to Shannon’s capacity formula, the achievable
data rate BS b associated to satellite l at time instant t is given
by

Cl,b(t) =
ωBCK

|L|
log2(1+

aBCKl,b (t) pl gl,b(t)

σ 2
0

) [bps], (7)

where σ 2
0 represents the noise power. The binary element

aBCKl,b (t) ∈ {0, 1} denotes the association relation between
satellite l and BS b such that aBCKl,b (t) = 1 indicates that
BS b is associated to satellite l at time instant t , otherwise
aBCKl,b (t) = 0. Furthermore, for dl,b > rb,O, the association
element aBCKl,b (t) is equal to zero. Thus, we define the associa-
tionmatrix for the backhaul links asABCK

t = [aBCKl,b (t)]|L|×|B|
which is updated based on the association elements aBCKl,b (t)
at each time instant t .

B. ACCESS LINK
In the access links, the set of BSs B serve the ground users
in the downlink direction. We assume that the users move
according to the random walk mobility model at each time
instant [38]. Thus, each user k ∈ K selects a speed uniformly
distributed from the ranges [Vmin

k ,Vmax
k ] and a movement

angle uniformly from the ranges [0, 2π ], and performs a
movement based on the selected speed and direction. Here,
Vmin
k and Vmax

k denote the minimum and maximum speed of
user k , respectively.

1) DATA RATE AND LOAD
For the access links, we consider the total bandwidth ωACC
which is equally divided into |Q| orthogonal channels with
bandwidth ωACC/|Q|, where Q is the set of available chan-
nels for communications in the access links. Therefore,
the maximum achievable data rate to user k provided by BS
b which is associated to satellite l is given by [21]

Cb,k (t) = min
(ωACC

|Q|
log2(1+ γb,k (t)),Cl,b(t)

)
[bps], (8)

where γb,k (t) denotes the SINR at the receiver of user k
associated to BS b, which can be defined as follows [39]:

γb,k (t) =
aACCb,k (t).pb.gb,k (t)∑

b′∈B\b pb′ .gb′,k (t)ρb′ (t)1(qb(t)=qb′ (t)) + σ
2
0

, (9)

where pb and gb,k (t) denote the transmit power of BS b
and the channel gain between BS b and user k at time t ,
respectively. Here, qb(t) is the channel which BS b transmits
over it at time instant t . The binary element aACCb,k (t) ∈ {0, 1}
indicates the association between BS b and user k at time t ,
such that

aACCb,k (t) =

{
1, if user k is associated to BS b,
0, o.w.

(10)

According to the association elements aACCb,k (t), we define

the association matrix for the access links as AACC
t =

[aACCb,k (t)]|B|×|K|. Furthermore, the set of users associated to

BS b can be defined as follows:

Kb(t) = {k|k ∈ K, aACCb,k (t) = 1}. (11)

Parameter ρb(t) denotes the load of BS b at time t , which
can be obtained as follows [40]:

ρb(t) =
∑

k∈Kb(t)

ϑk

ζk Cb,k (t)
, fb(ρ(t)), (12)
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where ϑk and ζk denote the packet arrival rate and the
mean packet size of user k , respectively. Here, ϑk/ζk
represents the user rate requirement. Therefore, we can
assume that the users are heterogeneous in nature, in which
each user can have a different QoE requirement based on
its packet arrival rate and mean packet size. Moreover,
ρ(t) =

(
ρ1(t), . . . , ρ|B|(t)

)
denotes the BS load vector con-

sisting of the load values of all the BSs, and function fb(.)
defined in (12) represents the load of BS b as a function of the
BS load vector. We can rewrite (12) in the format of vector as
follows [41]:

ρ(t) = f (ρ(t)), (13)

where f (ρ(t)) =
(
f1(ρ(t)), . . . , f|B|ρ(t)

)T
denotes the vector

of load functions. Since the BS load vector appears in both
sides of (13), we are not able to solve it as a fixed-point
solution in a closed form. Therefore, we use the fixed point
iteration algorithm, based on the fact that f (ρ(t)) is a standard
interference function (SIF). Due to the availability of the lim-
ited amount of the resource in the network, the load of each
BS b is bounded by the full load, i.e. ρb(t) ≤ 1, b ∈ B [42].
When ρb > 1, BS b sorts its associated users based on the
load density ϑk

