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ABSTRACT Machine learning (ML) based botnet detectors are no exception to traditional ML models
when it comes to adversarial evasion attacks. The datasets used to train these models have also scarcity
and imbalance issues. We propose a new technique named Botshot, based on generative adversarial net-
works (GANs) for addressing these issues and proactively making botnet detectors aware of adversarial
evasions. Botshot is cost-effective as compared to the network emulation for botnet traffic data generation
rendering the dedicated hardware resources unnecessary. First, we use the extended set of network flow
and time-based features for three publicly available botnet datasets. Second, we utilize two GANs (vanilla,
conditional) for generating realistic botnet traffic. We evaluate the generator performance using classifier
two-sample test (C2ST) with 10-fold 70-30 train-test split and propose the use of ’recall’ in contrast to
’accuracy’ for proactively learning adversarial evasions. We then augment the train set with the generated
data and test using the unchanged test set. Last, we compare our results with benchmark oversampling
methods with augmentation of additional botnet traffic data in terms of average accuracy, precision, recall
and F1 score over six different ML classifiers. The empirical results demonstrate the effectiveness of the
GAN-based oversampling for learning in advance the adversarial evasion attacks on botnet detectors.

INDEX TERMS Botnet detection, GANs, adversarial evasion attacks, unbalanced datasets.

I. INTRODUCTION
The ever-increasing sophistication in the design of botnets is
alarming for digital economies. With the increase in the num-
ber of online transactions, mobile payments and cryptocur-
rencies, botnets could be in greater demand by cybercriminals
in the dark web. Soon botnets will be used to mine Bitcoins
on a gigantic scale and rallied to perform more seriously
detrimental DDoS attacks than ever [1] on traditional as well
as Internet of Things [2]. These attacks exploit the inherent
weaknesses in existing intrusion detection systems (IDSs)
and analysis frameworks.

Recently, machine learning (ML) has emerged as a
powerful tool to design sophisticated IDSs for botnet detec-
tion. With the modern enhancements in hardware capabili-
ties of computer systems, deep learning (DL) has become
more prominent among the other ML techniques. Deep
Neural Networks have been successfully used for solving
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classification problems with high accuracies. To facilitate
online learning, researchers use deep reinforcement learn-
ing (DRL) which does not require classifiers to be trained
exclusively offline for new updates [3]. However, due to
vulnerabilities to adversarial attacks, the training model may
learn malicious samples as benign and like a snowball effect
train itself on false negatives. This malicious effect is called a
poisoning attack which can be caused by an adversarial eva-
sion attack. The adversarial evasion attack can be defined as
crafting the input sample to evade themachine learning-based
detectors as a result of probing an IDS [4]. In this way,
the behaviour of the decision boundary of an ML model can
be learned and replicated to a local machine. As a result,
example inputs are generated that evade the copied learning
model. These evading examples are fed to the target system
that most likely is unable to classify those as malign hence
poisoning the online learning. This crucial concern about the
security of the ML-based systems has also gained significant
attention in botnet detection [5]. The state-of-the-art IDS for
botnet detection would ideally learn beforehand such crafting
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by an attacker to minimize the effect of an evasion attack. The
proposed work in this paper is an attempt in this direction.

To this end, we propose a technique to generate realistic
botnet data using Generative Adversarial Networks (GANs)
to improve the classifiers’ decision making to detect potential
evasion samples. GANs have proved to be highly effective
in some recent research works [6]–[10]. A GAN is a combi-
nation of two different AI models competitively learning to
generate realistic samples. The use of GANs in a particular
way makes our research novel as compared to some previous
works [6], [11]. In our proposed methodology, we use a
classifier two-sample test (C2ST) for assessing the quality
of generated traffic data. We propose the use of ’recall’ as
the evaluation metric of the generator performance in C2ST
instead of ’accuracy’ for the purpose of learning evasions.
Since the false negatives are possible evasions, our objective
function should minimize the value of ’recall’ during GAN
training for the exploration of generator weights that generate
samples with maximum similarity with the real samples, The
detail of this proposition will be discussed in SectionIV.

The other major aspect of this research is addressing the
botnet dataset scarcity and imbalance issues in low data
regimes without incurring the additional cost of generating
actual attacks using multiple computers. In such scenarios,
themachine learning classifiers over-fit themajority class and
fall short in generalizing the test set [12]. The motivation for
using GANs for data oversampling is their effectiveness in
mimicking complex probably distributions [10]. To address
the low-data regime problem, synthetic oversampling tech-
niques like SMOTE [13] are employed, but these techniques
depend on algorithms like nearest neighbours and linear inter-
polation which make them unsuitable for high-dimensional
and complex probability distributions of data [10]. Although
the classifiers’ performance could be improved to a certain
extent by using synthetic data oversampling, GANs can be
more effective [14].

To maintain the coherency of the experiments, we have
utilized an extended flow and time-based feature set of net-
work traffic [5] for three botnet datasets, i.e. ISCX-2014,
CIC-IDS2017 and CIC-IDS2018, from Canadian Institute
of Cybersecurity. Traffic was generated using two differ-
ent GANs. Six different classifiers (extreme gradient boost-
ing or xgboost (XGB), random forests (RF), decision trees
(DT), linear regression (LR), k-nearest neighbours (KNN)
and naive bayes (NB) with default parameters) were used for
generator evaluation and post augmentation detection. The
main purpose of using two different GANs was to compare
their performance overall three botnet datasets using the six
classifiers and to choose the best pair (GAN&classifier) to be
used in continued research work. The choice of six different
classifiers is based on a related work that used all of these
classifiers for comparative analysis for black-box testing [11].
In order to save time, we did not include support vector
machine (SVM) due to its expensive training time. Instead
of gradient boosting (GB), we used XGB which has lesser
timer complexity [15]. The neural network (NN)was not used

because the discriminator in GAN is also an NN, we wanted
to test the performance of GAN only on non-neural network
based ML-classifiers.

The botnet traffic data generated after the GANs’ training
was used to augment the original train set to improve the
performance of the classifiers. The tests were performed
using 10-fold, 70-30 train-test split for the above-mentioned
datasets for both generator performance in C2ST and post
augmentation testing. The performance of the botnet detec-
tors after augmentation of the generated data was evaluated
based on accuracy, recall, precision and F1 scores for all
six classifiers. We demonstrate by experiments that using
our proposed approach, we could not only better evaluate
the GAN generated data but also improve the botnet traffic
detection.

