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ABSTRACT Road traffic forecasting is crucial in Intelligent Transportation Systems (ITS). To achieve
accurate results, it is necessary to model the dynamic nature and the complex non-linear dependencies
governing traffic. The goal is particularly challenging when the prediction involves more than just one traffic
variable. This paper proposes a novel multi-task learning model, called AST-MTL, to perform multi-horizon
predictions of the traffic flow and speed at the road network scale. The strategy combines a multilayer
fully-connected neural network (FNN) and a multi-head attention mechanism to learn related tasks while
improving generalization performance. The model also includes the graph convolutional network (GCNs)
and the gated recurrent unit network (GRUs) to extract the spatial and temporal features of traffic conditions.
Our experiments employ new sets of GPS data, called OBU data, to perform traffic prediction in the freeway
and urban contexts. The experimental results prove our model can effectively perform multi-horizon traffic
forecasting for different types of roads and outperform state-of-the-art models.

INDEX TERMS Deep learning, multi-task learning, graph mining, traffic prediction.

I. INTRODUCTION

Road transport is one of the main concerns in modern cities.
This sector is responsible for different severe problems, such
as pollution, road congestion, long journey times through
the city, and so forth. These have negative social, envi-
ronmental, and economic impacts affecting the life of cit-
izens [1]. Nowadays, the strategy to cope with this phe-
nomenon relies on Intelligent Transportation Systems (ITS)
that integrate advanced information and communication
technologies (ICT) to guarantee pro-active transportation
management [1], [2].

A critical aspect of ITS is the ability to effectively pre-
dict traffic conditions of the entire road network. Generally,
road traffic is expressed in terms of flow, speed, occupancy,
or travel time.Systems that can accurately predict those traf-
fic variables provide urban operators the guidance to take
short and long-term actions. Over the last decades, a lot of
research has been devoted to the traffic forecasting field.
Over the last decades, traffic forecasting has been a vibrant
field of research in both the academia and private sector.
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Today, predictive systems are undergoing a radical transfor-
mation thanks to the abundance of data collected in real-time
by sensors deployed in urban ecosystems [1]. In particu-
lar, the appearance of Global Positioning Systems (GPS) in
smartphones and vehicles has given rise to a new type of
data source that gathers detailed traffic information. GPS
devices send location, direction, and speed information every
few seconds throughout the transportation network at low
infrastructure costs, which means it is more feasible to predict
traffic at a large scale.

Along with the beginning of the big data era, there have
also been significant advances in the field of Artificial Intel-
ligence (AI). At an early stage, the forecasting methods
are mainly focused on modeling the temporal dynamics of
traffic by adopting strict assumptions about data distribution
(time-series methods) or strongly depending on handcraft
feature engineering (classical machine learning methods)
[1]-[4]. For these reasons, deep learning models have
been gradually replacing the aforementioned. Deep Learn-
ing proved to effectively process the huge amount of
mobility data and capture the non-linear spatio-temporal
correlations (ST) of transportation networks without any
strong assumptions [3], [5]-[7].
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In this paper, we present a new spatio-temporal multi-task
learning model based on attention, called AST-MTL, to per-
form multi-horizon network-wide traffic forecasting of traffic
flow and speed. The proposed model effectively learns task
shared representation through a multilayer fully-connected
neural network (FNN) and a multi-head attention mechanism.
At first, the FNN combines and processes multiple related
tasks to extract a common representation. Then, the mecha-
nism of attention considers together task-specific and shared
representations to capture relevant information and improve
the predictive performance of the model. The experimental
results show the benefit of applying the attention mechanism
in the context of multi-task learning. Our study is mainly
inspired by the work of Zhang et al. [8], where the authors
presented a deep learning-based multitask learning frame-
work with Gated Recurrent Units to forecast traffic flow and
traffic speed simultaneously. In particular, the paper presents
the following main contributions with respect to [8]:

1) anovel multi-task learning (MTL) model that employs

amultilayer fully-connected neural network (FNN) and
a multi-head attention mechanism to find similarities
among related tasks and improve the forecasting accu-
racy at road network scale. Compared to work [8], our
model also accounts for the spatial component of traffic
by applying stacked GCN layers.

2) an extensive experimental study based on new GPS
data publicly available.! The model is evaluated on data
sets related to both the freeway and urban road net-
works, which represents a novelty in the literature [1].
The results prove the competitiveness of the model
compared to [8] and other counterparts. A sensitivity
analysis assesses the contribution of each component
to the model performance.