ζkCb,k (t)
,∀k ∈ Kb(t) in descending order. Then,

it drops users from the top of the list (interpreted as outage
users) until ρb ≤ 1. Then, it associates the remaining resource
to the outage users.
Definition 1: A function I (n) is a SIF if for all n ≥ 0 the

following properties are satisfied [43]:
1) Positivity: I (n) > 0,
2) Monotonicity: n ≥ n′ ⇒ I (n) ≥ I (n′),
3) Scalability: αI (n) > I (αn) for α > 1,
To numerically obtain ρ(t) in (13), we use an iterative

algorithm for the load of the BSs as follows. Specifically,
we start from an arbitrary initial BS load vector ρ0 > 0, and
calculate the output of the mth iteration of the algorithm as
follows [44]:

ρm = min
(
f (ρm−1), 1

)
, (14)

where ρm is the BS load vector at iteration m ∈

{1, . . . ,M}. Parameter M denotes the total number of iter-
ations. Lemma 1 indicates that the BS load vector ρM con-
verges to the fixed point solution of (13).
Lemma 1: If the fixed point of (13) exists, then it is unique,

and can be iteratively obtained by (14) as M goes to infinity.
Proof: In [45], it is proved that fb(ρ(t)) is a SIF. Fur-

thermore, Theorem 7 in [43] prove that min(fb(ρ), 1) is a SIF.
Then, by using Theorem 2 in [43], the convergence is proved.

2) PROPAGATION CHANNEL
We consider a line-of-sight (LoS)/non-LoS propagation chan-
nel for each access link. Let the horizontal distance between
each BS b ∈ B and each user k ∈ K at time t be denoted by
rb,k (t) =

√
(xb(t)− xk (t))2 + (yb(t)− yk (t))2. According to

the ITU model, the probability of LoS between user k ∈ K
and BS b ∈ B can be written as follows [46]:

prLoSb,k =

J∏
j=0

[
1−exp

(
−

[
hb(t)−

(j+ 1
2)(hb(t)−hk)
J+1

]2
2γ 2

)]
, (15)

where J = b rb,k (t)
√
αβ

1000 − 1c The three statistical parame-
ters α, β and γ characterize different types of environments
[47, Table 1]. Parameter α is the ratio of land area covered
by buildings to total land area, β is the mean number of
buildings per unit area, and γ denotes the distribution of
building height. Note that the blockage model defined in (15)
can be used for any transmitter/receiver heights for UAV-
to-ground and ground-to-ground transmissions and for a wide
spectrum range [48]. Furthermore, the non-LoS probability
can be determined as prNLoSb,k = 1− prLoSb,k .

Let db,k (t) =
√
r2b,k (t)+ (hb(t)− hk )2 be the 3D distance

between BS b and user k at time t . The channel gain between
BS b and user k is given by

Lzb,k (t) = δ
z
b + η

z
b log10 db,k (t)+ χ

z
b [dB], (16)

where superscript z ∈ {LoS,NLoS} denotes LoS and
non-LoS components. Here, δzb and η

z
b indicate the reference

path loss and the path loss exponent, respectively. Parameter
χ zb is a zero-mean Gaussian random variable with a standard
deviation σ zb,SF in dB.

3) USER-BS ASSOCIATION
Amain problem in wireless networks is to associate the users
to the BSs. Sincewe assume that the usersmove in the system,
they require to periodically assess their actual performances.
Therefore, if they are not satisfied with their current associ-
ations, they may change their serving BSs, and perform new
associations. In this regard, at each time instant t , the set
of outage users O ⊂ K perform new association processes
in order to assign to new BSs. Assuming the fixed UAVs’
locations and BSs’ channels, each user k ∈ O is associated to
BS b∗k (t) according to the following user association policy:

b∗k (t) = argmax
b∈B

{pbgb,k (t)}. (17)

Therefore, the association element in matrix AACC
t is

updated as aACCb,k (t) = b∗k (t).

