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ABSTRACT In this study, we aim to provide a deep convolutional network based femoral neck fracture
detection system on radiographs for emergency patients. We retrospectively collected 1,491 frontal pelvic
radiographs from three institutions and assigned them to the following data sets: primary dataset (710 radio-
graphs, to fine-tune and validate the initial model called the Digital Radiography Fracture Detection System
[DR-FDS]), internal test set 1 (189 radiographs) and 2 (235 radiographs), and external test set 1 (189 radio-
graphs) and 2 (168 radiographs). Per-bounding box recall and precision and per-image sensitivity, specificity,
and area under the receiver operating characteristic (ROC) curve (AUC) were computed. We randomly
extracted 300 radiographs from the above test sets and compared their effect on the diagnostic accuracy
and efficiency of fine-tuned model-assisted and unassisted clinicians. The fine-tuned DR-FDS showed a
better overall performance in detecting femoral neck fractures than did the initial DR-FDS. The fine-tuned
DR-FDS achieved AUC values of 0.9526 (95%CI, 0.9048–0.9767) and 0.9633(95%CI, 0.9346-0.9797) in
internal test sets 1 and 2. In external test sets 1 and 2, this model also achieved promising results with AUC
values of 0.9231 (95%CI, 0.8779–0.9520), and 0.9937 (95%CI 0.9739–0.9985), respectively. The clinicians
showed a statistically significant increase in specificity, sensitivity, and accuracy for the identification of
minimal/undisplaced fracture and a decrease in the average reading time. The object detection model that
is fine-tuned has high sensitivity and specificity and the universal ability to detect and locate femoral neck
fractures on pelvic radiographs.

INDEX TERMS Femoral neck fractures, convolutional neural network, radiographs, small sample, fine-
tuning.

I. INTRODUCTION
The femur is the longest and strongest bone in the body.
The femoral neck, the upper part of the femur, often suffers
severe fractures [1]. Femoral neck fractures are generally
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considered as one of the most serious osteoporotic fractures,
which are considered as the main cause of disability in elderly
individuals worldwide [2], [3]. Fractures of the neck of the
femur can seriously affect the quality of life of patients.
Survivors may require considerable social and nursing care,
which increases social and economic burdens [4]. Especially
in emergency scenarios, timely and accurate diagnosis and
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evaluation of femoral neck fractures are critical, and delayed
surgical repair may lead to increased morbidity and mortality
[5] Conventionally, frontal pelvic radiograph (PXR) is an
economical and widely used tool to evaluate the location and
types of the fractures. While displaced fractures diagnosis
is a relatively plain task, minimal or undisplaced fractures
are challenging for less experienced clinicians or radiologists
with few musculoskeletal imaging experiences. Some previ-
ous studies showed that the initial misdiagnosis rate was as
high as 7–14% [6], [7], and delayed diagnosis and treatment
exacerbated the prognosis [8]. Therefore, development of an
efficient femoral neck fracture detection system is of great
significance for emergency radiology work.

Integrating artificial intelligence (AI) into the existing
medical workflow is a very promising trend [9]. Deep
learning (DL), which is an even more specialized sub-
field of AI, has shown great potential in medical imaging
because of its high performance in diagnosis, classifica-
tion, and prediction [10]–[12]. Several studies have demon-
strated the application of DL for fracture detection. In a
study by Olczak et al. [13], the deep convolutional neu-
ral network (DCNN) performed as well as or better than
orthopedic surgeons in the detection of proximal humerus,
hand, wrist, and ankle fractures on radiographs. A study by
Adams et al. [14] suggests that as impressive as recognizing
fractures is for a DCNN, similar learning can be achieved by
top-performingmedically-naive humans with less than 1 hour
of perceptual training. Three studies revealed that DCNN
not only detected fractures on radiographs but also used hot
maps to localize fracture lesions and visualize the results [11],
[15], [16]. Two studies developed excellent DL networks
for detecting the fracture position; they use a bounding box
to show the results instead of hot maps, which indicates a
remarkable advancement in the field of fracture detection
using AI [17], [18].