The contributions of this work can be summarised as
follows:

1) We propose Botshot as a technique to proactively learn
adversarial evasions in terms of recall score for quanti-
tative evaluation of GANs.

2) To the best of our knowledge, this is the first work
to use an extended set of features [16] for botnet data
generation using GANs.

3) To the best of our knowledge no previous work has pro-
vided the comparison of GANbased oversamplingwith
state-of-the-art synthetic oversamplers for improve-
ment in botnet detection.

4) We address the data imbalance issue in three botnet
datasets to improve the model’s detection performance.

The rest of this paper is organized as follows. Section II
covers the related work, section III throws some light on
background concepts, Section IV illustrates the proposed
methodology, Section V explains the implementation details.
Section VI shows results, Section VII gives the reason-
ing for the inferences from the experimental outcomes and
Section VIII concludes this paper.

II. RELATED WORK
Currently, adversarial attacks on AI-based systems are of
considerable attention in botnet detection as well [5]. AI is an
open-source tool that can be compromised by cybercriminals
for the incarnation of more intelligent evasions. AI-based
IDSs need continuous online learning to keep them up to
date regarding zero-day attacks. To address the problem of
online learning, researchers used DRL [17], [18]. In this way,
it is not necessary to train the system exclusively offline
for new updates. The training model gets mature with time.
However, due to the vulnerabilities of deep learning models
to adversarial examples, the use of DRL may be disastrous
because the system may learn a malicious input as a benign
sample and like a snowball effect train its model on false
negatives [19]. This type of evasion of a malign sample can
be caused by adversarial attacks such as model extraction or
black-box attacks [4]. In this type of attack, the behaviour of
the decision boundary of an ML model can be learned and
replicated to a local machine. After this step, the example
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inputs are generated that evade the copied learning model.
These evading examples are input to the target system that
most likely is unable to classify those as malign. In [11],
the authors have proposed an attack and a countermeasure
to demonstrate that AI-based IDSs are prone to adversar-
ial attacks. Another hot issue currently being faced by the
research community is the property of transferability of
adversarial examples [20]. It means that if an adversarial
attack is valid for one type of ML model, then it is highly
likely that it will be effective against another model without
added effort by the adversary [21].

The adversarial ML deals with ruggedizing the existing
models by learning the adversarial examples [22]. This term
was coined for computer vision problems but is also valid
in network and computer security, since both these fields
are highly dependent on ML models [23]–[25]. To address
the transferability of adversarial examples, researchers use
generative adversarial networks (GANs) to train the existing
deep learning model, with synthetic adversarial examples.
In this way, an IDS may become aware of a zero-day attack
and avoid it. A GAN is a combination of a generative and a
discriminative model [26]. The concept of GANs is related
to game theory, where a generative neural network creates
adversarial examples and a detector neural network tries to
classify the input samples as generated or real examples.
Based on a mini-max game the system tends to damp down
to a Nash equilibrium. Our work is also based on using
GAN generated samples to address the adversarial evasion
attacks on botnet detectors.

In [27], the authors proposed a DRL-based model to evade
the botnet classifiers based on the output of the machine
learning classifiers under black-box attack. According to the
authors, this work was the first on evasion attacks using a
DRL agent. Following similar research, the authors in [28]
proposed a technique to generate evasion attacks on the botnet
detector as a black-box. In a recent paper, the authors present
a new dataset generated using DRL evasion attacks on botnet
detectors [29]. These adversarial sample generation using
DRL can be used in conjunction with GANs to oversample
the adversarial examples which we leave to future work.

Adversarial examples as a result of black-box attacks can
be detrimental for an IDS because malign inputs can become
part of benign network applications. The research commu-
nity has highlighted the gravity of this issue [5], [30], [31].
In [32], the authors have proposed ensemble techniques to
address the problem of transferability for adversarial attacks
in computer vision but the efficient and reliable techniques
in IDS design for the majority of botnet behaviours are
missing. For example, in [33] authors deal only with the
domain generation aspect of the botnet evasion using GANs;
however, not all modern botnets use DNS-based communi-
cation because these techniques are more prone to detection
than peer-to-peer botnets [34]. In [6], the authors propose
another GAN based technique for botnet detection named
Bot-GAN. The authors have extended the discriminator out-
put from two to three traffic types, i.e. normal, fake botnet

and real botnet. By using GANs, they have achieved better
accuracy and lower false positives than previous studies.
However, the feature set selection is limited in their work.
In addition, the authors are not balancing their data set with
increasing generated examples as the accuracy drops beyond
a certain value which is one of the goals of our research
work. In another work, authors have proposed the avoidance
of model theft or extraction [35]. The same concept can be
applied in conjunction with GAN implementation for botnet
detection.

In network-based anomaly detection for botnets, mainly
two schemes are employed: deep packet-based and network
flow-based inspection. Since botnets have evolved with time,
most now use packet encryption. Another issue with deep
packet inspection (DPI) is the serious concern about user
privacy [16]. As a solution to these problems, most of the
research work is now performed using network flow-based
features to detect anomalies. For botnet detection, researchers
have extensively studied different flow-based features based
on their effectiveness for the desired outcome [36]–[38]. The
researchers in [39] have devised new time and flow-based
traffic features for detecting Tor traffic. This extended set of
features can improve the detection of the network anomaly in
case of botnet detection as well because most botnet traffic
types have underlying similarities in spacio-temporal com-
munication patterns [27].

The importance of ML in IDS, especially botnet detection,
has gained significant attention in the last decade [40]–[45].
The major concern raised by the authors in [40] is that most
of the research works had addressed only 25% of the modern
attacks because they were based on outdated datasets. With
the continuous evolution in botnet evasion techniques, it is
necessary to update benchmark data sets [46]. To fulfill this
objective, many researchers have proposed the generation of
new data sets [47]–[49]. However, these proposed methods of
generating data sets have two drawbacks:
• Data set generation can be costly due to the involvement
of multiple machines

• The generated traffic may not depict the real scenario of
attacks [16]

The above-mentioned problems can be addressed in two
ways. One is to merge all the benchmark data sets pub-
licly available into a new data set. The authors of [16]
used this approach to generate a new data set, taking into
consideration the common updated attacks with eleven dif-
ferent evaluation characteristics of IDS data sets. But the
problem of obsolescence [40] remains. We need to contin-
uously update the data sets to maintain deterrence against
evolving botnets [16]. Hence, for the generation of botnet
datasets, we need unseen attacks data in large amount to
address the issues of dataset imbalance and obsolescence.
The data generation can be opted using synthetic over-
sampling methods that can solve both the aforementioned
problems.