III. PROBLEM FORMULATION
Given the model described in Section II, our objective is
to improve the fairness among the users while minimiz-
ing the loads of all the BSs during their downlink trans-
missions. To do that, we decompose our problem into two
sub-problems: i) the BS-satellite association problem in the
backhaul links, and ii) the resource management and UAV
trajectory design in the access links.
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A. BACKHAUL LINK
For the backhaul links, we require to solve the following
optimization problem, which involves finding the elements
of matrix ABCK

t as follows:

max
ABCK
t

∑
t∈N

∑
l∈L

∑
b∈B

Cl,b(t) (18a)

s.t. aBCK(t)l,b ∈ {0, 1}, ∀b ∈ B,∀l ∈ L (18b)∑
l∈L

aBCK(t)l,b ≤ 1, ∀b ∈ B. (18c)

To solve the above problem, each BS b ∈ B is associated
to satellite l∗b (t) ∈ L offering the highest signal strength, i.e.:

l∗b (t) = argmax
l∈L
{plgl,b(t)}. (19)

According to (19), the association element in matrix ABCK
t

is updated as follows aBCKl,b (t) = l∗b (t).

B. ACCESS LINK
Let the total data rate for user k until time instant t be
expressed as follows:

C̄k (t) =
∑
τ≤t

∑
b∈B

Cb,k (τ )1aACCb,k (τ ). (20)

Therefore, the fairness among the users at time instant t can
be expressed through the most widely-used fairness metric
named as Jain’s fairness index as follows [29], [49]:

F(t) =

(∑
k∈K C̄k (t)

)2
|K|
(∑

k∈K C̄k (t)2
) . (21)

Obviously, the fairness index F(t) is in the range [0, 1].
The higher value of the fairness index is the result of the
smaller differences among the total data rates of the users
{C̄k (t)}k∈K. Furthermore, it is a continuous function, and
takes continuous values, in which a change in a user through-
put can cause a change in the fairness index. It is independent
of the number of users and can be applied to scenarios with a
different number of users. Note that both the fairness and the
loads of the BSs are unitless, and they are the functions of the
trajectories of the UAVs and the resource allocation. Further-
more, at each time t , the configuration of the system can be
determined by the channel vector q(t) = (q1(t), . . . , q|B|(t)),
the matrix of UAVs’ locations AU(t) = (aB1 (t), . . . , a

B
|U |(t)),

and the association matrices ABCK
t and AACC

t . In order to
balance between the fairness and load, our objective is to
maximize a utility function capturing both those performance
metrics. Therefore, our problem can be formulated as follows:

max
q(t),AU(t)

∑
t∈N

∑
l∈L

∑
b∈B

∑
k∈Kb(t)

(
φbF(t)+ ψb(1− ρb(t))

)
(22a)

s.t. (xu(t), yu(t)) ∈ R, ∀u ∈ U , (22b)

hu(t) ∈ [hmin, hmax], ∀u ∈ U , (22c)

qb(t) ∈ Q, ∀b ∈ B, (22d)

ρb(t) = fb(ρ), ∀b ∈ B, (22e)

0 ≤ ρb(t) ≤ 1, ∀b ∈ B, (22f)

aBCK(t)l,b ∈ {0, 1}, ∀b ∈ B,∀l ∈ L, (22g)∑
l∈L

aBCK(t)l,b ≤ 1, ∀b ∈ B, (22h)

aACC(t)b,k ∈ {0, 1}, ∀b ∈ B, ∀k ∈ K, (22i)∑
b∈B

aACC(t)b,k ≤ 1, ∀k ∈ K, (22j)

where φb and ψb are the weight parameters that indicate
the impact of the fairness index and the load of BS b on
the objective function. hmin and hmax denote the minimum
and the maximum altitude of the UAVs, respectively. The
constraints in (22b)-(22c) determine the feasible region for
the locations of the UAVs in the 3D space. The constraint on
the set of available channels for the BSs in the access links
is determined by (22d). The constraints in (22e)-(22f) corre-
spond to the definition of the BS load vector. The constraints
in (22g)-(22h) express the satellite-BS association for the
backhaul links, and ensure that each BS b is associated to at
most one satellite at each time instant t . Furthermore, the con-
straints in (22i)-(22j) are related to the user-BS association for
the access links, and guarantee each user k is associated to at
most one BS at each time instant t .