The purpose of the study is to detect and locate femoral
neck fractures on radiographs by using a DL algorithm. Sim-
ulate clinical situation to explore the feasibility of applying
a fine-tuned DCNN, and compare the accuracy and average
radiograph reading time of doctors with two experience levels
with or without the assistance of the model to further verify
the clinical feasibility.

II. MATERIALS AND METHODS
A. DATASET
Three local ethics committees approved this study and
waived the requirement for informed consent owing to
the retrospective nature of this study. We retrospectively
collected 1,491 patients (with only one PXR per patient)
in the form of Digital Imaging and Communications in
Medicine (DICOM) from three institutions’ Picture Archiv-
ing and Communication Systems identified through the
Radiology Information System. Among them, 710 PXRs
(568 normal and 142 femoral neck fractures) were con-
secutively acquired from outpatients (OPs) in Radiology

departments of First Hospital of Jilin University (JLU-1)
between January 2016 and April 2019 and constituted the
primary dataset. We randomly split the primary dataset into
the training set (n = 610) which was used to fine-tune the
DR-FDS, and tuning set (n = 100) which was used to select
the final model. We also collected 189 consecutive PXRs
(151 normal and 38 femoral neck fractures) from emergency
patients (EPs) in Emergency Radiology department of JLU-1
between October 2018 and April 2019, which constituted
internal test set 1. Additionally, in order to validate our model
performance in real-world clinical environment, we split
253 consecutive PXRs from EPs in Emergency Radiology
department of JLU-1 and considered them as internal test
set 2, which were consisted of all kinds of pelvic fractures
over a three-month period in 2020 (July to September), this
data set was included to investigate the feasibility of extend-
ing this method to other types of proximal hip fractures.
We acquired 189 (propensity matching normal, 115; femoral
neck fractures, 74) and 168 (propensity matching normal, 75;
femoral neck fractures, 93) PXRs from OPs in Radiology
departments of Forth Hospital of Jilin University (JLU-4) and
the Jilin People’s Hospital (JLP) in 12 months period in 2019,
respectively, and geographically split the two datasets as
external test sets 1 and 2. We used all four datasets to test the
model. We checked normal PXRs to confirm the absence of
positive findings and extracted the demographic data, report
data, and images of patients with hip trauma who underwent
PXRs on the date of injury; we excluded postoperative images
with internal fixation and arthroplasty. We used only one
image/person to decrease the overperformance of model in
each of training and test sets. A cross-sectional analysis to
assess the functional outcome of femoral neck fractures in
JLU-1. Using case-control analysis of femoral neck fracture
of patients in JLU-4 and JLP Propensity matching for femoral
neck fractures was performed by selecting non-fracture cases
with a similar distribution of patients in the same hospi-
tal (controls). The cohort characteristics amongst the radio-
graphs of all datasets are shown in Table 1.

B. OUTCOME LABLES
All these radiographs were assessed by two radiologists (Lin
Mu and Dong Dong: 13 years and 15 years of experience,
respectively) and were separated into the normal and frac-
ture groups. All fracture locations were manually annotated
with bounding boxes by the two radiologists in consensus,
and these constituted the reference standards. Each image in
the fracture group was assigned 2 binary diagnostic labels
for the presence or absence of (1) displaced fracture and
(2) minimal/undisplaced fracture (defined: angulation< 15◦,
tilt < 20◦, axial neck of femur shortening or the distance of
the displaced bone chip < 5 mm).

C. IMAGE PREPROCESSING
The DL networks directly accepted each image without crop-
ping, which helped retain maximum information. During the
model training process, all input data were augmented to
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TABLE 1. Cohort characteristics of different dataset.

FIGURE 1. Flow chart of the whole research design. The development and evaluation process of DR-FDS was shown in orange and
purple shade. The evaluation process of clinical application value was shown in green shade.

improve the accuracy of the proposed method for fracture
detection. In this study, we employed the two augmentation
methods: (i) flipping: flips input radiographs horizontally
with a probability of 0.5; (ii) rotating: rotates input radio-
graphs by −180◦ to 180◦.