In the light of the above discussion, we consider GANs
as a suitable choice to generate unexplored botnet data to
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address the dataset imbalance and scarcity issues along with
mitigating the effects of adversarial evasion attacks.

III. BACKGROUND
This section gives some background on the common types
of adversarial attacks, the datasets with the feature set and a
brief explanation of the functionality of GANs used in this
research.

A. ADVERSARIAL EVASION ATTACKS
The adversarial evasion can be defined as a perturbed version
of an input sample x as x* such that the x* = x + η,
where η is a carefully crafted perturbation. When making
an adversarial attack, η could be sought and selected so
that the classifier is unable to discriminate the x* from x.
The adversary can make two types of adversarial attacks in
general, respectively white-box and black-box attacks [50].
In white-box attacks, the attacker knows not only the gradient
information for the loss function of the model but also source
of the training data, hyper-parameters, model architectures,
numbers of layers, activation functions and model weights.
In other words, the attacker has the full knowledge of the
model and even the direction of the gradient. The attacker
can create a perturbation that most likely could increase
the loss value. In black-box attacks, the adversary has no
inside information except the output on a particular input.
This is also called probing. The attacker has no knowl-
edge of the model and can only know the response of the
system. The white-box attacks can be transferable so that
they can be used to attack a black-box service due to this
property of transferability. Hence most of the attacks gener-
ated are white-box attack due to the ease of generation, but
the transferability property can be effectively exploited for
black-box attacks [21], [50]. The purpose of this research
work is to make the classifiers adept at proactively know-
ing the adversarial examples so that the effect of black-box
attacks can be mitigated, especially on ML-based botnet
detectors.

B. GENERATIVE ADVERSARIAL NETWORKS (GANs)
The GAN is a combination of two neural networks
among which the one that generates samples is called
generator (G) and the other that evaluates the generated sam-
ples is called discriminator (D). The loss ofD over generated
data is fed back to G while D’s weights are not updated
so that G can try to mimic the real data probability den-
sity function more efficiently and fool the D. In this work,
two different GAN architectures have been used to generate
botnet traffic. We chose these two primitive versions vanilla
and conditional GAN, to keep the experiments simple for
estimating their potential for botnet data generation. Explo-
ration of a suitable GAN for generating botnet data is left
as a future work. The following is a brief detail of each
GAN architecture, used in this research, in terms of its loss
function.

1) VANILLA GAN (GAN)
The generator model G in original/vanilla GAN can be rep-
resented as G:z→ X where z is the normal distribution
from noise space and X is the real data distribution. The
discriminator D:X → [0,1] model is a classifier that outputs
an estimate of probability whether the data coming from G is
real or fake. The loss function of the combined model can be
represented by Equation 1.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))] (1)

Here, E stands for the estimation of probability and x and
z are the real and noise samples respectively, while pdata and
pz represent the probability distributions of real and noise
data respectively. The goal in the mini-max game is to mini-
mize the generator loss in creating data similar to the real data
since the generator can not control the loss of D on real data
but it can maximize the loss ofD on generated data G(z). The
loss function of G is given by Equation 2.

JG(G) = Ez∼pz(z)[log(D(G(z)))] (2)

Figure 1 shows the block diagram of a classical/vanilla
GAN with real and generated botnet traffic samples. Note
that we refer to real botnet traffic samples as real_bots and
GAN generated samples as GAN_bots in the remainder
of the text. The noise samples labelled in three different
colours depict the random space of all the possible samples
including very close and partially close to the real_bots and
even samples with very different distributions. The
red-coloured samples are real_bots from X distribution and
blue coloured samples are GAN_bots from G(z) distribution.
Figure 1 illustrates that G tries to generate a botnet example
from noise z (Gaussian distribution) and gives it to D to get
it evaluated. First, D is trained on samples from real botnet
traffic data distribution X before getting input samples from
G in Q space. The losses of D on real LD(X ) and generated
data (LD(G(z))) are fed toD using backpropagation. In the next
step, for training G in the forward propagation, the evaluation
is done by D and the loss LG is fed back to G to update its
weights. This process keeps iterating until we reach a certain
number of epochs. When the generator and discriminator
achieve Nash equilibrium they do not learn further.

FIGURE 1. Block diagram of a classical GAN with real and GAN_bots.
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TABLE 1. Existing vs Extended Feature Set: The features can be categorized in five different groups. Features in bold text were used in the current work
for and the rest were dropped in preprocessing using algorithm 3.

2) CONDITIONAL CLASSICAL GAN (CGAN)
The conditional version of vanilla GAN adds another feature
as a class label to help GAN learn the probability distri-
bution quicker as compared to the vanilla GAN. The loss
functions for D and G, in this case, can be represented in
Equations 3 and 4.

JD = −
1
2m

m∑
i=1

logD(xi, yi)

+

m∑
i=1

log(1−D(G(zi, yi), yi))] (3)

JG = −
1
m

m∑
i=1

logD(G(zi, yi), yi) (4)

Here, m is the total number of examples in one batch
selected for training the model, x is real data and y are the
additional labels as a condition due to which this GAN is
called conditional GAN. The batch size is the same for noise
and real data inputs to G and D, respectively.

