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ABSTRACT Violence recognition is challenging since recognition must be performed on videos acquired
by a lot of surveillance cameras at any time or place. It should make reliable detections in real time and
inform surveillance personnel promptly when violent crimes take place. Therefore, we focus on efficient
violence recognition for real-time and on-device operation, for easy expansion into a surveillance systemwith
numerous cameras. In this paper, we propose a novel violence detection pipeline that can be combined with
the conventional 2-dimensional Convolutional Neural Networks (2D CNNs). In particular, frame-grouping
is proposed to give the 2D CNNs the ability to learn spatio-temporal representations in videos. It is a simple
processing method to average the channels of input frames and group three consecutive channel-averaged
frames as an input of the 2D CNNs. Furthermore, we present spatial and temporal attention modules that
are lightweight but consistently improve the performance of violence recognition. The spatial attention
module named Motion Saliency Map (MSM) can capture salient regions of feature maps derived from the
motion boundaries using the difference between consecutive frames. The temporal attention module called
Temporal Squeeze-and-Excitation (T-SE) block can inherently highlight the time periods that are correlated
with a target event. Our proposed pipeline brings significant performance improvements compared to the
2D CNNs followed by the Long Short-Term Memory (LSTM) and much less computational complexity
than existing 3D-CNN-based methods. In particular, MobileNetV3 and EfficientNet-B0 with our proposed
modules achieved state-of-the-art performance on six different violence datasets. Our codes are available at
https://github.com/ahstarwab/Violence_Detection.

INDEX TERMS Real-time violence detection, efficient spatio-temporal attention, efficient convolution
method for spatio-temporal modeling.

I. INTRODUCTION
Recently, reliable automatic surveillance systems attract
much interest where occurrences of crime situations take
place occasionally at any time. In particular, for violence
recognition, it is essential to detect violent action in real time
so that the police can be dispatched promptly during crimes.
Although video-based action recognition has achieved
impressive improvement over the last few years, most of the
works have focused on performance, not efficiency.

2D Convolutional Neural Networks (CNNs) have shown
remarkable results on image recognition tasks by performing
a cross-correlation on a single multi-channel image with
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convolution kernels. This approach, however, has a limita-
tion in being applied to video understanding since a video
is a temporal sequence of frames and 2D CNNs cannot
encode dynamic motion information. Simple approaches to
produce spatio-temporal video representation have applied
Recurrent Neural Networks (RNNs) to the output of the CNN
layers [1]–[4]. Nevertheless, those approaches have shown
shortcomings in performance since they did not perform
convolution across multiple frames in early layers of the
networks. Since the conventional 2D CNN models did not
encode temporal information, video-based action recognition
was a challenging task.

C3D [5] and I3D [6] introduced 3D CNNs by expand-
ing 2D filters to the time axis to encode spatio-temporal
information. They were successfully applied to video action
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recognition tasks by capturing both spatial and temporal
information in videos with 3D filters. Although the 3D CNN
models showed substantial improvement in performance,
they were computationally expensive and needed a large
number of parameters.

Instead of using only RGB frames as input, two-stream
networks [7] and many other frameworks based on 2D or 3D
CNNs [6], [8], [9] tried to combine RGB frames with
optical flow features as input. They achieved impressive
improvement on video action recognition. Since the optical
flow represents a field of dense motion vectors, it has a
great impact on performance for video action recognition.
However, optical flow algorithms usually require too expen-
sive computational costs to perform real-time action recog-
nition in videos. Some of the works conducted human pose
estimation for action recognition [10]–[12] to concentrate on
human actions. Skeleton Points Interaction Learning (SPIL)
module [12] computed the interaction weights to model inter-
actions between extracted human skeleton points for violence
recognition. However, these approaches required an addi-
tional cost for extracting skeleton information and filtered
out too much information from raw data. Furthermore, wrong
estimation of the skeleton features can cause performance
degradation.

We focused on violence detection in real-world situa-
tions by embedding our algorithm on a camera module,
for easy expansion into a surveillance system with a huge
number of cameras. Also, our algorithm will notice surveil-
lance personnel at the moment violent crimes take place,
so it should be operated in real time. Therefore, we design
an efficient violent action recognition system for real-time
and on-device surveillance. Three properties required for
a real-time and on-device deep neural network system
are (1) low computational cost, (2) sufficiently compact
model size, and (3) sufficiently high accuracy. Our proposed
network is developed by considering these properties.

Model compression is an active area of compressing
the model with minimal performance degradation. Related
techniques include parameter pruning [13]–[17], low-rank
approximation [18]–[21], quantization [22]–[25], knowledge
distillation [26]–[29], and use of compact models [30]–[33].
MobileNets [31]–[33] leveraged Depthwise Separable Con-
volution to reduce the model size by decomposing the
typical 2D convolution into depth-wise and point-wise convo-
lution. Compact CNN [30] further compressed the channels
of typical CNN layers of 2D CNN backbones to reduce the
model size. On the other hand, without changing any existing
CNN architectures, we propose a method that can model the
spatio-temporal information.

Humans usually focus on actors compared to back-
grounds for recognizing violent situations since violent
crimes can happen anywhere but are committed by humans.
Spatio-temporal saliency detectionmethods were proposed to
amplify relevant regions and reduce irrelevant backgrounds
in dynamical scenes. Guo and Zhang generated a saliency
map by applying the Fourier transform to a quaternion image

that is a weighted sum of color, intensity, and also the motion
feature which is the difference between intensities of the cor-
responding pixels in consecutive frames [34]. Instead of using
original RGB channels, they used red/green and blue/yellow
channels inspired by a human visual cortex. Kim et al.
computed the motion features with edge and color orientation
histograms to generate a spatio-temporal saliency map [35].
Nasaruddin et al. proposed background (BG) subtraction
method to blur uninteresting areas in the surveillance video
by using the binary bitmaps of each frame [36].