Note that the problem formulated in (22) is a non-convex
optimization problem, and obtaining an optimal solution in
an online manner is computationally intractable. Therefore,
the important issue is to balance between performance and
complexity. In this regard, we employ the tools of rein-
forcement learning algorithms, and model our problem as
a MAB problem. Using MAB learning algorithm has sev-
eral advantages in the following aspects. Firstly, it does not
require the full knowledge of the environment. Secondly,
the computational complexity of the MAB algorithm is linear
with respect to the number of the BSs, while the exponential
computational complexity of centralized mechanism makes
it infeasible for a dynamic and complex environment.

IV. TOWARDS PROVISIONING FAIRNESS:
REINFORCEMENT LEARNING FRAMEWORK
Here, we propose a reinforcement learning based mechanism
to address the access link optimization problem stated in (22).
In the following, we first give a brief description of reinforce-
ment learning and the MAB problem. Then, we present our
MAB problem and its solution.

A. AN OVERVIEW OF REINFORCEMENT
LEARNING AND MAB
Reinforcement learning algorithms deal with the problem of
designing policies for learners, named as players, who inter-
act with their environment [50]. The players select actions
over a sequence of discrete time-steps. Then, they observe
their own results, named as rewards, which quantify the level
of players’ satisfactions. Reinforcement learning algorithms
do not require the full knowledge of environments. Therefore,
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they need to explore the possible actions aiming to enhance
their future decisions. On the other hand, they may exploit
actions that have been chosen in the past and found effective
and turn out to be a good fit to learn what actions to be taken
through balancing between the exploration and exploitation.
MAB is considered as one of the fundamental framework

in reinforcement learning [51]. In a MAB problem, there are
a set of bandits (i.e. players ) with multiple arms (i.e. actions).
At each time instant, a gambler pulls an arm from the set of
arms, and obtains a reward. Then, according to the pulled
arm and obtained reward, the gambler updates the average
reward of the arm. Note that, it has no prior information about
the rewards of the arms, and its goal is to maximize its total
rewards. Thus, the gambler needs to do exploratory rounds to
estimate the rewards of the arms at the expense of risking low
reward. However, this information is essential formaximizing
long-term reward.

B. LINK OPTIMIZATION AS A MAB PROBLEM
Here, we aim at maximizing the objective function defined
in (22) through optimizing the trajectories of the UAVs and
allocating the resource among the BSs.We use the framework
provided by MAB problem, in which each BS is defined
to be an intelligent agent of the algorithm. The three main
components of our algorithm are the players, their actions,
and their reward function which are defined as follows:

• Players: The players in the algorithm are the BSs B in
the system.

• Actions: For each SBS s ∈ S, we define its action
as,i = qi as its transmit channel. Thus, the action set of
SBS s,AS, is the set of available channels which can be
defined as

AS =
{
qi ∈ Q | i ∈ {1, . . . , |Q|}

}
. (23)

LetZ denote the set of movement in different directions
for the UAVs as follows:

Z = {up,down,left,right,forward,backward,
no movement}. (24)

For each UAV u ∈ U , each action au,i is composed of its
movement direction zu and channel qu as follows:

au,i = (qu, zu), qu ∈ Q, zu ∈ Z, (25)

where AU = Q× Z denote the action set of the UAVs,
and i ∈ |AU|.

• Reward:Wedefine a reward function for each BS b ∈ B
which captures the fairness and the load of the BS as
follows:

Rb(t) = φbF(t)+ ψb(1− ρb(t)) (26)

Now, we use the UCB policy to solve our MAB based
problem.