IV. PROPOSED METHODOLOGY
We propose a GAN based methodology that could mimic
and generate the botnet traffic and then augment the original
dataset with the generated traffic to improve the detection
performance of the botnet classifiers. The purpose of training
the botnet classifiers on GAN generated data is to proactively
learn the unseen samples with similar but slightly differ-
ent probability distributions. Figure 2 shows the proposed
scheme for generating realistic botnet traffic using aGANand
then augmenting the generated data to the original train set to
improve detection. The following sections throw some light
on the details of the methodology. The classifier two-sample
test (C2ST) is a quantitative metric to evaluate whether two
different samples of data have been taken from the same
distribution. In other words, if we have samples real_bots
(Xb) and GAN_bots (G(z)) then we can assess if both sam-
ples have similar or the same probability distributions. The
more the distributions overlap, the more is the chance that
GAN_bots are realistic. The C2STmethod has been shown in
Algorithm 1. The GAN evaluation used in Botshot is different
than C2ST in a single parameter. The intuition is that the
metric in C2ST (i.e. accuracy) should be replaced with recall

if we want to reduce the false negatives in the classifier
performance in post augmentation testing. The false negatives
are the possible evasions that are already present in the test set
which the classifiers are not trained on. The main purpose of
the Botshot is to suppress the false negatives i.e. improve the
recall score. Hence, the C2ST has been tweaked so that the
objective function becomes as given in the Equation 5

r̂argmin =
1
ntest

∑
zi,li∈Dtest

I[I(f (zi) >
1
2
) = li] (5)

Algorithm 1 C2ST Algorithm
Input: Xb (real_bots), G(z) (GAN_bots),

botnet_classifier
Output: A(accuracy)

begin
/* Evaluation of Generated Data

(G(z)) */

tr ← Xb[0 : m(7/10)] ∪ G(z)[0 : m(7/10)] ;
// Create a train set from 70% of
examples in the unified set where m
= total number of examples in Xb
and G(z)

ts← Xb[m(7/10) : m] ∪ G(z)[m(7/10) : m] ;
// Create a test set from 30% of
examples in Xb and G(z)

train botnet_classifier on tr

test botnet_classifier on ts

compute A = (TP + TN)/(TP + TN + FP + FN);
// Compute accuracy using confusion
matrix

In the above Equation, r̂ is the recall score on Dtest which
is test set, ntest is the total number of samples in test set, zi are
the samples in test set, li are the labels, f (zi) is the conditional
probability distribution p(li = 1|zi). The intuition is that if
a GAN-bot is very close in probability distribution with a
real bot, then the recall in Equation 5 should remain close
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FIGURE 2. Functional diagram of Botshot.

to 50%which is also called a chance level. Thismeans that the
classifier was totally evaded or the sample was misclassified
as a real bot. So if we use recall as the metric instead of
accuracy, we can better minimize the false negatives because
accuracy includes the value for false positives (FP) and true
negatives (TN) given by Equation 6.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

However, in the recall, we only have true positives (TP)
and false negatives (FN) as given by Equation 7.

Recall =
TP

TP+ FN
(7)

Since our objective function is to minimize false negatives
in generator evaluation, we must choose the epochs in which
the recall was the lowest instead of the epochs where accu-
racy was the lowest.

The complete functional block diagram of Botshot is illus-
trated in Figure 2. First, we preprocess the dataset as men-
tioned in Section V-F. From the cleaned train set, we extract
the real bot samples of the set size for each dataset as men-
tioned in Table 2 and train our selected GAN. The GAN is
trained for a certain number of epochs as given in Table 3.
Once an epoch is completed, the trained G is used to generate
data of size equal to the total number of real_bots given as an
input to the GAN (Algorithm 3 line 16). The generated bot
samples also called GAN_bots along with real_bots are com-
bined into a unified set (Algorithm 3 line 17). This unified set

TABLE 2. Distribution of normal and bot samples in three engineered
datasets.

is reshuffled and used to perform 10-fold train-test splitting
using the selected classifier (Algorithm 3 lines 18-24).

The results are compiled based on accuracy for C2ST
and recall for Botshot (Algorithm 3 line 25-26). The epoch
numbers for the minimum values of recall and accuracy for
each classifier are saved. After generating the GAN-bots
(of size= normal samples - real_bot samples) using the epoch
number with minimum accuracy value for C2ST and mini-
mum recall value for Botshot, we augment these into two sets
YC2ST and YBotshot respectively (Algorithm 3 lines 27-32).
Finally, we compute average accuracy, recall, precision and
F1 scores after 10-fold train-test splitting of the two aug-
mented datasets. The values have been recorded in Table 4 for
the case of no augmentation, interpolations based synthetic
oversamplers, GAN and CGAN based C2ST and Botshot
evaluation for oversampling the botnet data.

V. IMPLEMENTATION
A. DATASETS
We have used three different datasets from the same source
i.e. Canadian Institute of Cybersecurity (CIC) to keep the
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TABLE 3. GAN Models.

coherency of the experiments. The features were extracted
using a utility called CICFlowmeter-v4 provided by CIC as
well. Table 1 shows the features used in this work (in bold
text). The features can be categorized into different groups
based on the number of packets, time, size, flow and flags.
It can be observed that we have not used any categorical
features like IP addresses or port numbers while a previous
work [6] did use protocol. Although previously used for
Tor traffic characterization [39] and data set generation for
CIC-IDS2017 and CIC-IDS2018 [16], these extended sets of
features can improve the detection of the network anomaly in
case of botnet detection as well [27]. To the best of our knowl-
edge, this is the first work to use these extended features for
botnet datasets for data generation using GANs. The number
of samples of benign vs botnet is mentioned in Table 2. The
following is the detail of each dataset and the botnet samples
that were used in this work.

B. ISCX-2014 DATASET
The ISCX-2014 data set [51] is an amalgamation of three
publicly available datasets ISOT [36], ISCX 2012 IDS [37]
and CTU-13 [52]. The composition of dataset as explained
on the ISCX website, seems promising in terms of generality,
realism and representativeness. The generality can be defined
as the richness of diversity of botnet behaviour. The realism is
the closeness with the actual traffic captured and representa-
tiveness determines the ability to reflect the real environment,
a detector would face in deployment. We have only used
VIRUT botnet for this work among the 7 different botnets.
The VIRUT was chosen because it had very few samples as
compared to other botnets and not insufficiently scarce as
Zeus bot. We could use SMTP or NSIS but their labels were
not available on the website.1 As a result we used a subset
including all the normal traffic flows with VIRUT samples.

1https://www.unb.ca/cic/datasets/botnet.html

In this way, we could use this dataset as a good example of
an unbalanced set.