Some works utilized spatial and temporal attention mod-
ules in video action recognition to reduce redundant infor-
mation over space and time [37]–[41]. Since inferring the
attention was not a trivial task, attention modules usually
required a large memory consumption and computational
complexity. Pre-trained object detectors were used to assist
their spatial attention module [40]. Moreover, two loss terms
for the spatial attention and one loss term for the temporal
attention were introduced [41]. In this work, we focus on
utilizing lightweight and fast attention modules for real-time
applications. First, we generate an easy-to-train attentionmap
by combining the knowledge of a motion feature and a mor-
phological dilation for the spatial attention. Then, we intro-
duce a simple architecture to recalibrate time-wise features
for the temporal attention.

Automated video surveillance can bring public safety to
society while it significantly mitigates an exhausting process
for surveillance personnel to detect crime occurrences. Some
works integrated facial recognition, object tracking, and
crime prediction into their surveillance systems [42]–[50].
Those works, however, could be controversial due to pri-
vacy infringements and machine bias (fairness). In this work,
we focused on supporting surveillance personnel to cope
with violent crimes immediately, with minimizing the risk
of invasion of privacy (without any object tracking or facial
recognition) and intrusion of bias (crime detection instead of
prediction).

Our violence detection pipeline consist of three steps and
the description of each step is as follows:

1) Based on the investigation that people in violent situ-
ations usually move actively to produce strong pixel
differences between consecutive frames than others
(e.g. bystanders and backgrounds), we propose an effi-
cient spatial attention module, which is inspired by
conventional methods in image processing, such as
RGB difference and morphological dilation. The RGB
difference between consecutive frames captured by
a fixed camera represents the boundaries of moving
objects. From the calculated boundaries, we apply a
few average pooling layers and CNN layers to generate
spatial attention maps.

2) Since violent actions such as punching and kicking
usually last for a short time, we propose a method
to give 2D CNNs the ability to encode short-term
motion information. We replace the channels with
time frames, by averaging the RGB channels and
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grouping three consecutive channel-averaged frames as
an input of the 2D CNN to model short-term dynam-
ics, which is a critical factor to detect violent actions
such as punching, pushing, and kicking. We explore
some suitable architectures for mobile devices such
as SqueezeNet, MobileNets, and EfficientNet with the
proposed method and achieve remarkable improve-
ments in terms of the accuracy while significantly
decreasing thememory footprint and the computational
complexity for video recognition.

3) We propose a temporal attention module that is very
similar to Squeeze-and-Excitation (SE) blocks [51].
The SE block recalibrates channel-wise features, while
our temporal attention module deals with time-wise
features. First, global spatial information is squeezed
by using a global average pooling as the SE block
does. Then, fully-connected layers and an average
pooling across the channel axis are applied to the cal-
culated time-wise tensors to generate adaptive tem-
poral weights. Multiplying the weights with the tem-
poral tensors achieves temporal attention, resulting in
performance improvement.

II. RELATED WORKS
A. REPLACEMENTS OF 3D CNN FOR
SPATIO-TEMPORAL MODELING
Over the past few years, there have been many studies on
spatio-temporal modeling for video recognition. 3D CNN
was introduced to tackle the problem that 2D CNN cannot
encode temporal information. It has successfully applied to
the tasks related to video understanding, but it is computa-
tionally expensive and requires much more parameters than
the 2D CNN. There are many approaches to mitigate the inef-
ficiency issues on the 3D CNN. R(2+1)D [52] and P3D [53]
replaced a standard 3D filter by a 2D filter for modeling spa-
tial information and a 1D filter for modeling temporal infor-
mation. Those approaches have made the 3D CNN lighter
and shown comparable performance with the 3D CNN.
A temporal shift module (TSM) was introduced [54], shifting
a small portion of the channels in feature maps along the
time axis to capture temporal information. TSM was applied
in the forward path of residual blocks of 2D CNN models.
With the same FLOPS and parameters with the 2D CNN,
it achieved comparable performance with the 3D CNN.
In this work, we introduce a spatio-temporal modeling strat-
egy called frame-grouping, which can further reduce the
memory footprint and computational load by averaging the
channel of inputs, inspired by the observation that the chan-
nel is relatively subordinate among time, channel, height,
and width.

B. SPATIO-TEMPORAL ATTENTION FOR REDUCING
REDUNDANT INFORMATION
In a complex video, reducing distracting information over
time and space is an essential yet challenging task for video
action recognition. Many works have already used spatial

attention modules for video analysis, but finding salient
regions without any clues is not a trivial task. To mitigate
this problem, pre-trained object detectors [40] and some
regularizers [41] were used to encourage the spatial attention.
Persistence of Appearance (PA) was introduced that was a
motion representation calculated by the Euclidean distance
between two consecutive CNN features since the boundaries
of moving objects are important for distinguishing human
actions [55]. On the other hand, our work focuses on com-
puting spatial attention maps derived from the boundaries
of moving objects that are further multiplied with original
frames.

Attentionmechanism has been utilized in a variety of fields
including video action recognition [56]–[58]. Video Trans-
former Network (VTN) was introduced for real-time video
action recognition, where Transformer [59] was combined
with 2D CNNs for long-temporal modeling. Non-Local (NL)
block [56] is a well-known module for video action recogni-
tion that can model both spatial and temporal self-attentions
jointly. Since the NL block tended to capture appearance
similarities, temporal modeling was improved by decoupling
temporal self-attention from spatial one and applying Global
Temporal Attention (GTA) to learn temporal relationships
after spatial self-attention [57]. SE block is another atten-
tion module to capture inter-dependencies along the channel
dimension. Our temporal attention module is inspired by the
fact that attention weights of the SE block can be simply
calculated with some fully connected layers. We apply this
module to calculate temporal weights by replacing the chan-
nel with the time.