The rest of this paper is organized as follows. Section II
reviews the current studies. Section III provides the pre-
liminaries on multi-task learning and multi-horizon traffic
forecasting on graphs. Section IV describes the methodol-
ogy and introduces the AST-MTL architecture. Numerical
experiments are conducted in Section V. Finally, Section VI
presents the results while Section VII draws the conclusions.

II. LITERATURE REVIEW

Traffic forecasting is particularly challenging due to the tem-
poral dynamics of traffic time-series and the complex yet
unique spatial correlations of street segments.

In the past decade, a large number of methods based on
deep neural networks are applied to traffic prediction prob-
lems. Most of the studies use RNNs due to their ability to
memorize temporal dependencies in time-series. Fu, Zhang,
and Li [9] compare different RNN models, namely LSTM and
GRU, for traffic flow prediction. Their study proves the supe-
riority of such models compared to ARIMA. Cui et al. [5]
introduce a deeply stacked bidirectional and unidirectional
LSTM architecture for traffic speed prediction. The model

1 https://www.kaggle.com/giobbu/belgium-obu
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can capture both forward and backward dependencies in time-
series. All these authors focus their work on the temporal
component of traffic while neglecting the spatial correla-
tions. To fill this gap, relevant is the recent works based
on convolutional neural networks (CNNs) and graph neural
networks (GNN5) to capture the topological dependencies in
images, videos, and graphs. For example, Cao et al. [10] con-
vert network-wide traffic matrices into images, after which
they employ a CNN to learn the global spatial interactions
and a GRU to capture the temporal features. Moreover, con-
sidering that a graph is a more appropriate abstraction of a
road network, Li et al. [11] propose DCRNN, a new model
for traffic speed prediction based on GCNs where spatial
dependencies are modeled as a diffusion process. Finally,
Zhao et al. [12] build a temporal graph convolutional network
(T-GCN) model to extract the spatial and temporal dependen-
cies simultaneously and predict the traffic volume.

In general, based on the aforementioned studies, the future
seems to lie in combining CNNs/GCNs with RNNs to extract
both spatial and temporal dependencies for traffic forecast-
ing. However, one major limitation of these research works
relies on the fact that the architecture of these models is
designed for single-task learning (STL). This approach does
not account for information shared across related tasks.

In this regard, the first attempt is carried out by
Jin et al. [13] that introduce multi-task learning (MTL) to
forecast the traffic flow. The authors design an MTL strat-
egy based on a back-propagation network that incorporates
the information of flow at several contiguous time instants.
Another example is the work by Huang et al. [14], where
they introduce a multi-task regression to predict traffic flow
with a deep belief network (DBN) consisted of several neural
network layers. Further, Zhang et al. [15] present a deep
learning-based MTL model with limited neural network lay-
ers to predict network-wide traffic speed. Finally, the same
authors propose [8], where a multi-task learning strategy with
Gated Recurrent Units (MTL-GRU) is applied for short-term
traffic flow and speed predictions. To the best of our knowl-
edge, this last work is the only aiming at predicting two traffic
variable with a MTL strategy and therefore we consider it the
most closely related to ours.

In this paper, we extend previous studies by proposing
AST-MTL, a novel MTL strategy based on a multilayer
fully-connected neural network (FNN) and a multi-head
attention mechanism to take advantage of the information
shared across traffic flow and speed. Compared to previous
MTL strategies, AST-MTL accounts for both the spatial and
temporal components characterizing the road traffic. To vali-
date the proposed architecture, the performance of the model
is tested in the freeway and urban types of networks.

Ill. PRELIMINARIES

A. MULTI-TASK LEARNING

In the transportation literature, the standard methodology to
tackle the problem of traffic forecasting is Single-Task Learn-
ing (STL). In STL the process of learning different traffic
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variables is treated as single and independents problems [5],
[9], [11], [12]. This approach is limited by the fact that it
does not account for the potentially rich source of information
shared by related tasks. One variable could be an informative
feature when forecasting another variable as in the case of
traffic flow and speed, where a significant non-linear cor-
relation exists [8]. Only few attempts are made to adopt
Multi-task Learning (MTL) for traffic forecasting [8]. MTL
is an inductive learning mechanism whose principal goal is
to improve generalization performance by parallel learning
different tasks through a shared representation [16].

In this work, MTL is used to learn concurrently a fixed set
of M tasks [17]. In particular, we adopt the uniform weighting
strategy, where the task-specific loss functions are added into
a single function, to be minimized [18]. The loss functions of
our MTL model is then:

M
Lyr(®) = > w" - L, (©) (1)

m=1

where M is the number of tasks, ® is the set of all train-
able parameters, and w" and Lgy, stands respectively for
the task-specific weights (in our case w"=1) and the loss
function of the m-th task.

