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ABSTRACT As a meta-heuristic algorithm that simulates the intelligence of gray wolves, grey wolf
optimizer (GWO) has a wide range of applications in practical problems. As a kind of local search, chaotic
local search (CLS) has a strong ability to get rid of the local optimum due to its integration of chaotic
maps. To enhance GWO, CLS is always incorporated into GWO to increase its population diversity and
accelerate algorithm’s convergence. However, it is still unclear that how may chaotic maps should be used
in CLS and how to embed them into GWO. To address these challenging issues, this paper studies both
single and multiple chaotic maps incorporated GWOs. Extensive comparative experiments are conducted
based on IEEE Congress on Evolutionary Computation (CEC) benchmark test suit. The results show that
CLS incorporated GWOs generally perform better than the original GWO, suggesting the effectiveness
of such hybridization. Moreover, a remarkable finding of this work is that the piecewise linear chaotic
map (PWLCM) and Gaussian map have the most potential to improve the search performance of GWO.
Additionally, CLS incorporated GWOs also perform significantly better than some other state-of-the-art
meta-heuristic algorithms. This study not only gives more insights into the mechanism of how CLS makes
influence on GWO, but also finds that the most suitable choice of chaotic map for it.

INDEX TERMS Computational intelligence, soft computing, chaotic local search, optimization algorithms,
grey wolf optimizer, meta-heuristics.

I. INTRODUCTION
Meta-heuristic algorithms (MHAs) have received great inter-
ests during the past several decades [1], and dozens of
meta-heuristics have been proposed in the literature [2].
Typically, a meta-heuristic algorithm denotes a generalized
formulation of heuristic methods that aim to solve a vari-
ety of optimization problems. Based on the perspective of
metaphors by which these meta-heuristics are motivated,
MHA can be classified into bio-inspired, physics-inspired,
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sociology-inspired, and other algorithms [3]. Representative
bio-inspired algorithms include genetic algorithms [4], evo-
lutionary strategies [5], differential evolution (DE) [6]–[8],
spherical evolution [9], artificial immune algorithms [10],
particle swarm optimization (PSO) [11], ant colony opti-
mization [12], etc. Physics-inspired algorithms consist of
simulated annealing [13], gravitational search algorithm [14],
and quantum computing [15], while sociology-inspired ones
usually denote imperialist competitive algorithm [16], brain
storm optimization [17], culture algorithm [18], memetic
algorithms [19], and so on. More importantly, these MHAs
have been widely applied on various practical problems,
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from engineering [20], [21] to bio-informatics [22], [23], and
achieved great successes in comparisonwith traditionalmath-
ematical analysis methods as they can obtain an acceptable
solution with reasonable computational burden [24]–[28].

Despite some criticisms that new MHAs based on more
metaphors but without essential differences between exist-
ing ones are no longer considered as significant contribu-
tions to the community [29], the improvements of MHAs
are still of great importance as they indeed provide more
accuracy and fruitful solutions for real-world applications
[30], [31]. Recently, the developments of MHAs are usually
realized from the following aspects: 1) self-adaption of hyper-
parameters, 2) population structure evolution, 3) balance of
exploitation and exploration, 4) theoretical analysis of the
search dynamics, and 5) memetic computing manner.