C. RECENT VIOLENCE DETECTION METHODS
There have been various violence detection methods with
2D CNN + Long Short-Term Memory (LSTM) and
3D-CNN-based models [60]–[64]. Sudhakaran and Lanz
used frame differences instead of RGB frames as an input
of the 2D CNN + LSTM to generate a better representation
of changes between adjacent frames [65]. Cheng et al. intro-
duced a two-stream network to encode raw frames and optical
flow features in each stream that consist of 3D CNN [9].
Contrary to most of the works using the LSTM or 3D CNN
for temporal modeling, Jain and Vishwakarma aggregated
multiple frames called Dynamic Image (DI) to represent
motion features in a single frame and fed it into 2DCNN [66].
Background subtraction was also used in violence detec-
tion to reduce the influence of disturbing backgrounds [36].
Su et al. used graph convolution for violence detection with
an assistance of a pose estimation model [12]. Wu et al.
introduced a model called HL-Net to model relations among
frames, and they used audio in addition to visual information
as an input to improve the performance [67].

III. PROPOSED APPROACH
Our proposed violence recognition system consists of three
parts: Motion Saliency Map (MSM) module, 2D CNNs
with frame-grouping, and Temporal Squeeze-and-Excitation
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(T-SE) block. The proposed modules (MSM and T-SE block)
are lightweight for on-device real-time violence recognition
but consistently improve detection performance. In particular,
frame-grouping brings a significant performance improve-
ment while decreasing computational cost by a third. In this
section, we explain the intuitions and details of our proposed
modules.

A. INTUITIONS
1) INTUITION OF MSM
In violence recognition, background information is not an
important factor. To avoid modeling irrelevant features from
complex scenes, we tried to focus on human actions by
generating attention maps. In a video captured by a fixed
camera like a closed-circuit television (CCTV), motion fea-
tures represent the boundaries of moving objects. We focus
on generating attention maps that are derived from motion
features calculated from the Euclidean distance between two
consecutive frames. As the calculated features are too sharp
to be used as attention maps, we add several operations to
dilate the obtained boundaries to achieve our intended goal.
The module is effective with a fixed camera, since it has to
capture the motion boundaries of moving objects between
two consecutive frames. However, the next two modules are
irrespective of whether the camera is fixed or not.

2) INTUITION OF FRAME-GROUPING
The short-term dynamics is a key factor to recognize violent
situations since violent actions such as punching, pushing,
and kicking take a relatively short time compared to other
events. We tried to model short-term motions in an efficient
way. RGB color images are represented by the intensity
of red, green, and blue. Fig. 1 shows every channels for
three RGB images, plotted with viridis colormap. Although
color information is useful for many tasks such as image
recognition and action recognition, we squeeze the channel
dimension to reduce the computational load, assuming that
motion information is more important than the richness of
color information to detect violent actions. We calculate the
mean value of the channel dimension and replace the channel
with the time to employ 2D CNN instead of 3D CNN for
modeling short-term dynamics efficiently.

3) INTUITION OF T-SE BLOCK
Since certain actions only happen within some time periods
of video clips, we introduce an efficient temporal attention
module to recalibrate temporal features adaptively. With a
small number of additional parameters, the module calculates
temporal attention weights for highlighting the time periods
that are more correlated to target events.

We constructed violence detection system with
frame-grouping as an essential module, while MSM or
T-SE block can be excluded depending on memory capac-
ity and computational speed of a hardware. In the next
three subsections, we will describe the details of our three

FIGURE 1. Representations of every channels for three RGB images from
the RWF-2000 dataset, plotted with viridis colormap. From the left
column, RGB color, red, green, blue, and averaged images are displayed.

proposed modules. Fig. 2 illustrates the overall procedure of
our proposed violence recognition system.

B. MSM
To amplify salient regions related to violence in videos,
we propose MSM that can efficiently highlight moving
objects. Inspired by the fact that calculated motion features
can represent the boundaries of moving objects, we gen-
erate attention maps by dilating the motion boundaries.
The overview and examples of our MSM module are illus-
trated in Figs. 3 and 4, respectively. We first calculate the
Euclidean distance between two consecutive RGB frames
Xt ,Xt+1 ∈ R3×H×W for 1 ≤ t ≤ T and sum up along the
channel axis to obtain the boundaries of moving objects
bt ∈ RH×W as:

bt =

√√√√ 3∑
i=1

(Xi
t+1 − Xi

t )2, (1)

where i denotes the channel index and T is the total number
of input frames. The last step to generate a spatial attention
mapmt ∈ RH×W is to apply pooling layers and convolutional
layers to dilate the boundaries as:

mt = σ (conv(pool(bt ))), (2)

where σ denotes a sigmoid function, and conv and pool repre-
sent convolutional layers with ReLU activations and average
pooling layers, respectively. The detailed parameters in pool
and conv are summarized in Table 1. Without any smooth-
ing operations such as pooling or convolution, the attention
map has too sharp and complicated shapes. Since our works
focus on finding salient areas derived from the boundaries
of moving objects, we apply four convolutional layers and
two pooling layers for enlarging the boundaries to find salient
areas.