C. CIC-IDS2017 DATASET
The CIC-IDS2017 is a relatively recent dataset by CIC with
the traffic of ARES botnet. The traffic was collected on
Friday, July 7, 2017, during the day from 10:02 AM –
11:02 AM in the CIC facility. The dataset can be found on
the CIC website.2 We made a subset of this dataset using
all the normal flows with botnet. The ratio of the number
of samples has been mentioned in Table 2. The subset as
the previously mentioned dataset is also a good kind of an
unbalanced dataset for the particular research problem of this
work.

D. CIC-IDS2018 DATASET
To create another subset of unbalanced dataset, we used
CIC-IDS2018. This dataset included samples for ARES and
ZEUS botnets. We created a subset of all the normal samples
with just 2560 samples of botnet flows to mimic another
unbalanced dataset.

E. FEATURE SELECTION
The performance of the botnet detectors can be highly depen-
dent on the quality of dataset in general and the number
of distinct features in particular. Using a limited feature set
may not necessarily give a stronger classification decision
as compared to an enhanced set of non-redundant features.
Previously, [51] summarised the most important features
from network flows that could be helpful in botnet detection.
Almost all these features except a few are included in [5] that
we have used in our work. We used the utility used by the
authors, available on github named as CICFlowMeter-v4 to
extract more than 80 flow & time-based features from the
three different datasets’.pcap files. This utility can be used
to extract the said features for any input.pcap files. Table 1
shows the feature set. The details of the features can be found
on the source website.3

F. PREPROCESSING
For preprocessing of ISCX-2014 dataset, one may need to
label it as well. For this purpose, we used the information
provided on the CIC website for IPs associated with the par-
ticular botnets. After labelling, we performed preprocessing
as mentioned in Algorithm 2. We removed all the high and
low skewed values to suppress outliers, cleaned the data of
the NaN and InF values, removed columns with zero standard
deviation and scaled the features in [0,1] range. This is neces-
sary to apply GANs with rectified linear unit (relu) activation
function in its layers because the range of the output with
relu function lies within this range. The CIC-IDS2017 and
CIC-IDS2018 were already labelled. So we only did

2https://www.unb.ca/cic/datasets/ids-2017.html
3https://www.unb.ca/cic/datasets/ids-2018.html
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TABLE 4. Results of data augmentation for different oversampling techniques: The original train set was augmented with botnet traffic samples
generated from each of the different synthetic oversampling techniques including GANs, and the testing was done on the original test set.

preprocessing as mentioned earlier for these two data sets
after extracting the unbalanced subsets.

Algorithm 2 Preprocessing
Input: X (original train set in csv format)
Output: T (preprocessed train set in csv format)

begin
Xn← X [Label = 0], Xb← X [Label = 1] ;
// label flows based on malicious
IPs

Preprocess Data ; // remove: outliers,
rows with NaN and InF values,
columns with std = 0 and scale the
features in range(0,1)

G. GAN HYPERPARAMETERS TUNING
The GAN tuning can be challenging especially working on
tabular data because unlike images we have to assess the
GAN performance based on some quantitative parameters
(one of which is C2ST). However, if we tune a classical GAN
carefully [53], we can make it work to generate realistic sam-
ples as we did in our particular case. After a random search
of batch size and the multiple for the number of neurons in
hidden layers of G and D, we could explore the optimum
values as highlighted in Figure 3. The choice was made based
on the stability of losses of D and G.

The rest of the hyperparameter details can be found
in Table 3. We have used densely connected feed-forward
neural network as the architecture in both G and D. The acti-
vation functions are relu in all the hidden layers and sigmoid
in the output layer ofD. The batch normalization was used in
all the hidden layers. This technique regularizes the output of
each hidden layer and stabilizes the GAN loss. The optimizer
type used was Adam with binary cross-entropy (BCE) as the

loss function. The learning rate was set as 5e-1 becasue that
classifiers tend to get fooled more at this learning rate as
compared to the lower values. So it can also be considered
an exploratory value in our case.

Figure 3 shows that the loss values for the three losses are
stable in case of a batch size of 256 and multiplier (n) equal
to 64 for both GAN and CGAN. In all the other cases,
the values are overshoot or not converging. These results
were taken in ISCX-2014 dataset and were considered for
the other two datasets as well. However, the individual loss
values for the three datasets are manifested for each GAN
in Figures 4, 5, 6, 7, 8 and 9. The GAN losses for each of the
GAN are different for every data set used. Red coloured peaks
are shown where G has a high loss L[G(z)]; then damps down
in next few epoch and remains close to zero. This result means
that G has achieved Nash equilibrium but it can be observed
that more peaks arrive in which D’s loss L[D(G(z))] also
is increased along with L[G(z)] and sometimes even higher.
This result happened when G has generated some sample
which fooled the D pretending to be real but it was fake.
It can be observed that most of the time during the training of
the desired epochs, the GAN losses remain stable. The result
could be very different if we do not use batch normalization
which regularizes values in each hidden layer.

H. DATA AUGMENTATION
We can generate an unlimited amount of data from GAN’s
generator virtually. However, we generated the GAN-bot
samples equal to the normal flow samples. The gener-
ated samples were augmented into the 70% train set only
while 30% of the test set remains unchanged for each k-fold
split where k = 10 in our case.

I. EXPERIMENTAL SETUP
The experiments were performed on a GPU workstation
AMD Ryzen threadripper 1950x 16-core processor with
three units of GeForce GTC 1070 Ti, running ubuntu 20.04.