D. FRACTURE DETECTION MODEL TRAINING DETAILS
Figure 1 shows the flow chart of the whole experiment. The
DR-FDS was inspired by Multi-domain Fracture Detection
Network (MFDN) [19], which was improved on the basis
of Faster R-CNN [20]. The DR-FDS was pre-trained with
7338 X-ray images of the wrist, feet, hand, ankle, elbow,
shoulder, hip, and knee. Because the current task involves
only the detection of hip fracture, we preserved only the frac-
ture detection network of MFDN and removed the domain
classification network of MFDN. Therefore, as shown in

Figure 2 (A), this model was mainly composed of three
structures: backbone, feature enhancement modules (FEMs),
region proposal network (RPN), and R-CNN. The function
of the backbone network was to extract advanced features
from input radiographs. In our model, a pre-trained Faster
R-CNNwith ResNet-50 [21] was introduced as the backbone
network. The input of the backbone was a series of pre-
processed radiographs. Figure 2 (B) shows the architecture
of FEMs, which contained two consecutive sub-modules.
Firstly, FEM-1 was added to the output of multi-scale layers
(A2, A3, A4, A5) in the backbone to form new multi-scale
layers (M1, M2, M3, M4). FEM-1 was used to implement
multi-scale predictions so that the RPN could be used at
different scales (B1, B2, B3, B4, B5) to generate region
proposals. Then, followed FEM-1, FEM-2 formed newmulti-
scale layers (N1, N2, N3, N4, N5) and further extracted more
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FIGURE 2. (A) is the overview of DR fracture detection system, and (B) is the structure of the feature
enhancement modules.

valuable multi-scale information (C1, C2, C3, C4, C5) to
enhance feature expression. Finally, the enhanced multi-scale
features were input to R-CNN to obtain the final femoral neck
fracture detection results. The loss function consists of the
RPN loss and the R-CNN loss. It is defined as follows:

Loss = ζ · LossRPN + η · LossR−CNN (1)

where ζ and η are the weights. ζ is set to 1 and η is set
to 0.1. Both losses contain regression loss and classification
loss. The regression loss is designed as a smoothed-L1 loss to
evaluate the accuracy of fracture area detection, and the clas-
sification loss is a cross-entropy function to assess the accu-
racy of the fracture area classification. Before fine-tuning
the model, we first test the training data with the original
DR-FDS, adding the positive samples with detection errors
to the training set as difficult samples and input them into the
original DR-FDS for fine-tuning. Initially, we also add the
negative samples with detection errors to the training set as
difficult samples. However, the detection results of the model
were more biased to miss detection, thereby ensuring a lower
probability of false detection. For fracture detection tasks,
a lower missed rate is more clinically significant. Therefore,
we eliminated these difficult samples generated by negative
samples during the training process. The fine-tuning process
of our model can be divided into two steps. First, we fixed
the parameters of all layers; subsequently, were reduced the
learning rate by 10 times to train for 50 epochs and selected
the optimal model parameters according to the results of the
validation set.

E. EVALUATION OF THE FRACTURE DETECTION MODEL
Before and after fine-tuning, the DR-FDS was tested using
the previously unseen four test sets. We set two levels

(per-image level and per-bounding box level) to evaluate the
performance of CNN. In the per-image level, the DL model
will output the result of whether or not there is a fracture
in the image regardless of the specific fracture location.
The true-positive determination required at least one true-
positive fracture mark on the image. In the per-bounding box
level, the Intersection over Union (IoU) from the bounding
box predicted by the DL model and the reference standard
bounding box was calculated to determine whether there is
a possibility of a fracture. For example, when one region of
interest localized by the CNN as the fracture with more than
50% probability overlappedwith a reference box, the network
would output the true-positive mark; the other annotations by
the CNN were considered false-positive.