B. NETWORK-WIDE TRAFFIC FORECASTING TASK

The aim of traffic forecasting is to predict future traffic,
given a sequence of historical traffic observations from the
correlated street segments of the network. These observations
are detected by sensors that monitor the traffic roads’ state
in real-time. We can represent the topological structure of
the transportation network as a graph G = (V, £), where
V is a set of street segments with |[V| = N and & is a set
of edges reflecting the connection between street segments.
The connectivity information is stored in the adjacent matrix
A € RV*N where rows and columns are indexed by road
segments, and the value of each entry indicates the connec-
tivity: the entry value is O if there is no link between roads and
1 if otherwise. X! € R¥*? denotes the matrix of the graph
features that is observed at time ¢, where P is the number of
features. As shown in Figure 1, the traffic prediction task can
be seen as the process of learning a mapping function f from
M previously observed features to H future feature matrices

‘*\ t \ t+3
P N ) / o ~ /
v NG rome @ N
[ 7/\« i ‘\ @ / \

L4 4 A 4

FIGURE 1. The graph-based spatial-temporal problem formulation in
traffic domain. Each frame indicates the current traffic status at time
step t.
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on the network G:
Y =X a1 9) ©)

where Y, /" denotes an array of feature matrices from time
stamp i toi+ n: {Y;, Yiy1, ..., Yitn).

To fully utilize temporal information, let C* be a set of
time-based covariate vectors at time ¢ associated to X’. These
are assumed to be known over the entire time period (e.g. day-
of-the-week and hour-of-the-day). To improve the forecasting
capacity, these vectors can be predetermined and wired into
various locations of the model architecture:

Y =X 0 2011 9) 3)

Yt+H

IV. METHODOLOGY

In this section, we first introduce GCN and GRU used to
identify the spatial and temporal relationships of traffic.
Then, we described the multi-head attention mechanism pro-
posed here as part of the multi-task learning strategy. Finally,
we present the novel AST-MTL architecture to predict both
traffic flow and speed.

A. SPATIAL DEPENDENCIES

Itis reasonable to mathematically represent the road networks
as graphs. Graph Convolutional Networks (GCN5s) are a type
of convolutional neural network that can work directly on
graphs. In our study, we use a first-order approximation of the
Laplacian graph and stack multiple localized graph convolu-
tional layers [19]. A layer-wise linear structure is not only
parameter-economic but also highly efficient for large-scale
graphs, since the order of the approximation is limited to one.
A multilayer GCN layer can be expressed as follow:

S(H—l) — U(D—l/ZAD—l/ZS(Z)®(l)) 4)

where A = A+Idy is an adjacent matrix with self-connection
structures, Idy is an identity matrix, Disa degree matrix,
SO e R¥*! is the output of layer [, @) are the parameters
of layer /, and o (+) is an activation function used for nonlinear
modeling.

B. TEMPORAL DEPENDENCIES

The temporal dependence is a crucial aspect for effectively
forecasting the traffic state. LSTM [20] and GRU [21] are
variants of RNNs that are commonly used to process mobility
data and mediate the gradient vanishing and the gradient
explosion problems presented by the latter [22]. In our work
GRU is employed to learn the temporal variation trends of
the traffic flow and speed. The model presents a more simple
structure with fewer parameters than LSTM, thus resulting in
faster training [23]. GRU is composed mainly of two gates: a
reset gate, r, and an update gate, u. The flow of information
processed by the model is introduced as follows, where S;_
is the hidden state at r — 1, X; is the traffic speed/flow at the
current moment, r determines the degree of neglecting the
state information at the previous moment, while the u controls
the state information quantity at the previous moment that is
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brought into the current state. Furthermore, ¢; is the memory
content stored at the current moment, and S; is the output state
at the current moment.

up = oWy [Xe, Si—11+ bu) %)
rr = oW, x [X;, S—1] + by) (6)
¢; = tanh(W, * [X;, (r; * Si—1)] + be) @)
Se=ur xS-1+ A —u) * ¢ 3

GRUs determine traffic state at the current moment by using
hidden state at previous moment and traffic information at
current moment as input.

C. MTL WITH ATTENTION
Attention mechanisms have been applied with success in
various domains such as translation [24], image classifica-
tion [25], and tabular learning [26]. The attention mechanism
allows the models to improve the learning capacity by iden-
tifying relevant inputs portions. In the contexts of time-series
prediction [27]-[29] and mobility data [29]-[31], attention
has been recently applied to memorize long sequences of
observations by properly incorporating the local context.