The last step of the MSM module is element-wise multi-
plication ofmt and the second frame Xt+1, expressed as:

Yt = Xt+1 �mt , (3)
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FIGURE 2. Overall procedure of our proposed model. (a) Xt , mt , and Yt are an input image, the corresponding spatial attention map, and the
attended image feature at frame t , respectively. (b) zt is a channel-averaged image at frame t , and we experimented SqueezeNet, MobileNets, and
EfficientNet for 2D CNN. (c) C , T , and w are the number of channels, the number of frames, and the calculated temporal weights, respectively.

FIGURE 3. Illustration of the MSM module. Xt , bt , mt , and Yt are an input
image, the calculated motion boundaries of two consecutive images,
the corresponding attention map, and the attended image feature at
frame t , respectively. � denotes the element-wise multiplication. Yt is
displayed by overlapping Xt+1 and mt to clearly indicate attended
regions.

where� denotes the Hadamard Product. As shown in Fig. 4,
the attended image feature Yt ∈ R3×H×W successfully high-
lights attended regions corresponding to the motion of mov-
ing objects.Yt will be sent to a 2D CNN backbone in the next
subsection (frame-grouping).

C. FRAME-GROUPING
2D convolution performs cross-correlation on a single
multi-channel image by applying 2D kernels to each channel
and summing the results across the channel axis. Since it
only encodes individual frames, it is incapable of modeling
spatio-temporal information from videos. 3D convolution,

TABLE 1. Parameters of the MSM module.

on the other hand, performs cross-correlation on multiple
multi-channel images with 3D-expanded kernels striding
along the spatial and temporal axes to encode spatio-temporal
information. It requires more parameters and FLOPS com-
pared to 2D convolution since the expanded kernels stride in
time as well as space. In this work, we rather use lightweight
2D CNN backbones instead of using heavy 3D CNN models
to deal with efficient spatio-temporal modeling. We make
each three-channel frame into a single-channel frame in the
middle of the forward path and group three consecutive
frames to learn spatio-temporal representation in a video with
the 2DCNN backbones.We call this method frame-grouping.
In this work, we just average the channels instead of grayscale
conversion (linear combination of the channels with weights
of [wR = 0.30, wG = 0.59, wB = 0.11]) since each chan-
nel of input frame Xt is already normalized with specific
mean and standard deviation values and the main purpose
of frame-grouping is a fast modeling of short-term dynamics
rather than colorful representation to capture spatio-temporal
information efficiently.

A toy example to process nine RGB frames is illustrated
in Fig. 5. The first step of the frame-grouping is to average
the channels of input images to obtain single-channel images
zt ∈ RH×W as:

zt =
1
3

3∑
c=1

Yc
t , (4)
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FIGURE 4. Results of the MSM module on the RWF-2000 dataset. Xt+1, mt , and Yt are an input image, the corresponding attention map, and the
attended image feature at frame t , respectively. Yt is displayed by overlapping Xt+1 and mt to clearly indicate attended regions.

FIGURE 5. A toy example of frame-grouping. t , Yt , and zt are the time
index, the attended image, and the channel-averaged image, respectively.

where the subscript t and the superscript c of Y represent the
time and channel indices, respectively. After averaging the
channel, we group three consecutive frames as an input to
2D CNN to map single-channel images Z = [z1, z2, . . . zT ]
to feature mapsU = [u1,u2, . . . ,u T

3
], which is expressed as:

ucn =
3n∑

t=3n−2

vc(t mod 3) ∗ zt , (5)

where Vc
= [vc0, v

c
1, v

c
2] is a kernel of the first layer

of 2D CNN models, n is the temporal index in the feature
maps U with 1 ≤ n ≤ T

3 , and T is the total number of input
frames that should be divisible by 3 since we replace a single

three-channel image to three channel-averaged images for
an input of 2D CNN. c is the output channel index of the
first CNN layer. ∗ denotes the convolution operator. The con-
ventional 2D convolution takes a single three-channel frame
as an input, while the 2D convolution with frame-grouping
takes three consecutive single-channel frames. Since our
proposed module combines three temporally consecutive
frames, it inherently encodes temporal information like the
conventional 3D convolution.

Fig. 6 briefly shows an example to compare our method
(2D convolution with frame-grouping) with the conventional
2D and 3D convolutions. Assume that we have kernels of
length d with stride 1 in time for the 3D convolution and
K RGB frames to process. Let us denote the numbers of
parameters and operations per frame byP andO, respectively,
for the 2D convolution, where the numbers of channels in
inputs and outputs are 3. To process K RGB frames, the 2D
convolution needs P parameters and KO operations while the
3D convolution requires 3P parameters and 3(K − d + 1)O
operations. On the other hand, our proposed method needs P
parameters and only consumes K

3 O operations. Furthermore,
as the time steps after the backbone network are reduced
by a third compared to the conventional 2D convolution,
the size of tensors in the middle of the system is scaled down.
Therefore, thememory demand and the number of parameters
of the next layers are decreased. We leverage this module to
achieve an on-device real-time violence recognition system.

D. TEMPORAL SQUEEZE-AND-EXCITATION BLOCK
Temporal Squeeze-and-Excitation (T-SE) block is a
time-wise gating module that can inherently recalibrate and
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FIGURE 6. Comparison of (a) 2D convolution, (b) 3D convolution, and (c) 2D convolution with frame-grouping for processing six RGB images
to generate three-channel CNN feature maps. In the figure, we have 3× 3× 3 (d = 3) convolutional filters with stride 1 in time for 3D
convolution and 3× 3 convolutional filters for the others. t is the time index, and P , K , O, and d are the number of parameters, the number
of frames, the number of operations, and the length of kernels, respectively.