As most of MHAs have some hyper-parameters needed
to be adjusted [32], tremendous efforts have been done to
make these parameters self-adaptive [33]–[35]. For a spe-
cial meta-heuristic algorithm, e.g., differential evolution [36],
parameter (self-adaptive) control can significant enhance
the search performance of the algorithm, from population
size [37], scale factor [38], crossover rate [39] and etc. MHAs
usually possess a population and the organization of indi-
viduals is formed via a population structure [40], which is
formally panmictic, cellular, distributed, hierarchical, scale-
free, etc [41], [42]. MHAs based on these specific population
structures have shown great improvement in terms of opti-
mization performance [43]–[46]. The balance of exploitation
and exploration is always considered as a key scientific issue
for MHAs [47], and various attempts have already been made
to achieve such balance [48]. In addition to convergence
analysis for MHAs, theoretical analysis of search dynamics
has also received great interests recently [49], [50]. Addi-
tionally, hybridization or ensemble strategies to combine sev-
eral different MHAs have been considered as a promising
method to improve their performance [51], among which an
MHA incorporated with a local search operator is termed
as the memetic computing [52]. It is especially flexible to
use problem-inherent information or knowledge to design
local search operators for discrete optimization problems,
e.g., traveling salesman problem [53], job-shop scheduling
problem [54], location routing problem [55], etc. For contin-
uous optimization, local search operators, including random
walk [56], Levy flight [57], Cauchy and Gaussian mutations
[58], and chaotic local search (CLS) [59], usually perform an
excellent local exploitation in the search space.

The chaotic local search (CLS), which fully utilizes the
characteristics of chaotic maps, has been regarded as one of
the most promising strategies to improve the performance
of MHAs [60]–[62]. By incorporating the ergodicity and
non-repetitious nature of chaos [63], CLS not only urges
an MHA to exploit the local neighborhood of a solution,
but also enables it to get rid of the local minima once it is
trapped [64]. Initially, chaotic maps are used to generated
chaotic sequences to replace the random numbers in MHAs.
It has been demonstrated in [65] that chaotic sequences

generally performs better than random ones in evolutionary
algorithms. Later, many MHAs have used chaotic sequences,
substituting random numbers, to generate parameters’ values
to maintain the randomness of the search. In [66], the Logistic
chaotic map is used to generate values for inertia weights in
PSO, while the acceleration parameters are also generated
by chaotic sequences in PSO [67]. Twelve different chaotic
maps are tested by combining with an accelerated PSO, and
the results suggested that the sinusoidal map performs the
best [68]. A Logistic chaotic sequence is used to generate
population for grey wolf optimization (GWO) [69]. Com-
paredwith substituting random number by chaotic sequences,
CLS is more promising as it can search for better solutions
directly. In [70], the piecewise liner chaotic map (PWLCM)
is implemented to perform a CLS and then incorporated into
PSO. CLS has already been widely employed in gravitational
search algorithm [71]–[73], artificial bee colony optimiza-
tion [74], brain storm optimization [75], differential evolu-
tion [76], salp swarm algorithm [77], and many others [62],
[78]–[82]. It is worth pointing out that these previous algo-
rithms only use a single chaotic map to perform CLS, while
most recently several searches have noticed that multiple
chaotic mapsmight perform better as they can simultaneously
use different search dynamics. In [83], several chaotic maps
are selectively used to perform CLS in a differential evolution
algorithm based on the accumulated success information.
Similarly, multiple chaotic maps are used parallelly to imple-
ment CLS in gravitational search algorithm [84], cuckoo
search algorithm [85], and harmony search algorithm [86].
All these results suggest that multiple chaotic maps incorpo-
ratedMHAsmight perform better in comparisonwith a single
one. Nevertheless, it is unclear that which type of chaotic map
should be used for a specific MHA and the number of chaotic
maps used in CLS is still problem-dependent.