The novelty of our work stands on applying the mecha-
nism of attention as part of the MTL strategy. Specifically,
we define the attention, as defined by Vaswani et al. [24],
to let the model learns the task-specific inputs by capturing
commonalities between related tasks. A score function deter-
mines the magnitude of the attention weights based on the
task-specific and shared representations. These weights serve
for the model to attend only the parts of task-specific inputs
that are relevant for the traffic prediction.

In general, attention mechanisms scale values V' of dimen-
sion d, based on relationships between keys K and queries O
of dimension d,; as follow:

Att(Q, K, V) = fa(0, K)V 9

where f4() is a score function. Our work employs the scaled
dot-product attention [24]:

T
fa(Q, K) = Softmax( oK

att
Notice that f4(Q, K) expresses the similarity between the
content of Q and K. To improve the learning capacity, queries,
keys and values can be linearly projected into O distinct
subspaces [24]:

MultiHead(Q, K, V) = [Head; - Head; - ... - Headp]Wyp
(11)

) (10)

Heado = Att(Q(h Kav Va)
= At(QWg, KWg, VWy) (12)

where Wé, W, Wy, are head-specific weights matrices for
keys, queries and values, while Wy linearly combines outputs
concatenated (-) from all heads Head,,. In our study, we adopt
the aforementioned mechanism to scale the values of specific
tasks (V) based on the relationship between the values of the
shared module (Q) and their own (K) (Figure 2).
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FIGURE 2. Multi-head Attention Mechanism. Several Heads (attention
layers) running in parallel to produce the attention-based task-specific
output Out';.‘a‘:k . Outspareq represents the output of the task shared

module, while Outy, g is the output of task-specific module.

D. PROPOSED ARCHITECTURE

The proposed AST-MTL architecture is shown in Figure 3.
The model presents two consecutive levels of learning.
In Level 1, the AST-MTL learns the specific tasks as inde-
pendent problems. In Level 2, the model combines the
tasks-specific outputs into a shared module to find a hidden
common representation that improves the learning ability of
each single task.

o Level I - Task-Specific Learning.
The model learns the tasks of traffic flow and speed sep-
arately by means of spatio-temporal blocks (Figure 3a).
These task-specific modules are composed of two
stacked GCN layers and a GRU layer (Figure 3b).
The GCN layers extract the spatial dependencies
while the GRU layer the temporal ones as described
in sections I'V-A and I'V-B.
o Level 2 - Shared Representation Learning.

The model captures similarities between related tasks
by means of a multilayer fully connected deep net-
work (FNN) and temporal-attention blocks (Figure 3a)
to improve the generalization of single tasks and perform
multi-horizon prediction. At first, the model combines
the outputs of single tasks from level 1 and passes
them into the FNN. The shared module takes the input
information through three fully connected hidden lay-
ers to find commonalities across tasks. Accordingly,
the model uses the FNN’s output to improve the learn-
ing ability of task-specific representations. To pursue
the goal, the model yields the information through
a temporal-attention block made up of three layers
(Figure 3b): an attention layer, a GRU layer, and a Dense
layer. The first layer scales task-specific outputs (V)
with the magnitude of the attention weights computed
according to Equation 11: Q are the new values coming
from FNN and the K is the single task outputs from
level 1. The results are merged with future time-based
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FIGURE 3. AST-MTL architecture. The framework consists of task-specific and shared modules. These are
responsible for learning respectively the traffic flow (left-side of Figure (a)) and speed observations (right-side of
Figure (a)). For each task, the architecture presents a spatio-temporal and a temporal-attention block to generate
multiple predictions based on the past observations, the similarities between tasks, and the future time-based
covariates. The FNN in the center of the architecture (Figure (a)) is the module shared across tasks.

covariates into a GRU layer that processes the new
information for the dense layer to perform multiple
predictions for the specific task.

V. EXPERIMENTS
In this section, we present the OBU data and describe
the experimental setup to evaluate the performance of the
AST-MTL model.

A. OBU DATA DESCRIPTION

As of 2016, all owners of Belgian lorries having a Maximum
Authorized Mass exceeding 3.5 tonnes must pay a kilometer
charge. Every road user who is not exempt from the toll
must then install an On Board Unit (OBU) recording the
distance that a lorry travels within Belgium. On average every
working day, more than 150,000 trucks are detected inside
the country. Each truck device sends a message approxi-
mately every 30 seconds (from 3 a.m. to 2.59 a.m. of the
following day). Each OBU record contains an anonymous
Identifier (ID resetting every day at 3 a.m.), the Timestamp,
the GPS Position (latitude, longitude), the Speed (engine)
and the Direction (compass). The large volume and the
streaming nature of the OBU data required the setup of a
big data platform for an efficient collection, storage, and
analysis [32], [33].