F. OBSERVER EVALUATION AND COMPARISON WITH
FRACTURE DETECTION MODEL
We evaluate the utility of our fine-tuned model, we mea-
sured its effect on the diagnostic accuracy and efficiency
of clinicians. We recruited 16 doctors from the departments
of radiology, osteoarthrosis surgery, and emergency, includ-
ing 8 residents (experience: 1–3 years) and 8 chief physi-
cians (experience: 5–10 years). This study was performed to
ensure a multicenter comparison and also to save the time
cost of 16 doctors in outlining the fracture areas. There-
fore, we randomly selected 300 x-ray sequences from all
test sets except the internal test set 2 to explore the value
of the practical clinical application. All the clinicians eval-
uated the clinical test dataset, unaided by the model, and
checked the annotation with bounding boxes on the fracture
areas. After a 30-day washout period, they reviewed the same
test dataset with the assistance of the fine-tuned DR-FDS
and added or removed bounding boxes on the images. Then,
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TABLE 2. Performance of DR-FDS model and fine-tuned DR-FDS. (CI:95% confidence interval; M: Median).

we divided these images into two subgroups according to
the diagnostic labels: displaced fracture subgroup (normal,
81; displaced fractures, 79) andminimal/undisplaced fracture
subgroup (normal, 74; minimal/undisplaced fractures, 66);
we performed a statistical analysis of the subgroup results.

G. STATISTICAL ANALYSIS
Statistical analysis was conducted with SPSS 25.0. (SPSS
Inc, Chicago, IL, USA).We determined per-image sensitivity,
specificity, accuracy, and AUC analysis, and determined per-
bounding box recall and precision. We added the average
reading time of clinicians. Comparison of AUCs of the model
before and after fine-tuning in multicentric validation set
were performed using DeLong’s Test. Statistically significant
differences in sensitivity, specificity, accuracy, recall, preci-
sion, and average reading time were evaluated using χ2 anal-
ysis and Fisher’s exact probability. A p value of < 0.05 was
considered to indicate a statistically significant difference.

III. RESULTS
A. FRACTURE DETECTION MODEL PERFORMANCE
The sensitivity, specificity, and AUC at the per-image level
and the recall and precision at the per-bounding box level in
the model before and after fine-tuning are shown in Table 2,
for the four test sets. The best compromise between sen-
sitivity and specificity was observed at a cut-off threshold
of 0.4. The performance of DR-FDS before and after fine-
tuning showed no statistically significant difference in inter-
nal test set 1 in terms of all metrics. In internal test set 2, the
fine-tuned DR-FDS showed a good performance in terms of
specificity (0.7340; 95%CI, 0.6655–0.8036), AUC (0.9633;
95%CI, 0.9346–0.9797). The fine-tuned model showed sta-
tistically significant improvement in the detection of fractures

FIGURE 3. The area under the receiver operating characteristic (ROC)
curves for detection of fracture using DR-FDS at the per-image level.

in external test set 1, on all metrics. With regard to the per-
formance of the fine-tuned model in external test set 2, there
were statistically significant increases in the specificity and
AUC at the per-image level. The specificity increased from
0.6000 (95%CI, 0.4804–0.7115) to 0.8000 (95%CI, 0.6917–
0.8835), and AUC increased from 0.9732 (95%CI, 0.9470–
0.9865) to 0.9937 (95%CI, 0.9739–0.9985). The receiver
operating characteristic (ROC) curves for the detection of
fracture at per-image level are shown in Figure 3 (DR-FDS)
and Figure 4 (fine-tunedDR-FDS). Examples of performance
are shown in Figure 5 and Figure 6.

B. OBSERVER PERFORMANCE AND COMPARISON WITH
FRACTURE DETECTION MODEL
A comparison of unassisted and model-assisted performance
metrics of clinicians on two types of fractures is shown
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TABLE 3. Comparison of unassisted and model-assisted performance metrics of clinicians on two types of fracture (CI:95% confidence interval;
M: Median).

TABLE 4. Comparison of unassisted and model-assisted performance metrics of residents, chief physicians and DR-FDS on clinical test set. (CI:95%
confidence interval; M: Median).