VOLUME 9, 2021 78283



R. H. Randhawa et al.: Security Hardening of Botnet Detectors Using GANs

Algorithm 3 Botshot Algorithm
Input: T (preprocessed train set in csv format), GANtype, batch_size, botnet_classifier
Output: A (average accuracy), R (average recall), P (average precision), F (average F1)

1 begin
2 Xb ∼ T ; // Extract real_bots from the data set T
3 Create D, G and C models; // Define and compile discriminator, generator and combined models

for the GAN

4 if GANtype == CGAN then
5 Xb[Label]← K-Means labels ; // Replace the Label column with k-means class labels

6 for i = 1, 2, 3, . . . , epochs do

/* Adversarial Training GAN */

7 for j = 1, 2, 3, . . . , batches do

8 xi ∼ Xb ; // Extract botnet data of batch_size

9 zj ← N{mean=0,std=1,size=batch_size} ; // Extract noise from normal distribution of batch_size

10 gzj ← Ezi∼p(zj) ; // Probability Estimation from G using zj

11 θD j ← θD j − η∇θD jL(xj) ; // Train D on xj with Adam optimizer

12 θD j ← θD j − η∇θD jL(gzj ) ; // Train D on gzj with Adam optimizer

13 θG j ← θG j − η∇θG jL(zj) ; // Train C (combined model) on zj with Adam optimizer

14 θG i ← θG j ; // Save the weights of C after every epoch

15 zi ← N{mean=0,std=1,size=sizeof (Xb)} ; // Extract noise from normal distribution with botnet data
size

16 Gzi ← Ezi∼p(z) ; // Probability Estimation from G using zi

/* Evaluation of Generated Data (gz) */

17 U = Xb ∪ Gzi
18 for k = 1, 2, 3, . . ., 10 do

19 split_pointer = k

20 tr ← 70% of U ; // Create a train set from 70% of examples in unified set

21 ts ← 30% of U ; // Create a test set from 30% of examples in unified set

22 train botnet_classifier on tr
23 test botnet_classifier on ts
24 compute Ai,Ri ; // Compute accuracy and recall using confusion matrix

25 LA ←compute average A ; // Compute average accuracy and save into a list
26 LR ←compute average R ; // Compute average recall and save into a list

27 z← N{mean=0,std=1,size=Normal−real_bots} ; // Extract noise from normal distribution of size =
(Normal - real_bots)

28 GzIargmin(A) ← Ez∼p(z) ; // Probability Estimation from G using zj

29 YC2ST ← T ∪ GzIargmin(A) ; // Augment the original dataset T with GAN_bots generated based on
the epoch of GAN training with minimum value of accuracy

30 z← N{mean=0,std=1,size=Normal−real_bots} ; // Extract noise from normal distribution of size =
(Normal - real_bots)

31 GzIargmin(R) ← Ez∼p(z) ; // Probability Estimation from G using zj

32 YBotshot ← T ∪ GzIargmin(R) ; // Augment the original dataset T with GAN_bots generated based on
the epoch of GAN training with minimum value of recall

33 for K = 1, 2, 3, . . . , 10 do

34 split_pointer = K

35 Tr ← 70% of YBotshot ; // Create a train set from 70% of examples in unified set
36 Ts ← 30% of YBotshot ; // Create a test set from 30% of examples in unified set
37 train botnet_classifier on Tr test botnet_classifier on Ts compute AK , RK , PK and FK ; // Compute accuracy,

recall, precision and F1 score using confusion matrix

38 compute average A, R, P and F ; // Compute average accuracy, recall, precision and F1 score
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FIGURE 3. Hyperparameters exploration for batch size (b) and hidden layer neurons count multiple (n).

The platform used was jupyter notebookwith libraries mainly
keras, tensorflow, sklearn and numpy.

VI. EXPERIMENTAL RESULTS
The results are demonstrated in Table 4 for the performance
evaluation of six classifiers after the augmentation of data
generated from different data generation techniques. The case
of no augmentation was used as the benchmark to com-
pare with the oversampling based techniques. For making
a performance comparison, we employed three variants of
the best performing synthetic minority oversampling tech-
niques (SMOTEs) among 85 as suggested by the author
in [54]. The results of these oversamplers have been summa-
rized in Table 4 along with the GAN and CGAN based C2ST
and Botshot oversampling. The post augmentation results
for the performance evaluation metrics used were accuracy,
recall, precision and F1 score. Figures 10, 11 and 12 show the
average performance of all the classifiers after augmenting
the train set with GAN-bots in 10-fold train-test split for the
ISCX-2014, CIC-IDS2017 and CIC-IDS2018 datasets and
testing on the fixed 30% test set. The following sections
will discuss the results in detail in terms of the performance
metrics of the classifiers used:

A. ACCURACY
The accuracy values for both GAN and CGAN based
oversampling are almost always greater than or equal to
the no-augmentation values and in some cases more than
SMOTEs. Specifically, the value of accuracy in case of
ISCX-2014 for GAN based Botshot is higher than GAN
based C2ST but equal in case of CIC-IDS2017 and
CIC-IDS2018. As per equation 6, the accuracy is the ratio
of the sum of TP and TN to the total number of samples
(TP + TN + FP + FN) in the confusion matrix, so due
to the large number of TN (benign samples), the improve-
ment in post augmentation results may not be significantly
more accurate. So the decisive metrics could be recall and
precision.

B. RECALL
The recall improvement is the highest value proposition
of this research work because we need to mitigate the
effects of adversarial evasions. However, the recall could
not be improved significantly for all classifiers for the three
datasets. In fact, for NB and KNN the recall deteriorated
adversely especially in case of the ISCX-2014 dataset. This
behaviour of the classifiers is specific to their inherent
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FIGURE 4. GAN training & evaluation on ISCX-2104 dataset.

FIGURE 5. CGAN training & evaluation on ISCX-2104 dataset.

FIGURE 6. GAN training & evaluation on CIC-IDS2017 dataset.

properties, the explanation of which is beyond the scope
of this research. In the case of CIC-IDS2017, the recall
was improved as compared to the benchmark for all the
GAN and CGAN based oversampling methods. This proves
the effectiveness of the Botshot as compared to C2ST as
well. The values for recall in almost all cases for Botshot
based GAN/CGAN oversampling is greater than or equal to
C2ST based GAN/CGAN oversampling except in the case of
CGAN(Botshot) with recall equal to 98.65% as compared to
98.61% of CGAN(C2ST) for CIC-IDS2017 dataset. It can be
confidently inferred that Botshot is competitive not only with
the SMOTE based oversamplers in case of CIC-IDS2017 and

CIC-IDS2018 datasets but in certain cases better for
particular classifiers like XGB which almost always shows
improvement in recall for almost all the oversampling tech-
niques as compared to the benchmark. This information can
greatly help us choose the right classifier to be used in Botshot
in future works.

C. PRECISION
The minimization of false positive is specified as the property
of a classifier being precise in its classification decisions.
The precision values for almost all the classifiers have
significantly higher values as compared to the SMOTE based
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FIGURE 7. CGAN training & evaluation on CIC-IDS2017 dataset.