1) DATA PROCESSING
The OBU data require a pre-processing step to predict the
traffic conditions at network scale since the trucks recorded
positions may refer not only to streets but also to areas where
trucks perform the daily activity (e.g. loading/unloading
goods, stopping at depots’ parking slot).

In this regard, we first retrieved all the necessary streets
from OpenStreetMap with Module osmnx [34]. Then,
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we map the GPS points on their corresponding road segments
to obtain only the data belonging to the streets of interest.
We carried out such operations for both the Belgian Freeway
System and the road network of the Bruxelles-Capital Region
(Figure 4). This allows testing our methodology in two differ-
ent contexts [1]: the freeway and urban environment. The lat-
ter, in particular, has been defined in traffic forecasting litera-
ture as the less addressed and much more challenging [1], [2].
Table 1 summarised the main characteristics of these two
types of road networks.

2) FUTURE COVARIATES

As explained in Section III-B, time-based covariates allow
taking full advantage of the temporal information. Such fea-
tures are deterministic and therefore known in advance for
future traffic predictions. Starting from Timestamp variable,
the following covariates are obtained:

1) Sine and Cosine transformation for Hours of the Day to
take into account the cyclic nature of time (e.g. O and
23 hours are close to each other);

2) the DaysOfWeek. Each day of week shows particular
pattern of traffic flow;

3) the Working/WeekEnd Days. There is a clear differ-
ence in traffic flow between the working days and the
week-end days.

3) ROAD SEGMENT GRAPH

To preserve the natural spatial structure of the OBU data in
the road networks, we represented them as graphs as shown
in Figure 5. We built the graphs for OBU data related to both
the freeway and the urban networks. In the graphs a node
represents a road segment, the edges indicate the connections
between road segments and the features of this node are the
average traffic measurements (flow or speed) recorded by
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Belgian Freeway System

Bruxelles-Capital Region Transportation
Network

FIGURE 4. Street maps of the Belgian Freeway System and the Bruxelles-Capital Region road

network.
g
2 | 8
3 | 7
4 |l

/1 /10 9\
2 11 8

3 12 7

4 5 ' 6

(a) A road network with 12 labeled road segments

(b) The graph of 12 road nodes with undirected connections

FIGURE 5. Road segment graph construction from OBU data set. In this type of graph, the road segment
represents the node and two connected segments have an edge.

TABLE 1. Types of road network for OBU data.

Road Network | Belgium Bruxelles Region

Context Freeway Urban

Types of Ereeways Links,

Streets Freeways Prlmary,. Secondary
and Tertiary Roads

N° of Streets 5795 4524

Resample 30 min. 15 min.

all the GPS points on it. As shown in Table 1, the resulting
graphs include N = 5795 road segments for the Belgian
Freeway system and N = 4524 for Bruxelles Capital Region
road network. To the best of our knowledge, this is the most
extensive study in this regard [35]. The code implemented to
build the graphs is publicly available.”

B. MODEL COMPARISONS
To validate the competitiveness of the proposed AST-MTL,
various STL, as well as MTL methods, are presented and
compared.

In STL scenarios, the models carry out the prediction of
traffic flow or traffic speed without joint training the two tasks
with a shared module:

2https://www.kag gle.com/giobbu/un-direct-graph-build
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1) History Average model (HA) [4]: it is a multi-horizon
persistence model where observations at the same time
slot and the same day of the previous three-weeks sea-
sons are collected and the mean of those observations
is returned as forecast;

2) Gated Recurrent Unit model (GRU) [21]: see IV-B for
details;

3) Long Short-Term Memory Model (LSTM) [20]: LSTM
shares the same fundamental principles of GRU.
A common LSTM unit is composed of a cell, an input
gate, an output gate and a forget gate. LSTM and
GRU have been seen to perform similarly in various
tasks [23];

4) GCN and GRU model (GCN-GRU): such model is
built only upon the spatio-temporal blocks of Figure 3
and does not include any shared module or attention
mechanism.

In MTL scenarios, the models learn traffic flow and speed
jointly:

1) multi-task learning Gated Recurrent Units (MTL-
GRU) [8]: the model represents the state-of-the-art for
MTL traffic forecasting of flow and speed. The model
is entirely based on GRU layers for the task-specific
and shared representation. A merge layer combines
information between tasks and allows to learn a deeper
hidden representation. Moreover, a residual connection
is used to improve the performance of the model;
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2) GCN and GRU with an augmented matrix (GCN-GRU-
amtx): a unique model based on spatio-temporal blocks
learns the past flow and speed observations together
in an augmented matrix form. In this case the model
shares all parameters across tasks.