FIGURE 4. The area under the receiver operating characteristic (ROC)
curves for detection of fracture using fine-tuned DR-FDS at the per-image
level.

in Table 3. All the fine-tuned model-assisted clinicians
showed statistically significant increases fracture identifica-
tion indices, namely specificity, sensitivity, and accuracy,
in the minimal/undisplaced fracture subgroup; their aver-
age reading time decreased from 15 s to 10 s. The fine-
tuned model-assisted clinicians achieved significantly higher
accuracy (0.9046; 95%CI, 0.8968-0.9124) and spent lesser
time on reading each radiograph than did the unassisted
clinicians in the displaced fracture subgroup. The numerical
values of the clinical utility of the model to the two different
kinds of clinicians are provided in Table 4. The fine-tuned
model-assisted residents showed a significant increase in
the diagnostic sensitivity (0.9276; 95%CI, 0.9201–0.9351),
and accuracy (0.9192; 95%CI, 0.9134–0.9250); there was no

FIGURE 5. Radiographs show selected true-positive examples of femoral
neck fracture. Red boxes are made by the fine-tuned DR-FDS to detect
and localize fractures. IOU means Intersection of the Union.

statistically significant improvement in specificity (0.9108;
95%CI, 0.9025–0.9191). The average reading time of the
residents decreased from 20 s to 13 s. The fine-tuned model-
assisted chief physicians also achieve statistically significant
improvement in all the performance metrics.

IV. DISCUSSION
This study involved a preliminary examination of the diag-
nostic value of DL in the detection of the neck of femur
fractures. Accurate and efficient detection of femoral neck
fractures is essential for clinical diagnosis. Since the limi-
tations associated with the human eye’s observation power,
rapid identification of uneven or nondisplaced femoral neck
fractures is challenging. The experimental results of this
study suggest that DCNN can accurately detect displaced
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FIGURE 6. Radiographs show selected false-negative example (above two
radiographs. The model had lower sensitivity for minimal or undisplaced
fracture), false-positive example (below two radiographs, the model had
lower specificity for poor exposure of femoral neck). Red boxes are made
by the fine-tuned DR-FDS, and blue boxes are made by radiologists as the
ground truth.

fractures and has good performance for minimal or non-
displaced fractures as well. Besides, DCNN will help clin-
icians lower the misdiagnosis rate and prevent subsequent
misdiagnosis events.We also show that fine-tuned the generic
fracture detection system using a small number of location-
specific fracture images can achieve more accurate detection
performance for location-specific fractures.

The current techniques for object detection are mainly
divided into one-stage and two-stage object detection net-
works. The framework used in this study is based on a
two-stage object detection network Faster R-CNN instead
of a one-stage object detection network, such as YOLO.
The reason is twofold, firstly, medical images are extremely
imbalanced between positive and negative samples, most of
which are negative. The two-stage object detection network
can alleviate this sample imbalance to some extent. Secondly,
the two-stage object detection network can also be viewed as
a cascade process, which uses RPN to remove a large amount
of background information so that the network can focus on
differentiating lesion information.

In previous studies, single detection tasks as an image
classification problem in radiographs were commonly used
in DCNN research [13], [22], the features extracted by the
classified model pay considerable attention to high-level
semantics. However, we used a DL object detection network
for image analysis. The task of object detection involves
two fundamental questions, semantic information and the
location information of the target. Cheng et al. [11] used
DCNN for the detection of hip fractures and with a low
false-negative rate, which is noninferior to the performance
of the experts. Mutasa et al. [23] explored two data aug-
mentation approaches to improve the detection of femoral
neck fractures and focused on Garden fracture classification.
Krogue et al. [24] investigated the use of DL for automatic
identification and classification of hip fractures and found
that DL improved outcomes by reducing diagnostic errors.
In our study, we used whole PXRs for training and testing,
and themodel output the PXRswhich have one or more boxes
to visualize the regions as the fracture sites as a detection
result. Visualization of the DCNN may convince doctors to
accept the results and make the results become explicable.

In addition, another advantage of DL object detection is the
ability to review the false-positive and false-negative cases,
which helps refine the training of the network for the detec-
tion of image features. However, the diagnostic ability of DL
cannot be overstated, and there is great scope for improve-
ment in the field of auxiliary physician diagnosis.