FIGURE 7. Illustration of Temporal Squeeze-and-Excitation (T-SE) blocks.
C denotes the number of channels of intermediate tensors in a 2D CNN
backbone, and � denotes the element-wise multiplication. AP1 is a
global average pooling over the spatial dimension and AP2 is an average
pooling over the channel dimension.

aggregate the global temporal information to classify a
target event with a less computational cost. The difference
between SE block [51] and T-SE block is the purpose of
two modules. The SE block aims to capture channel-wise
dependencies, while our T-SE block recalibrates temporal
features for enhancing temporal regions relevant to target
events. The T-SE block can be split into three steps, and Fig. 7
illustrates every stepswith the same notations as the following
equations.

Step 1: Squeezing on the spatial and channel dimen-
sions. To generate temporal weights, we first squeeze the
global spatial information as:

pc =
1

H ×W

H∑
i=1

W∑
j=1

Kc(i, j), (6)

where K ∈ R
T
3×C×H×W and C are the output and the

number of output channels at an intermediate layer of

CNN backbones, respectively, and pc is a 1D vector where
pc = [pc1, p

c
2, . . . , p

c
T
3
]. Then, we squeeze the channel data to

generate temporal statistics as:

q =
1
C

C∑
c=1

pc, (7)

where q = [q1, q2, . . . , q T
3
].

Step 2: Extraction of temporal weights. We apply two
fully connected layers followed by a sigmoid function to
obtain temporal weights:

w = σ (g1(q)), (8)

where w = [w1,w2, . . . ,w T
3
] is a temporal weight vector

and g1 represents two fully connected layers that shrink the
number of time steps in half at the first layer and restore the
shape at the next.

Step 3: Adaptive Recalibration on the time dimension
(Excitation).Bymultiplying pc withw, the temporal features
are recalibrated so that more relevant time intervals with
target events are highlighted than others:

dc = pc � w. (9)

Finally, dc is further summed up along the time axis and fed
into a single fully-connected layer for the final video action
classification:

score = g2(

T
3∑

t=1

dct ), (10)

where g2 denotes a single fully connected layer along the
channel axis.

IV. EXPERIMENTS
We have evaluated our methods on six violence datasets:
Hockey Fight [68], Movie Fight (Peliculas) [69], Crowd
(Violent Flow) [70], Surv (Surveillance Camera Fight) [63],
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TABLE 2. Brief description of violence datasets we evaluated.

Real Life Violence Situations (RLVS) [62], and
RWF-2000 [9]. A brief description of the violence datasets
is summarized in Table 2. In this work, we mainly targeted
on the RWF-2000 dataset, since it is not only the largest
violence dataset but also well splitted to train/test partitions.
We assumed the system with MSM module to be applied in
a fixed camera, but the datasets we explored contain many
videos captured with moving cameras. The investigation
regarding effectiveness of MSM with a moving camera is
described in Appendix A.
First, we described the implementation details of our

models. Second, we experimented our modules with CNN
backbones such as SqueezeNet, MobileNets, and Efficient-
Net that are pre-trained on ImageNet [71]. We also compared
our modules with 3D CNNs pretrained on Kinetics [72].
Third, we compared the results of our modules with other
violence recognition methods. Fourth, by performing abla-
tion studies, we demonstrated that our proposed modules
can efficiently benefit the existing 2D CNN models. Fifth,
by calculating FLOPS and the number of parameters of our
modules, we showed that the SqueezeNet, MobileNets,
and EfficientNet with our proposed modules can achieve
real-time and on-device violence recognition. Finally,
we demonstrated the results with long-term violence videos
called UCF-Crime [73].

A. IMPLEMENTATION DETAILS
Implementation of our networks was based on PyTorch.
We resized input images to have a fixed size of 224 × 224.
We trained ourmodels using theAdamoptimizer with a learn-
ing rate of 0.001 and a batch size of 16 on a Nvidia-RTXTitan
throughout the experiments. For violence recognition on each
video, we fixed T = 30 to set the number of input frames as
a multiple of 3, and selected frames at a uniform intervals.
Since the length of videos from different datasets are differ-
ent, time intervals between frames varies. The investigation of
an adequate time interval for modeling spatio-temporal infor-
mation effectively is described in Appendix B. We selected
SqueezeNet 1.1, MobileNetV2 with a multiplier of 1.0,
MobileNetV3-Large, and EfficientNet-B0 for CNN back-
bones. We also conducted color jittering and random
horizontal flips to prevent over-fitting of models.

B. EXPLORATION OF CNN BACKBONES
We evaluated several models on the RWF-2000 dataset
and summarized the results in Table 3. In this paper,

we combined lightweight 2D CNN backbones such as
SqueezeNet,MobileNets, and EfficientNet with our proposed
modules to construct an efficient violence detector. The brief
information of the 2D CNNs we explored is described in
Appendix C. We also conducted an experiment with Inflated
3D ConvNet (I3D). The concept of I3D is to inflate 2D
filters and pooling kernels into 3D on existing 2D CNN
backbones for extracting spatio-temporal features. The I3D
was pretrained with the large video dataset named Kinetics
while the 2D CNNs were pretrained with the large image
dataset named ImageNet. For fair comparison of both the
networks, we used only RGB frames as inputs although the
I3D could be improved by including an optical flow stream
as well as the RGB stream. Even with smaller parameters and
faster training and inferencing speeds than the I3D, the 2D
CNN backbones with our modules showed comparable per-
formances on the dataset. We also found that the I3D could
be improved by MSM. We did not report the I3D with the
T-SE block since the number of time steps is shrunk after 3D
convolutional layers in the model.