Based on the above research motivations, in this work,
we for the first time perform a comparative study on chaos
embedded grey wolf optimization algorithms. The grey
wolf optimization (GWO) algorithm [87], which mimics the
hunting mechanisms of grey wolves and their hierarchical
leadership, has received much interest and achieved great
success in many applications, such as control [88], Internet
of things [89], engineering design [90], etc. However, GWO
still suffers from premature convergence and low capacity
of jumping out of local optimum once it is trapped [91].
Although there are also some criticisms regarding the nov-
elty of GWO [92] that it is a reiteration of ideas arisen
from PSO and DE, it is still meaningful and challenging to
improve the performance of GWO, not only for the diversity
of research, but also for the practical applications. To fur-
ther improve the search performance of GWO, this paper
proposes a number of local chaotic search-based GWOs,
by means of single chaotic map and multiple chaotic maps
incorporation strategies, respectively. In single chaotic map
incorporated GWOs (CGWOs), only a single chaotic map is
implemented to perform CLS, while in the multiple chaotic
maps incorporated GWO (MCGWO), all available chaotic
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maps are simultaneously implemented. In each iteration of
the implementation of MCGWO, a chaotic map from a set
of multiple chaotic maps is selected based on a probability,
which is generated by an accumulated success based mecha-
nism. It is expected that the most effective chaotic map has
the highest probability to survive into the next iteration to
perform the CLS. The objective of this study is to find out
whether CLS can take effect on GWO and which is the most
effective chaotic map for GWO. To realize this, we conduct
extensive experiments based on IEEECongress on Evolution-
ary Computation (CEC) benchmark optimization functions.
Comprehensive comparative results are obtained, fromwhich
our valuable findings are summarized as follows:

1) Experimental results show that both single and mul-
tiple chaotic maps incorporated GWOs, i.e., CGWOs and
MCGWO, can generally perform better than the original
GWO. Furthermore, search dynamic analysis suggests that
chaotic maps can enable GWO to have a better exploration
ability, especially in the earlier search phase, which is poten-
tially benefit for improving the algorithm’s ability of jumping
out the local optimum. All these indicate that CLS is an effec-
tive method for GWO to alleviate its premature convergence
and further improve its search performance.

2) Comparative study also finds out that the PWLCM is the
most suitable choice for CGWOs when optimizing problems
with low dimensions, while Gaussian map seems to perform
the best when handling high dimensional problems.

3) Although some previous researches [83], [84] sug-
gested that the simultaneous utilization of multiple chaotic
maps can perform better than a single one for gravitational
search and differential evolution algorithms, it is not true
for GWO, for which the single chaotic map performs better.
This result indicates that the incorporation scheme of CLS for
meta-heuristics is algorithm-oriented. It is worth studying the
number of chaotic maps and their incorporation scheme for
each meta-heuristic algorithm.

The contribution of this work to the literature can be
summarized as follows: First of all, to our best knowledge,
this is the first work that comprehensively analyzes the
effects of single and multiple maps embedded CLS on GWO.
From the analysis results, the choice of both the embedding
type of CLS and the number of chaotic maps are discov-
ered. Second, as a strategy to further improve algorithms’
search performance, CLS is again verified to perform very
well on algorithms by means of a memetic manner. Last
but not least, we also provide powerful and effective opti-
mization methods, i.e., CGWOs and MCGWO, for practical
problems.

The remainder of this work is organized as follows:
In Section 2, we introduced twelve different types of
chaotic maps. In Section 3, we describe the original
GWO. In Section 4, we illustrate chaotic local search
and chaos incorporated grey wolf optimization algorithms.
In Section 5, we present the results of comparative exper-
iments. Finally, we present a summary and future research
directions.

II. CHAOTIC MAPS
Different chaotic maps have been widely used in meta-
heuristic algorithms. In this study, we took twelve the most
widely used chaotic maps for analysis. These chaotic maps’
determination equations are summarized as follows:

(1) Logistic map:

zt+1 = µzk (1− zt ) (1)

where zt is the tth chaotic number, zt ∈ (0, 1), the initial
z0 ∈ (0, 1) and z0 /∈ {0, 0.25, 0.5, 0.75, 1.0}. We setµ=4 and
z0=0.152.
(2) PWLCM:

zt+1 =

{
zt/p, zt ∈ (0, p)
(1− zt )(1− p), zt ∈ [p, 1)

(2)

p is set to 0.7, z0=0.002.
(3) Singer map:

zt+1 = µ(7.86zt − 23.31z2t +28.75z
3
t −13.302875z

4
t ) (3)

When µ is set between 0.9 and 1.08, singer map exhibits
chaotic behaviors, and we set µ=1.073 and z0=0.152.