FIGURE 8. GAN training & evaluation on CIC-IDS2018 dataset.

FIGURE 9. CGAN training & evaluation on CIC-IDS2018 dataset.

techniques, which gives us strong confidence in estimating
Botshot for reducing the FP except for NB which has the
worst performance in case of all the three datasets. How-
ever, the precision value for GAN(Botshot) is higher than
GAN(C2ST) and equal in case of CGAN for ISCX-2014
dataset. Similarly, the value for CGAN(Botshot) is higher
than CGAN(C2ST) but lower than GAN(C2ST) for
GAN(Botshot) for CIC-IDS2017 dataset. There is also one
higher precision vote that goes to GAN(Botshot) as com-
pared to GAN(C2ST) while the values remain the same
for CGAN. The improvement in precision was unexpected
since our main objective was to reduce FN and not the FP.
GAN based oversampling have helped the classifiers make

better decisions about the normal traffic samples, which is an
added benefit of the proposed technique.

D. F1
The F1 score is the harmonic mean of the precision and
recall so it reflects the combined effect of both these param-
eters. It can be observed from the results that F1 in case of
CIC-IDS2017 and CIC-IDS2018 is better for Botshot in
the majority of cases as compared to the C2ST based
GAN/CGAN oversampling and even better than the bench-
mark in certain cases. This result also validates the effective-
ness of the proposed technique.
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FIGURE 10. Results on ISCX-2014 dataset.

FIGURE 11. Results on CIC-IDS2017 dataset.

FIGURE 12. Results on CIC-IDS2018 dataset.

VII. DISCUSSION
With the help of the extensive and interesting results, we can
empirically estimate the effectiveness of the proposed tech-
nique. Although the existing works show the effectiveness of
GANs, we have proposed one step further by showing that
GANs can be used effectively for security hardening of botnet
detectors. In the light of the results, the discussion can be
summarised in subsections as follows:

A. RELATIONSHIP OF GAN LOSS WITH C2ST AND
BOTSHOT
The minimum values of accuracy and recall for each
classifier during the GAN training are depicted
in Figures 4, 5, 6, 7, 8 and 9 for all the three datasets.

The lines that touch the base (x-axis) represent the minimum
values of the accuracy or recall for the particular classifier
on a specific epoch. There are two points worth noticing
in these diagrams. First, it is not necessary that with each
training epoch, the accuracy or the recall decreases gradu-
ally. In fact, the values are stochastic and unpredictable in
each epoch for every dataset for both GANs. This result
shows that the GAN loss only is not a strong metric for
evaluating the G performance. Although, as mentioned in
Subsection V-G, the losses converge and remain close to zero;
the adopted evaluation, using C2ST and Botshot, behaves
differently. Second, it is not necessary that there will always
be an epoch that will have both accuracy and recall minimum
at the same time. In fact in some cases the epochs for both
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FIGURE 13. Recall score (y-axis) after blackbox test for each oversampling technique for all the three datasets.

FIGURE 14. Improvement in recall score (y-axis) after adversarial training for all the three datasets.

these metrics are different as can be seen in case of XGB,
DT and RF in Figure 4, DT in Figure 5, KNN in Figure 6,
XGB and DT in Figure 7 and XGB in Figure 9. Moreover,
in only one case were accuracy and recall both minimum
in the same epoch for all the classifiers in Figure 8. This
reinforces our notion that recall could be a more effective
metric for assessing the similarity between the generated and
real samples.

B. COMPARISON OF BOTSHOT WITH PEER TECHNIQUES
1) OVERSAMPLING
While comparing GAN based oversampling with SMOTEs,
a question may arise whether it is better than its
interpolation-based counterpart. The answer can be a definite
’yes’ if we can explore a GAN model with appropriate
hyperparameters that can generate more realistic samples as
compared to what has been proposed in the current work. The
accuracy and recall both have values during GAN evaluation
no less than 99% (ideal case is 50%), which means that our
GANs are generating few realistic samples of botnet traffic.
However, a significant improvement in the final results can
be observed in Table 4. Since the performance of the SMOTE
oversamplers is better in many cases, we are not in a posi-
tion to definitely say ’yes’ to the question. For that reason,
we leave the research of exploring a suitable GAN for this

purpose to future work. For example, the ISCX-2014 dataset
could not give us good results in recall for the Botshot so we
can start with a set of an appropriate classifier, a GAN and
this dataset to improve the detection performance by making
necessary exploration of a suitable GAN model.

2) BLACKBOX TEST AND IMPROVEMENTS IN RECALL
The blackbox test could be used to evaluate the aptness
of the generated botnet data to be fooled as benign by the
classifiers. The trained classifiers were tested with generated
samples added in test set in each 70-30 split. The results
for the three datasets for recall are illustrated in Figure 13.
If we compare the GAN based oversampling with the other
synthetic techniques for blackbox testing, the results are
significantly remarkable. The recall score drops excessively
for GAN based techniques inferring that the GAN generated
samples can evade the classifiers more than peer oversam-
pling techniques do. Figure 14 shows the improvement in
the value of recall after adversarial training of generated data
for each oversampling technique. It can be observed that in
case of the best performing classifier (XGB), the improve-
ment is 98.58%, 98.64% and 99.97% for Botshot being
the highest among the peer techniques. The improvement
in recall as compared to the C2ST was lower for ISCX-
2014 and CIC-IDS2017 (values marked in red in Figure 14)
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FIGURE 15. Contour plot of two random features from the ISCX-2014 dataset: Both GAN Bots (C2ST) and GAN Bots (Botshot) try to follow
the Real Bots distribution.

for CGAN(Botshot). This opens further research horizons
towards exploring more GANs to validate Botshot which is a
further extension of this work that we leave as a future work.