We visualized some output features for the first CNN
layer of MobileNetV3 with frame-grouping and I3D
in Fig. 8. It demonstrated that our proposed 2D CNN with
frame-grouping could process meaningful features such as
horizontal edges, vertical edges, background, and foreground
from a sequence of frames as 3D CNN like I3D could.
Additionally, we found that our violence detection pipeline
could inherently extract salient regions while attenuating
backgrounds by the first CNN layer. Salient regions with
attenuated backgrounds could be emphasized by applying
MSM as shown in Fig. 9. We also investigated the inter-
pretability of our model by visualizing Grad-CAM [74]
in Appendix D.

C. COMPARISON WITH OTHER
METHODS ON VIOLENCE DATASETS
In Table 4, we show recognition accuracies evaluated on
six violence video datasets: Hockey [68], Movie [69],
Crowd [70], Surv [63], RLVS [62], and RWF-2000 [9].
We got accuracies from authors’ reports for six methods
(above the double horizontal line in Table 4) while our
method was evaluated by 5-fold cross-validation for all
datasets except for the RWF-2000 dataset that is explicitly
divided into train/test sets. Inception-Resnet-V2 + DI [66]
introduced Dynamic Image (DI) that is a weighted aggregate
of consecutive frames to summarize objects’ movements into
a single frame. It used a pre-trained Inception-Resnet-V2 for
processing a single DI to classify violent events. VGG-16 +
LSTM [62] used the VGG-16, pretrained on the ImageNet
dataset for spatial modeling followed by a LSTM for tem-
poral modeling. Xception + Bi-LSTM [63] used the Xcep-
tion for spatial modeling and a bidirectional LSTM with
attention modules [75] for temporal modeling. Flow Gated
Network [9] used optical flow features with RGB images as
inputs and utilized two-stream network for spatio-temporal
modeling to classify violence. SPIL [12] computed the
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TABLE 3. Comparison of four models on the RWF-2000 dataset. The number of parameters (#Params) and FLOPS were reported for the full models. The
proposed modules are represented in bold, and the best performance and the smallest #Params and FLOPS are highlighted in bold.

FIGURE 8. Examples of output features for the first CNN layer of I3D with 3D CNN and MobileNetV3 with frame-grouping on the RWF-2000 dataset.
The leftmost column shows the input frames, and four dashed boxes on the right are four different types of perceptible CNN features of the I3D and
MobileNetV3 with our proposed modules.

FIGURE 9. Output features for the first CNN layer of MobileNetV3 with frame-grouping without and with MSM. The results with MSM attenuate
non-salient regions compared to those without MSM. (Best viewed in zoomed images).

interaction weights to model feature and position relations
between extracted human skeleton points for violence recog-
nition. astly, VGG-16 + Bi-GRU [64] used a pretrained

VGG-16 followed by a bidirectional Gated Recurrent Units
(GRU). Our approach achieved the best performances for all
the six datasets.
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TABLE 4. Recognition accuracies (%) evaluated on six violence video datasets. The datasets are abbreviated as follows: Hockey (Hockey-Fight), Movie
(Movie-Fight or Peliculas), Crowd (Violent Flows), Surv (Surveillance Camera Fight), RLVS (Real Life Violence Situations), and RWF (RWF-2000). The results
of our method (below the double horizontal line) are accuracies averaged over 5-fold cross-validation (for all datasets except for the RWF-2000 dataset
that is explicitly divided into train/validation sets), whereas the results of other methods (above the double horizontal line) are from authors’ reports. The
best results for each dataset and our proposed modules are highlighted in bold.

TABLE 5. Ablation studies for all combinations of three proposed
modules. Experiments were conducted using MobileNetV3 on the
RWF-2000 dataset. Pb represents the number of parameters for the
baseline without all the three modules, which is 2,976,635. The best
result was highlighted in bold.

D. ABLATION STUDY
1) ABLATION STUDIES ON THREE PROPOSED MODULES
We conducted ablation studies for all combinations of three
proposed modules on the RWF-2000 dataset. As shown
in Table 5, MSM (for spatial attention) and T-SE block
(for temporal attention) consistently improved the per-
formance without requiring many parameters. In particu-
lar, frame-grouping significantly increased the performance
by enabling 2D CNN models to learn spatio-temporal
information with considerable reduction of the computational
complexity and memory demand since it reduced time steps
by grouping three channel-averaged frames for an input of the
2D CNN. We showed the results of four CNN backbones on
the RWF-2000 in Table 6.

2) COMPARISON OF FRAME-GROUPING WITH TSM
We also compared frame-grouping with TSM on the
RWF-2000 dataset. We considered the bidirectional TSM
(offline TSM) and used the codes and hyperparameters from
the author’s github and report [54]. The TSM enhanced the
performance of the conventional 2D CNN without addi-
tional computations by mingling some parts of channels with
neighboring frames inside residual blocks of a backbone.
The comparison in Table 7 shows that 2D CNN models

TABLE 6. Ablation studies for light-weight CNN architectures with and
without our proposed modules on the RWF-2000. F and A are the
frame-grouping and the proposed attention modules (MSM and T-SE
block), respectively.

TABLE 7. Comparison of frame-grouping with TSM on the
RWF-2000 dataset. We experimented TSM with the codes and parameters
from the author’s github. F is the frame-grouping. The decision was made
for 30 frames as an input without any spatio-temporal attentions. The
best result was highlighted in bold.

with frame-grouping achieved better performance than those
with the TSM since the frame-grouping explicitly mingled
multiple frames to model spatio-temporal information. Fur-
thermore, as the frame-grouping significantly decreases the
memory footprint and FLOPS, it may be more suitable for an
on-device real-time surveillance system.