Algorithm 1 Proposed Learning Based Approach

1: Initialization: R̄b,i(t) = 0, nb,i(t) = 0 for t = 0, ∀b ∈ B,
∀ab,i ∈ Ab and i ∈ {1, . . . , |Ab|}

2: while t < N do
3: t ← t + 1
4: for ∀b ∈ B do
5: Find the serving satellite (update aBCK(t)l,b ,∀l ∈ L)
6: end for
7: for ∀k ∈ K do
8: Find the serving BS (update aACC(t)b,k ,∀b ∈ B)
9: end for
10: for ∀b ∈ B do
11: if ∃ab,i ∈ Ab s.t. nb,i(t) = 0 then
12: Select arm abUCB(t) = ab,i
13: else
14: Select arm aUCBb (t) according to (27)
15: end if
16: Calculate Rb(t) according to (26)
17: for ∀ab,i ∈ Ab do
18: Update ab,i(t) as:

nb,i(t) =nb,i(t − 1)+ 1
{ab,i=aUCBb (t)}

19: Update R̄b,i(t) as:

R̄b,i(t) =
nb,i(t−1)R̄b,i(t−1)+1

{ab,i=a
UCB
b (t)}

Rb(t)

nb,i(t)
20: end for
21: end for
22: end while

C. UPPER CONFIDENCE BOUND ALGORITHM
In the UCB algorithm, each player b first selects each action
once. Then, at each time instant t > |Ab|, player b selects
action aUCBb (t) as follows [51]:

aUCBb (t) = argmax
ab,i∈Ab

{
R̄b,i(t)+

√
2 ln t
nb,i(t)

}
, (27)

where Ab represents the action set of player b, in which
Ab = AS for each SBS b ∈ S, and Ab = AU
for each UAV b ∈ U . Here, R̄b,i(t) denotes the aver-
age reward from action ab,i ∈ Ab for player b at time
instant t . Parameter nb,i(t) is the number of times that
action ab,i ∈ Ab has been selected by BS b until time
instant t . Note that in the case that an action ab,i has been
selected many times, i.e. nb,i(t) is large, compared to the

other actions, then the confidence interval
√

2 ln t
nb,i(t)

decreases.

Thus, player b intends to explore the other less selected
actions. Furthermore, when an action ab,j ∈ Ab obtains
a high reward in the past, i.e. R̄b,i(t) is large, player b
intends to exploit this action to receive the possible maxi-
mum reward. The pseudocode for the MAB based approach
is presented in Algorithm 1. To initialize the locations of
UAVs, the heuristic approach proposed in [52] is utilized.
This approach determines the locations of UAVs iteratively.
At each iteration, the location of a new UAV is selected
from a predefined set of horizontal locations such that it
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is placed at the furthest distances from the other BSs in
the system.

V. EVALUATION
For simulations, we consider a 500m × 500m area with a
set of users uniformly distributed in the area. A set of SBSs
are uniformly distributed within this area with a minimum
distance of 40 and 10 meters from another SBS and a user,
respectively. The main system parameters used in the simu-
lations are summarized in Table 2. All results are averaged
over a large number of independent runs for various practical
configurations. We evaluate the performance of our proposed
scheme compared to the following benchmark algorithms:

• Q-learning: The Q-learning based approach for the
2D trajectory design of UAVs is selected as one of
the benchmark schemes. In this approach, the altitudes
of UAVs are set to 100 m, and their 2D trajectories
are optimized based on the Q-learning algorithm pro-
posed in [53] with the reward function defined in (26).
Furthermore, the BSs randomly choose their channels.

• 2D-MAB: In 2D-MAB approach, each UAV flies at a
fixed altitude 150 meter, and optimizes its horizontal
location according to the UCB approach with the same
reward function as the proposed approach. The channels
are allocated randomly among all the BSs.

TABLE 2. System-level simulation parameters.

FIGURE 2. The convergence behavior of the proposed approach for 350,
500 and 550 users in a system with 4 SBSs and 4 UAVs.

• Random: In this scheme, each BS selects its action ran-
domly.

• No UAVs: In order to demonstrate the benefits of
employing the UAVs, no UAVs is used as another bench-
mark scheme. In particular, the MAB approach is uti-
lized at the SBSs for channel allocation.