C. LIMITATION OF BOTSHOT
In Figure 15, the GAN mimicry of the two distinct features
from the ISCX-2014 dataset for all the six classifiers has been
demonstrated in the form of contour plots. The graphs show
that the GAN Bots generated by both C2ST and Botshot are
trying to follow the distribution of the Real Bots for the two
features ‘Fwd Segment Size Avg’ and ‘Bwd Segment Size
Avg’. We chose these two features based on the fact that in
most of the training iterations, their distribution is unchanged.
This implies that generator is good at generating these two
features after a certain number of initial training iterations.
The same principal is valid for the CIC-2017 and CIC-2018
datasets so we did not include their results. However, it is
imperative to know if the generated samples are as valid as
real-life traffic samples since the GANs may not generate
all the valid network traffic samples. We do not perform
encoding/decoding of generated attack samples to relay on
the internet to validate the semantics. Since, the purpose of
this work is to devise a defence strategy against adversarial
attacks, improving the detection performance with the addi-
tion of data generated byGAN inML domain (i.e. training the
detectors in post-processing of network traffic data) is ade-
quate. Hence we are generating realistic samples to improve
detection rather than generating real traffic samples to fail
botnet detectors. We leave this as future work to filter valid
samples out of the generated data from GANs.

VIII. CONCLUSION AND FUTURE DIRECTIONS
GANs have proved to be very effective in computer
vision-based applications. However, we can infer from this
work that GANs are suitable candidates to address multiple

challenges within the cybersecurity domain as well.
Especially, the effects of adversarial evasion attacks can be
mitigated proactively using GANs’ generated traffic augmen-
tation to the original train sets. The general method to utilize
GANs to generate the quality samples is based on the loss
functions of generator and discriminator networks. However,
the quality of generated data could be further evaluated using
the classifiers under test. We have proposed a technique to
generate improved quality samples to fulfil this objective in
case of botnet detection. The results show that GANs can
provide a better alternative to the traditional traffic generation
methods for all the classifiers used. They can also be used to
balance the datasets and further enhance the security hard-
ening of the botnet detectors, especially against adversarial
evasion attacks as well as decreasing the false positives.

The behaviours and landscapes of modern botnets need to
be explored further. This means that new traffic features must
be introduced to differentiate botnets from normal traffic.
Modern GANs could be harnessed to further enhance better
quality adversarial examples. The validity of GANs’ gener-
ated traffic in terms of semantics could be another extension
of this research work. A further envisaged research direc-
tion could be making the IDS autonomous to be proactively
trained against novel evasion samples using deep reinforce-
ment learning.
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J. Hrabovskỳ, ‘‘Infrastructure for generating new IDS dataset,’’ in Proc.
16th Int. Conf. Emerg. eLearn. Technol. Appl. (ICETA), Nov. 2018,
pp. 603–610.

VOLUME 9, 2021 78291



R. H. Randhawa et al.: Security Hardening of Botnet Detectors Using GANs

[50] X. Yuan, P. He, Q. Zhu, and X. Li, ‘‘Adversarial examples: Attacks
and defenses for deep learning,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2805–2824, Sep. 2019.

[51] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, ‘‘Towards
effective feature selection in machine learning-based botnet detection
approaches,’’ in Proc. IEEE Conf. Commun. Netw. Secur., Oct. 2014,
pp. 247–255.

[52] S. García. Malware Capture Facility Project. Accessed: Apr. 10, 2021.
[Online]. Available: https://mcfp.weebly.com/

[53] M. Lucic, K. Kurach,M.Michalski, S. Gelly, andO. Bousquet, ‘‘AreGANs
created equal?A large-scale study,’’ inProc. Adv. Neural Inf. Process. Syst.,
2018, pp. 700–709.

[54] G. Kovács, ‘‘An empirical comparison and evaluation of minority over-
sampling techniques on a large number of imbalanced datasets,’’ Appl. Soft
Comput., vol. 83, Oct. 2019, Art. no. 105662.

RIZWAN HAMID RANDHAWA received the
B.S. degree in electronic engineering from Inter-
national Islamic University Islamabad, Pakistan,
and the master’s degree in computer science
from Information Technology University, Lahore,
Pakistan. He is currently pursuing the Ph.D. degree
in computer science from Northumbria University,
Newcastle upon Tyne, U.K. He has vast experi-
ence with embedded systems in different private
and public sector organizations of Pakistan. His

research interests include AI-based botnet detection, the IoT security, and
embedded systems design and development for the IoT platforms.

NAUMAN ASLAM (Member, IEEE) received the
Ph.D. degree in engineering mathematics from
Dalhousie University, Canada, in 2008. He is
currently a Professor with the Department of
Computer and Information Science, Northumbria
University, U.K. Before joining Northumbria Uni-
versity, as a Senior Lecturer, in 2011, he worked
as an Assistant Professor with Dalhousie Uni-
versity. He is also leading the Network Systems
and Security Research Group, Northumbria Uni-

versity. He has published over 100 articles in peer-reviewed journals and
conferences. His research interest includes communication networks. His
current research interests include addressing problems related to wireless
body area networks and the IoT, network security, QoS-aware communi-
cation in industrial wireless sensor networks, and application of artificial
intelligence (AI) in communication networks.

MOHAMMAD ALAUTHMAN received the B.Sc.
degree in computer science from Hashemite
University, Jordan, in 2002, the M.Sc. degree
in computer science from Amman Arab Uni-
versity, Jordan, in 2004, and the Ph.D. degree
from Northumbria University Newcastle, U.K.,
in 2016. He is currently an Assistant Professor
with the Information Security Department, Petra
University, Jordan. His research interests include
cyber-security, cyber forensics, advanced machine
learning, and data science applications.

HUSNAIN RAFIQ received the B.S. and M.S.
degrees in computer science from the Capital Uni-
versity of Science and Technology, Islamabad,
Pakistan, in 2015 and 2017, respectively. He is cur-
rently pursuing the Ph.D. degree from Northum-
bria University, Newcastle upon Tyne, U.K. From
2015 to 2018, he was a Junior Lecturer with the
Capital University of Science and Technology. His
research interests include information security and
forensics, machine learning, andmalware analysis.

FRANK COMEAU (Member, IEEE) received the
Ph.D. degree in engineering mathematics from
Dalhousie University, Canada, in 2008. He also
holds the position of an Adjunct Professor with
Dalhousie University. He is currently an Associate
Professor and the Chair of the Department of Engi-
neering, St. Francis Xavier University, Canada.
His research interests include wireless sensor and
ad hoc networks, communication protocols, and
underwater sensor networks. He has published

11 articles in peer-reviewed journals and conferences. He is a member of
Engineers Nova Scotia (Canada).

78292 VOLUME 9, 2021