We trained a fine-tuned model on a relatively small dataset
(710 PXRs) and found that it improved the ability to detect
fractures in specific locations. Because the fine-tuned model
was specifically optimized for the hip joint, fine-tuning
strategies can effectively extract task-specific characteristics
from a small amount of training data. At the same time,
we collected the continuous data that simulates real clinical
scenarios. The fine-tuned DR-FDS improves the detection
performance of femoral neck fractures. Particularly, the AUC
value increased significantly from 0.6971 to 0.9216 in exter-
nal test 1 and from 0.9732 to 0.9937 in external test 2; the
highest AUC value was found in external test 2. Our study
demonstrates that a limited amount of data and specific and
homogeneous datasets can help the DL networks achieve
high-level automated detection performance, and this finding
indicates that our DR-FDS can be used in clinical practice,
simply after fine-tuning.

Verifying how well the model performs in multicentric
validation datasets is a major challenge. The result in internal
test set 2 showed that the fine-tuned DR-FDS is able to
identify and classify any kind of fracture in the pelvis, which
includes femoral neck fracture, intertrochanteric fracture, and
fracture of the ilium, ischium, pubis, and acetabulum. How-
ever, there is no better than the original model in identifying
multitype of fractures (such as internal test set 2). Consider-
ing that the fine-tuned DR-FDS was optimized for femoral
neck fractures, the original model can be trained in the same
way for any kind of fracture. In the future, we can develop
different optimization strategies to adjust and enhance the
fracture detection ability of the model according to different
location of the fracture. In the external test sets, the fine-tuned
DR-FDS presented a statistically significant improvement of
all metrics in external test set 1, and the specificity and AUC
of the fine-tuned model in external test set 2 demonstrated a
significantly superior capacity in detecting fractures. On the
one hand, the reliability of external verification shows that
the generalization ability of the model is improved through
limited sample fine-tuning. In particular, the results of the
external test set 2 are comparable to those of the internal test
set 1, which also indicates the better robustness of the model;
On the other hand, this result revealed a good prospect for the
generalized application of our model in clinical work.

The purpose of the fracture detection system is to improve
the diagnostic accuracy of practicing clinicians, but not
simply to achieve the highest AUC possible. The reason
behind designing the two types of fracture subgroups was to
observe how the fine-tuned DR-FDS performed at different
levels of diagnostic difficulty. We considered that mini-
mal/undisplaced fractures were easy to misdiagnosis and
not easily detected in daily work. Fine-tuned model-assisted
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clinicians were significantly more sensitive and specific in
detectingminimal/undisplaced fractures thanwere unassisted
clinicians. This result revealed the clinicians’ diagnostic abil-
ity improved further in difficult cases, with the assistance
of the computer. Fracture detection models can be of great
benefit to clinicians, and our results showed that there was
statistically significant improvement in the performance met-
rics. It suggests that not only experienced doctors (such as
chief physicians), but also inexperienced doctors (such as
residents), the both will benefit from the fine-tuned DR-FDS.
The added value of this model to assist primary doctors can
increase confidence and reduce the occurrence of missed
diagnoses. Collectively, the fine-tuned DR-FDS can assist
doctors who lack experience in diagnosing difficult cases.

V. STUDY LIMITATIONS
There are several limitations to this preliminary study. First,
although the results of this study are promising, applying this
automatic detection algorithm into clinical work to increase
the detection rate of femoral neck fractures presents a great
challenge. A randomized, prospective study should be con-
ducted to evaluate the clinical impact on the diagnostic accu-
racy and economic value of DCNN for identifying any other
types of fractures on radiographs, in addition to femoral neck
fractures. Second, the diagnostic accuracy of clinicians and
the model in this study is limited to determining what is
visible within a radiograph. In future studies, clinical studies
with a full range of clinical information such as medical
history and physical examination can be included. Third,
the subtypes of femoral neck fractures are not explored in
this study. Future studies will introduce multi-task learning
to further distinguish the subtypes of femoral neck fractures.

VI. CONCLUSION
In conclusion, the object detection DCNN that is fine-tuned
with a small dataset has high sensitivity and specificity and
the universal ability to detect and locate femoral neck frac-
tures on pelvic radiographs. Our fracture detection system
can assist doctors who lack work experience, especially in
evaluating difficult cases.
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