C. EXPERIMENTAL SETUP

In the experiments, we consider two months period of OBU
data, from the 1st of January to the 28th of February 2019, and
forecast both traffic flow and speed for each street segment
up to H = 12. We partition the dataset into a training set
(70%), a validation set (10%) for hyperparameter optimiza-
tion, and a hold-out set (20%) for testing. We perform hyper-
parameter optimization by time-series cross-validation [36]
and we adopt the rolling origin evaluation [37] to assess the
model robustness with respect to outliers or drifts. Table 2
summarizes the results of the hyperparameters optimization
for AST-MTL model. The AST-MTL model is trained for
250 epochs by minimizing the mean absolute loss func-
tion with the Adam optimizer. The same dataset partition,
validation criteria, and range of hyperparameter values apply
to all considered approaches. The details of the complete
study are available for reproducibility purposes in the GitHub
repository.’

TABLE 2. The hyperparameters are selected from the average MAE result
over three splits. According to the rolling origin evaluation, a total

of 1728 and 2688 forecast points per split is considered respectively for
Belgium and Bruxelles Region’s road networks. Heads: number of heads
in the attention mechanism; Batch: batch size; Statesizeg,u,f,,,,] 5+ State

size of GRU layer and the first and last hidden layer of FNN; Dro;;: dropout
layer; Lr: learning rate; StateSizeg,,, x the second hidden layer of FNN.

Belgian Freeway System - H=12 (6 hours)

Heads Batch StateSizegru, fang 4
1 0.079 32 0.074 25 0.085

2 0.077 64 0.075 50 0.083

4 0.076 128 0.081 150  0.079

8 0.078 256 0.094 250  0.080

Drop Lr StateSize fnn,

0.1 0.077 0.01 0.147 16 0.087

0.2 0.078 0.005 0.108 32 0.080

04 0.078 0.001 0.079 64 0.078

Bruxelles Region Urban Network - H=12 (3 hours)

Heads Batch StateSizegry, fung 5
1 0.048 32 0.048 25 0.048

2 0.048 64 0.047 50 0.048

4 0.047 128 0.048 150 0.047

8 0.047 256 0.050 250 0.047
Drop Lr StateSize fnn,y

0.1 0.047 0.01 0.050 16 0.0475

0.2 0.048 0.005 0.048 32 0.0473

04  0.048 0.001  0.047 64 0.0471

D. PERFORMANCE METRICS
To measure the forecasting accuracy of the competing fore-

casting approaches we use the scale-dependent Root Mean
Squared Error, RMSE, and Mean Absolute Error, MAE.

3https://github.com/giobbu/AST-MTL
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For multiple-step ahead forecasts, they are defined as:

! H
RMSE = \/21:1 %};1(61,/1) )
t H )

where ¢; j, is the error of the forecast for period i and forecast
horizon h.

Additionally, we report the Mean Absolute Scaled Error,
(MASE) proposed in [38]. Such scale-independent metric is
particularly suitable for freight transport in the urban context
where the traffic flow and speed may be extremely hetero-
geneous over the road network because of volatility. For
seasonal time-series, it is defined as:

MAE
MASE = (15)

MAEinfsample, seasonal

where MAE;, _sample, seasonal 18 the training MAE from a sim-
ple one-week seasonal naive method [38]. When MASE < 1,
the proposed model performs, on average, better than the
naive method.

VI. RESULTS AND DISCUSSION

In this section, we present the results of the proposed model
and compare them with the other counterparts for the Belgian
freeway system and the road network of the Bruxelles-Capital
Region.

Table 3 shows the benefits of AST-MTL architecture with
the general multi-horizon traffic forecasting problem, where
it achieves the best accuracy for both traffic flow and speed
prediction. We notice that the model is less effective at
forecasting traffic conditions of urban roads than freeways
due to the complex traffic conditions governing urban net-
works [1]. Further, we observe the task of traffic flow presents
better results compared to the one of speed. As stated by
Crawshaw [17], this probably because the process of learning
one task can sometimes lead to a synergistic or antagonistic
effect on the capacity of learning the other.

In Figures 6-7 the average value of RMSE (scale-
dependent) and MASE (scale-independent) are presented for
each forecast horizon (the same conclusions can be drawn for
MAE). The figures further highlight the competitiveness of
AST-MTL for both freeway and urban network. In particular,
the results show the advantage of applying an attention-based
MTL strategy for multiple steps ahead forecasting and espe-
cially for long-range forecast horizons.