E. IMPLEMENTATIONS OF AN ONLINE
SURVEILLANCE SYSTEM
The latencies of our models were measured on a single
NVIDIA RTX 3090 and Jetson TX2. As shown in Table 8,
our methods could achieve real-time or near real-time
requirements. We implemented two types of webcam demos
to simulate real-time surveillance systems depending on
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TABLE 8. Latencies of 2D CNNs with frame-grouping for processing
30 frames without and with attention modules (MSM and T-SE block).
The results that met the real-time requirement (25 fps) were highlighted
in bold.

device performance. First, we implemented 2D CNNs with
frame-grouping and no attention modules to detect violent
actions with the minimum delays. The system started to
detect violence after 30 frames were pushed into a queue and
inferred the violence whenever an additional frame was cap-
tured from a camera. Second, we used our attention modules
with the 2D CNNs and the frame-grouping. Since a sufficient
time gap between consecutive frames might be helpful for
detecting accurate motion boundaries in the MSM, we might
skip some frames for inferring violence. For a typical 30-fps
video, a single frame was pushed into a queue every five
frames to get around 6 fps. The implemented system with
our attention modules started to detect the violence every
five frames instead of every frame after 30 frames were
accumulated in the queue. In this case, MobileNetV3 with
frame-grouping and attention modules implemented on a
single Jetson TX2 inferred the violence in real time. We will
post the real-time demo codes for both the methods and the
corresponding demo videos on our github page.1

F. EXPERIMENTS ON LONG-TERM VIOLENCE VIDEOS
We conducted experiments on UCF-Crime [73] that is the
dataset containing 1900 untrimmed videos of 13 different
anomalous events such as fighting, shooting, arson, road
accidents, etc. To demonstrate the stability of our surveil-
lance system, we conducted experiments on the test set of
violence-related classes (assault and fighting) with the model
trained on the RWF-2000 (without any additional training on
the UCF-Crime or other datasets). Contrary to the datasets
in Table 2, violent events take place for a short time in the long
sequence of video. Therefore, we tested the trained models
with the method mentioned in Subsection IV-E and measured
area-under-the-curve (AUC) for videos in the UCF-Crime
in Table 9 instead of accuracy. There are three assault
videos and five fighting videos in the test set. Although
the frame-level labels were provided for the test videos,
we labeled our own for the violence-related classes to define
the violent actions accurately. The label information and the
demo videos for the test set will be posted on our github
page.1

1https://github.com/ahstarwab/Violence_Recognition

TABLE 9. AUC results of each violence-related class on the test set of the
UCF-Crime dataset. Experiments were conducted using MobileNetV3 and
EfficientNet-B0 with frame-grouping. We averaged the number of frames
and the AUC for each class.

V. CONCLUSION
We proposed spatio-temporal attention modules and
frame-groupingmethod to build a practical violence detection
system. For spatial attention, MSM was introduced to obtain
salient regions derived frommotion boundaries. For temporal
attention, we introduced T-SE block that could recalibrate
temporal features with a small number of additional parame-
ters. In particular, frame-grouping was introduced that was
a method averaging the channels and grouping three con-
secutive channel-averaged images as an input for 2D CNN.
It could successfully model short-term dynamics that was a
critical feature to classify violent actions such as kicking and
punching. We demonstrated the efficiency of our proposed
modules with efficient 2D CNN backbones through a variety
of experiments and successfully implemented an real-time
violence recognition system in a resource-constrained envi-
ronment. In the future, wewill collect more data and explore a
variety of data augmentation techniques to train a more robust
model. Also, we will extend our work to address various
action recognition tasks for a versatile use.

APPENDIX A
INVESTIGATION OF THE EFFECTIVENESS OF MSM
ON VIDEOS CAPTURED BY MOVING CAMERAS
MSM module is effective with a fixed camera since it cal-
culates motion boundaries between two consecutive frames.
Furthermore, the module still showed performance improve-
ment even with datasets containing many videos captured by
moving cameras.We showed visualization results of themod-
ule for six different datasets other than RWF-2000, including
videos captured with moving cameras (on the left) and fixed
cameras (on the right) in Fig. 10. Examples on the left were
captured with moving cameras and had some distractions
such asmoving objects, but theMSMmodule still highlighted
salient regions (corresponding to candidates for violence
detection, including people who were fighting) successfully
with slowly moving cameras. It demonstrates that the MSM
module is still effective with slight movements of cameras,
not to mention fixed cameras to emphasize salient regions.

APPENDIX B
ADEQUATE TIME INTERVAL FOR FRAME-GROUPING
The main purpose of frame-grouping is to extract useful
information from multiple frames with the existing 2D CNN

76280 VOLUME 9, 2021



M.-S. Kang et al.: Efficient Spatio-Temporal Modeling Methods for Real-Time Violence Recognition

FIGURE 10. Results of MSM module on examples selected from six datasets: Hockey (Hockey-Fight), Movie (Movie-Fight or Peliculas), Crowd
(Violent Flows), Surv (Surveillance Camera Fight), RLVS (Real Life Violence Situations), and UCF (UCF-Crime). Selected examples were captured with
moving cameras (Left: Hockey, Crowd, and RLVS) and fixed cameras (Right: Movie, Surv, and UCF). (Best viewed in zoomed images).

backbones efficiently. We investigated the adequate time
interval between consecutive frames to choose a sampling
method. Each video varies in frame rate even in the same
dataset because most of the datasets we explored are col-
lected from Youtube. Therefore, determining the ideal time
interval is impractical. For example, some videos are in slow
motion and some videos have too low frame rates. Fig. 11
illustrates three consecutive frames after a uniform sampling
(selecting frames at a uniform interval) for a video in each
of six violence datasets (excluding UCF-Crime composed
of long-term violence videos). Their time durations were
different. In the case of RWF-2000, which is 5 seconds
long for each video, we selected 30 frames out of about
150 frames (6 fps), and 3 frames were equal to 0.5 seconds
long. On the other hand, in the case ofMovie-Fight, which has
the shortest video among the datasets we experimented (about
1 second), the time duration for three consecutive frames
was about 0.1 seconds. Since 0.1∼0.5 seconds is enough to
represent short-term dynamics such as punching and kicking,

we used the uniform sampling throughout six datasets
in Table 2.