Fig. 2 shows the convergence behaviour of the proposed
algorithm for 350, 500, and 550 users in terms of average
reward per BS in a systemwith 4 SBSs and 4UAVs. As can be
observed, they converge fast, in which the convergence time
reaches up to about 30 iterations.

In the following, the solid curves belong to the bench-
mark algorithms, and the dashed curve refers to the proposed
approach.

A. PERFORMANCE OF PROPOSED MECHANISM VS
NUMBER OF USERS
For the first set of the results, we consider a system with 4
SBSs and 4UAVs, and vary the number of users in the system.

To verify the effectiveness of our proposed algorithm
for enhancing the fairness, we illustrate the fairness index
defined in (21) for all the schemes in the network shown
in Fig. 3. Our proposed approach makes the system adaptable
to achieve an improved spectral efficiency while ensuring
the fairness. Therefore, our proposed approach can yield
a significant performance in terms of the fairness under

FIGURE 3. Average Jain’s fairness index versus the number of users for a
system with 4 SBSs and 4 UAVs.
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dynamic traffic load, and achieves the highest fairness index.
However, the performance gap between the proposed
approach and 2D-MAB diminishes for the very low num-
ber of users (i.e. 50 users). As the number of users varies,
compared to the Q-learning, 2D MAB, random, and no UAV
approaches, the improvements of the fairness in the pro-
posed approach are 20.10%, 24.22%, 30.74%, and 90.44%,
respectively. Therefore, it can be confirmed that the pro-
posed approach can achieve a remarkable improvement in
the fairness. We also observe that when the number of users
increases, the system starts to densify, and the average fair-
ness index of all approaches degrade.

Fig. 4 presents the performance comparison of each
approach in terms of average load per BS. Observing Fig. 4,
it can be found that as the number of users increases, the aver-
age load per BS increases. Generally, a lower load means
that the BSs have more capabilities to serve additional users
compared to a higher load situation. We can observe that
the Q-learning and proposed approach have almost the same
performance in terms of BS load. Compared to the other
benchmark algorithms, the proposed approach yields better
performance for a low number of users. For instance, for a
system with 50 users, the proposed approach can decrease
the average load per BS 11.39%, 40.31%, and 50.65% com-
pared to the 2D MAB, random, and no UAV approaches,
respectively. For high number of users, the performance of
all approaches will approach to 1.

FIGURE 4. Average load per BS versus the number of users for a system
with 4 SBSs and 4 UAVs.

Fig. 5 demonstrates the behavior of the reward func-
tion as the number of users increases. The result shows
that our proposed approach can outperform the benchmark
schemes. For the proposed approach, due to optimizing
both the trajectory and resource allocation, it results better
performance compared to the other approaches. Besides,
the Q-learning approach can perform better than the other
benchmark approaches due to optimizing the 2D trajecto-
ries of the UAVs using the Q-learning algorithm. Partic-
ularly, the proposed approach yields significant improve-
ments over the Q-learning, 2D-MAB, random, and no UAV
approaches reaching up to 18.41%, 23.49%, 46.4%, and
94.67%, respectively. Furthermore, it is observed that the

FIGURE 5. Average reward per BS versus the number of users for a
system with 4 SBSs and 4 UAVs.

reward function decreases as the number of users increases.
This could be explained by the fact that with densifying the
system by increasing the number of users, the average load
per BS increases and the fairness index per BS degrades.
Thus, it yields a lower reward function per BS.

To highlight the user’s QoE improvement capability of
the proposed approach, we compare the average number of
outage users for all the schemes in Fig. 6. The results indicate
that our proposed approach has the potential to decrease
the outage users by up to 87.4% with employing the UAVs
by taking the advantage of compensating outage. In addi-
tion to that, it also proves the efficient way of improving
the performance of the system up to 49.11%, 52.92%, and
68.37%, when compared to the Q-learning, 2D-MAB, and
random approaches, respectively. Furthermore, it is clear that
the average number of outage users increases proportional to
the number of total users in the system. This is due to the
fact that a limited amount of radio resource is available in the
system.