Furthermore, we remark the STL-GCN-GRU model per-
forms the best among other methods. This proves the impor-
tance of modeling both the spatial and temporal components
of traffic conditions.

Finally, concerning the remaining models, the results
present high variability according to the context of forecast-
ing and performance metric. In particular, the MTL-GRU
model proposed by [8] seems to not be particularly effec-
tive for multi-horizon traffic forecasting. Since the model

77365



IEEE Access

G. Buroni et al.: AST-MTL: Attention-Based MTL Strategy for Traffic Forecasting

TABLE 3. Average RMSE, MAE and MASE on OBU datasets. Percentages in brackets reflect the gain in the loss versus AST-MTL, with AST-MTL
outperforming competing methods across all experiments.

Belgian Freeway System

Flow Speed
AvgRMSE AvgMAE AvgMASE AvgRMSE AvgMAE AvgMASE
HA 5.88 (+9.5%) 3.68 (+9.2%) 0.81 (+714.8%) 18.38 (+14.5%) 10.89 (+26.8%) 0.98 (+22.5%)
STL_GRU 5.62 (+4.6%) 3.59 (+6.5%) 0.76 (+7.04%) 16.39 (+2.1%) 9.01 (+5.0%) 0.84 (+5%)
STL_LSTM 6.18 (+15.1%) 3.85(+14.2%) 0.82(+15.5%) 16.26 (+1.3%) 8.69 (+1.2%) 0.81 (+1.25%)
STL_GCN_GRU 5.53 (+3%) 3.56 (+5.6%) 0.76 (+7.04%) 16.1 (+0.3%) 8.87 (+3.3%) 0.82 (+2.5%)
MTL_GRU 5.67 (+5.6%) 3.61 (+7.1%) 0.77 (+8.5%) 16.16 (+0.7%) 8.96 (+4.3%) 0.83 (+3.75%)
GCN_GRU_amtx 599 (+11.6%) 3.82(+13.4%) 0.82(+15.5%) 16.18 (+0.8%) 8.82 (+2.7%) 0.82 (+2.5%)
AST_MTL 5.37 3.37 0.71 16.05 8.59 0.80
Bruxelles Region Urban Network
Flow Speed
AvgRMSE AvgMAE AvgMASE AvgRMSE AvgMAE AvgMASE
HA 0.99 (+30.2%)  0.53 (+32.5%) 0.89 (+32.8%) 11.66 (+31%) 5.57 (+43.6%) 0.90 (+45.2%)
STL_GRU 0.79 (+4%) 0.42 (+5%) 0.70 (+4.5%) 9.06 (+1.8%) 4.0 (+3.1%) 0.64 (+3.2%)
STL_LSTM 0.79 (+4%) 0.41 (+2.5%) 0.69 (+3%) 9.05 (+1.7%) 3.92 (+1.3%) 0.63 (+1.6%)
STL_GCN_GRU 0.78 (+2.6%) 0.41 (+2.5%) 0.69 (+3%) 9.02 (+1.4%) 3.92 (+1.3%) 0.63 (+1.6%)
MTL_GRU 0.79 (+4%) 0.42 (+5%) 0.70 (+4.5%) 9.06 (+1.8%) 3.99 (+2.8%) 0.64 (+1.6%)
GCN_GRU_amtx 0.78 (+2.6%) 0.42 (+5%) 0.70 (+4.5%) 9.04 (+1.6%) 3.96 (+2.1%) 0.64 (+1.6%)
AST_MTL 0.76 0.40 0.67 8.90 3.88 0.62
FLOW Multi-horizon RMSE FLOW Multi-horizon MASE
A AST-MTL
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FIGURE 6. Results for Belgian Freeway System. The History Average (HA) model results are not shown as significantly worse.

1) RUN-TIME ANALYSIS
The training of deep learning architectures required one
NVIDIA TESLA P100 GPU, two Intel(R) Xeon(R)

is designed to predict the traffic conditions for a single
horizon, the results rapidly deteriorate in the long-range
forecasting.
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FIGURE 7. Results for Bruxelles Region Urban Network. See Notes Figure 6.

CPU@2.30GHz, and 13 Gigabytes of RAM (freely acces-
sible in Google™*?).

Table 4 reports the training time for different models.
From the results, it appears that the complex structure of
the proposed model requires a higher computational cost
than the other approaches. However, we deem that for traffic
prediction applications the computational overload of the
AST-MTL model is acceptable since the training is gen-
erally carried out in an offline manner where considerable
computational resources are available [39]. Moreover, when
it comes to real-time prediction, AST-MTL can predict the
traffic condition in a matter of seconds.