APPENDIX C
DESCRIPTION OF EFFICIENT 2D CNNs WE USED
We explored four existing CNN architectures that are suit-
able for embedded systems. We described the used backbone
networks in the published order.

A. SqueezeNet [76]
There are two main strategies for reducing the model size
and one strategy for minimizing performance degradation in
Squeezenet. To reduce the model size, the authors replaced
some of 3× 3 filters with 1× 1 filters. Moreover, they
reduced the number of 3× 3 filters. To maximize the accu-
racy, they placed the downsampling operation later so that
early convolutional layers have larger activation maps. The
main building block for SqueezeNet is called the ‘‘Fire
module’’ and there are two stages in the module: ‘‘squeeze
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FIGURE 11. Three consecutive frames sampled with a uniform sampling for six violence video datasets. The datasets are abbreviated as follows:
Hockey (Hockey-Fight), Movie (Movie-Fight or Peliculas), Crowd (Violent Flows), Surv (Surveillance Camera Fight), RLVS (Real Life Violence
Situations), and RWF (RWF-2000). Every third frame is displayed by overlapping with MSM to clearly indicate attended regions.(Best viewed in
zoomed images).

layer’’ and ‘‘expand layer’’. The squeeze layer compresses
data by performing 1× 1 convolutions to reduce the num-
ber of parameters on the following 3× 3 convolutions
(in the expand layer). The expand layer consists of 1× 1 and
3× 3 convolution layers, and their outputs are concatenated
afterward.

B. MobileNets
MobileNets focus on reducing latency and the number of
parameters in limited resources for mobile and embed-
ded applications. Some core ideas for three versions of
MobileNets are as follows.

1) MobileNetV1 [31]
Depthwise separable convolution was introduced to reduce
the number of operations and parameters in MobileNetV1.
Depthwise separable convolution consists of depthwise con-
volution and pointwise convolution. Depthwise convolu-
tion applies a convolution filter to each input channel
for spatial filtering, while pointwise convolution applies
1× 1 convolution to the output of the depthwise convolution
for mingling the channels.

2) MobileNetV2 [32]
The main strategies introduced in MobileNetV2 were linear
bottleneck and inverted residual blocks. In the linear bot-
tleneck layer, the channel dimension of input is expanded
to reduce the risk of information loss by nonlinear func-
tions such as ReLU. It stems from the fact that information
lost in some channels might be preserved in other channels.

The inverted residual block has a (‘‘narrow’’ � ‘‘wide’’ �
‘‘narrow’’) structure in the channel dimension whereas a
conventional residual block has a (‘‘wide’’ � ‘‘narrow’’ �
‘‘wide’’) one. Since skip connections are between narrow
layers instead of wider ones, the memory footprint can be
reduced.

3) MobileNetV3 [33]
The architecture of MobileNetV3 was found through neural
architecture search (NAS) for searching a global network
structure (block-wise search), and the NetAdapt algorithm
for searching the best number of filters (layer-wise search),
starting from MnasNet [77]. The authors also introduced
some hand-crafted contributions to improve the previous
models (MobileNetV1 and V2). First, they reduced the num-
ber of filters in the first 3× 3 convolution layer and removed
some layers in the last stage to reduce the latency with little
performance degradation. Second, they introduced h-swish
(or hard swish) which is more quantization-friendly and faster
in computation than the original swish.

C. EfficientNet [78]
Contrary to MobileNets, Efficientnet focused on optimizing
FLOPS rather than latency since it was not targeted at any
specific hardware device. Before EfficientNet, most of the
existing networks commonly adjust only one or two scaling
factors among the number of layers (depth), the number of
filters (width), and the resolution of input images (resolution).
For instance, in MobileNets, the authors adjusted width and
resolution to search the optimized models. On the other hand,
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FIGURE 12. Grad-CAM results of EfficientNet with frame-grouping on the RWF-2000 dataset. Grad-CAMs of highest scored feature map in each
video are illustrated on the corresponding single frame. (Best viewed in zoomed images).

the compound scaling method was proposed in Efficient-
Net to scale the depth, width, and resolution together. First,
the authors defined αφ, βφ , and γ φ that are the amounts of
scaling for depth, width, and resolution, respectively, where φ
denotes a user-specified coefficient to control the model size.
Second, they used NAS to find a baseline network named
EfficientNet-B0. Third, they fixed φ = 1 to determine con-
stant values α, β and γ , and scaled up the model by adjust-
ing φ to obtain EfficientNet-B1 to B7, depending on targeting
FLOPS and model sizes.

APPENDIX D
GRAD-CAM RESULTS ON VIOLENCE DETECTION
We illustrate Grad-CAM [74] results of EfficientNet-B0with
frame-grouping in Fig. 12 to visualize the importance of
the spatial locations to judge violence. Grad-CAM is a
well-known technique for creating class activation maps
to demonstrate the interpretability and transparency of
deep-learning models. It visualizes a linear combination of
the final convolutional layer’s feature maps and the gradi-
ent of each class with respect to each feature map. Since
our proposed system operates on multiple frames, we draw
Grad-CAM of the highest scored feature map (made up of
three frames) on the corresponding single frame (last of three
frames).
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