FIGURE 6. Average number of outage users versus the number of users
for a system with 4 SBSs and 4 UAVs.

Next, we evaluate the effects of the number of users and
the limited capacity in all the schemes in terms of the average
rate. Fig. 7 shows that as we move away from the optimizing
different parameters in the system, the average rate per user
decreases. Accordingly, the proposed algorithm has a higher
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FIGURE 7. Average rate per user versus the number of users for a system
with 4 SBSs and 4 UAVs.

FIGURE 8. Average Jain’s fairness index versus the number of UAVs for a
system with 4 SBSs and 150 users.

rate compared to the benchmark algorithms. The results indi-
cate that the proposed approach has the potential to improve
the average rate per user by up to 20.31%, 24.19%, 30.51%,
and 90.59% compared to the Q-learning, 2D-MAB, random,
and no UAV approaches, respectively.

B. PERFORMANCE OF PROPOSED MECHANISM VS
NUMBER OF UAVs
In the further simulations, we vary the number of UAVs in the
system, and observe the variation of different performance
metrics. Moreover, we set the number of users to 150.

In Fig. 8, we plot Jain’s fairness index defined in (21) for
all the approaches. It can be seen that the proposed approach
outperforms the other schemes for the different number
of UAVs in the system by achieving better fairness index.
Compared with the Q-learning, 2D-MAB and random
approaches, the proposed approach can enhance the fairness
index in a system with 150 users up to 10.56%, 13.34%, and
22.61% respectively. Furthermore, Fig. 8 shows that the pro-
posed approach can improve the fairness up to 47.62% com-
pared to no UAV approach, showing the benefit of deploying
the UAVs in the system. Besides, increasing the number
of UAVs can improve the fairness index in the proposed
approach.

FIGURE 9. Average load per BS versus the number of UAVs for a system
with 4 SBSs and 150 users.

FIGURE 10. Average reward per BS versus the number of UAVs for a
system with 4 SBSs and 150 users.

Fig. 9 illustrates the average load per BS by varying the
number of UAVs from 0 to 6. We can observe that for
the low number of UAVs, the proposed approach and the
learning based benchmark algorithms have almost the same
performance. While with increasing the number of UAVs,
the proposed approach can balance the load among different
BSs, and give more opportunities to the users to be associated
to the BSs. The reductions in the average load per BS in the
proposed approach are about 7.57%, 10.41%, 17.15%, and
18.25% compared to the Q-learning, 2D-MAB, random, and
no UAV approaches, respectively.

Fig. 10 compares the average reward per BS for all the
approaches. It shows that the higher number of UAVs yields
higher reward per BS in the proposed approach. Therein,
the improvements of the average reward per BS in the
proposed approach compared to the Q-learning, 2D-MAB,
random, and no UAV approaches are up to about 18.26%,
24.41%, 46.56%, and 79.49%, respectively.

Fig. 11 plots the average number of outage users for all the
methods as the function of the number of UAVs. It can be
seen that the proposed approach exhibits the lowest number
of outage users compared to the other methods. The proposed
approach yields about 49.01%, 54.02%, 64.33%, and 90.15%
reductions in the outage users compared to the Q-learning,
2D-MAB, random and no UAV approaches, respectively.
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FIGURE 11. Average number of outage users versus the number of UAVs
for a system with 4 SBSs and 150 users.

Furthermore, as the number of UAVs increases, the average
number of outage users per BS decreases.

VI. CONCLUSION
In this paper, we have proposed a mechanism for link opti-
mization for QoE in an STIN/SAGIN. To do that, we have
decoupled our problem into three sub-problems including:
the BS-satellite association problem in the backhaul links,
the user-BS association and the resource management and
UAV trajectory design in the access links while ensuring
the fairness among users and minimizing the load of BSs.
To solve our problem in the access links, we have modeled it
as a MAB problem, and employed a UCB policy. Simulation
results have shown that our approach substantially enhances
both the user fairness and the spectral efficiency of the system
compared to the benchmark algorithms.
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