2) FRIEDMAN & POST-HOC NEMENYI TESTS

We use the Friedman test to verify whether the differences
in performance distributions of different methods are sig-
nificant. Since there is evidence of this (p-value is 0.000)
for traffic flow and speed and for both the freeway and
urban context, we proceed to apply the post-hoc Nemenyi

4https://www.kaggle.(:om/docs/efficient—gpu—usage
3 https://research.google.com/colaboratory/faq.html
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TABLE 4. Run-Time analysis.
Belgium Bruxelles Region
Training Time (min)  Training Time (min)
STL_GRU ~11 ~24
STL_LSTM ~12 ~25
STL_GCN_GRU ~16 ~32
MTL_GRU ~15 ~19
GCN_GRU_amtx ~15 ~24
AST-MTL ~18 ~39

test. Figures 8-9 present the results at 5% significance level
for both traffic variables and contexts according to RMSE
(the same conclusions can be drawn for MAE and MASE).
For each method, the mean rank is provided with the lowest
indicating the most accurate one. A horizontal line connects
methods in which there is not adequate evidence to suggest
statistically significant differences (i.e., the differences of the
mean ranks are lower than the critical distance). Following the
results in Table 3, the AST-MTL significantly outperforms all
benchmarks.

3) SENSITIVITY ANALYSIS
To assess the benefit of each component for the proposed
architecture, we perform a sensitivity analysis. We remove
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FIGURE 8. Nemenyi tests for Belgian Freeway System: the results of traffic flow (left-side) and speed (right-side) at 5%
significance level. The critical distance, CD, is equal to 0.102. A total of Ny x Ny = 7788 forecasting points are tested, where
Nregt is the number of observations in the testing set while Ny the forecast horizons.

D D
H H
1 2 3 4 5 3 7 1 2 3 4 5 3 7
AST-MTL L HA AST-MTL J L HA
STL_GCN_GRU —— STL_LSTM  5TL GCN_GRU ——— STL_LSTM
5TL_GRU ambx_STL amix_STL MTL_GRU
MTL_GRU S5TL_GRU

FIGURE 9. Nemenyi tests for the Bruxelles-Capital Region: the results of traffic flow (left-side) and speed (right-side) at 5%
significance level. The critical distance, CD, is equal to 0.72. A total of Nys; x Ny = 15851 forecasting points are tested.
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FIGURE 10. RMSE and MAE percentage increase for AST-MTL in the context of freeway traffic prediction.

one component at a time while maintaining the MTL struc-
ture, and we compute the percentage increase loss versus the
original AST-MTL architecture. For the sake of the analy-
sis, we account for those components that are new to the
MTL-GRU proposed by [8]:

o FNN: this component is responsible to learn the hidden
representation shared across related tasks;

o Attention : the attention mechanism identifies the
salient portions of task-specific information by taking
into account the task shared representation;

o GCN: the stacked GCN layers capture the spatial infor-
mation hidden in the observations.

Figures 10-11 display how the contribution of each com-
ponent to the AST-MTL performance varies according to
the learning task and the type of road network taken into
account.

77368

o Learning Task: as highlighted in Section VI, the pro-
cess of learning multiple tasks concurrently is not
trivial. The figures clearly show how the components
favour the learning of traffic flow at the expense of
speed.

o Type of road network: considering the traffic flow,
the components in charge of capturing the common-
alities across tasks (FNN and Attention) are the most
important for the AST-MTL performance in the free-
way type of network (Figure 10). This is not valid in
the urban context, where the performance of the model
mainly relies on the GCN layers (Figure 11). In this case,
the ability to learn the spatial component of traffic is fun-
damental when predicting the traffic conditions in road
networks characterized by a complex morphology [1]
(Figure 4).
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VIl. CONCLUSION

We introduce AST-MTL, a novel attention-based spatio-
temporal multi-task learning model to perform traffic flow
and speed forecasting. We validate the methodology on GPS
data from the Belgian freeway system and the urban road
network of the Bruxelles-Capital Region. The experimental
results show AST-MTL achieves the best performance com-
pared with other state-of-the-art deep learning approaches.
In particular, the following observations have been high-
lighted: (1) the attention-based MTL model presents robust
results for the multi-horizon forecasting for both traffic flow
and traffic speed outperforming [8] and other counterparts,
(2) the components of the proposed architecture contribute
differently according to the type of road network we perform
traffic predictions, and (3) the model does not explicitly opti-
mize the synergy between tasks. To conclude, future research
will address the problem of selecting the proper method to
explicitly optimize the learning of tasks. This aspect, together
with the definition of the MTL architecture here addressed,
is a critical challenge in Multi-Task Learning [17].
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