(4) Sine map:

zt+1 =
a
4
sin(πzt ) (4)

where a ∈ (0, 4], and z ∈ (0, 1).We set a = 4 and z0 = 0.152.
(5) Gaussian map:

zt+1 =

{
0, zt = 0
(µ/zt )mod(1), zt 6= 0

(5)

we set µ = 1 and z0 = 0.152.
(6) Tent map:

zt+1 =

{
zt/β, 0 < zt ≤ β
(1− zt )/(1− β), β < zt ≤ 1

(6)

where β = 0.4 and z0 = 0.152.
(7) Bernoulli map:

zt+1 =

{
zt/(1− λ), 0 < zt ≤ 1− λ
(zt − 1+ λ)/λ, 1− λ < zt < 1

(7)

where λ = 0.4 and z0 = 0.152.
(8) Chebyshev map:

zt+1 = cos(φ cos−1 zt ) (8)

where φ = 5 and z0 = 0.152.
(9) Circle map:

zt+1 = zt + a−
b
2π

sin(2πzt )mod(1) (9)

When a = 0.5 and b = 2.2, circle map shows chaotic
features. We set z0 = 0.152 in the experiment.
(10) Cubic map:

zt+1 = ρzt (1− z2t ) (10)

where ρ = 2.59 and z0 = 0.242.
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FIGURE 1. Histogram graphs of twelve chaotic maps considered in this study.

(11) Sinusoidal map:

zt+1 = az2t sin(πzt ) (11)

where a = 2.3 and z0 = 0.74.
(12) Iterative chaotic map with infinite collapses (ICMIC):

zt+1 = sin(a/zt ) (12)

where a ∈ (0,∞), and we set a = 70 in experiment. ICMIC
generates sequence in (−1, 0)∪ (0, 1). Therefore, if the value
is negative, its absolute value is used.

The histogram graphs of all considered chaotic maps with
twenty thousand generated points are depicted in Fig. 1. From
it, we can find that different chaotic maps possess different
points distribution, which might have significant influence on
the search length in CLS. Thus, it is valuable to find out which
chaotic map can perform the best for a chaotic meta-heuristic
algorithm.

III. GREY WOLF OPTIMIZATION (GWO)
GWO is one of the most widely recognized meta-heuristic
algorithms [87]. It is inspired by the prey-predation activities
of gray wolves and developed as an effective optimization
method. The GWO’s optimization process includes gray wolf
social hierarchy and hunting behavior. The specific steps of
GWO can be expressed via Eqs. (13)-(16).

Ex (t + 1) =
Ex1 + Ex2 + Ex3

3
(13)

where t is the number of current iteration. Ex1, Ex2 and Ex3 can
be calculated as:

Ex1 = Exα − EA1 ·
(
ERα
)

Ex2 = Exβ − EA2 ·
(
ERβ
)

Ex3 = Exδ − EA3 ·
(
ERδ
)

(14)

where Exα , Exβ and Exδ are the positions of individuals α, β and
δ, respectively. α is the leader of grey wolves with the best
fitness value. β presents the second level with the second best
fitness value, and δ denotes the third level with the third one.
ER represents the distance between the current candidate gray
wolf and the best three wolves, and it can be formulated as:

ERα =
∣∣∣ EB1 · Exα − Ex∣∣∣

ERβ =
∣∣∣ EB2 · Exβ − Ex∣∣∣

ERδ =
∣∣∣ EB3 · Exδ − Ex∣∣∣ (15)

where EA and EB are synergy coefficient vectors, and they can
be calculated as:

EA = 2a · Er1 − a
EB = 2 · Er2 (16)

where r1, r2 are random vectors generated between 0 and 1.
A decrease for the value of a will cause the value of EA to
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fluctuate. In other words, EA is a random vector in the interval
[−a, a], where a decreases linearly along with the iterations.

As summarized in [87], when |A| > 1, gray wolves are
scattered in various areas as far as possible and search for
prey. When |A| < 1, the gray wolf will focus on hunting prey
in a certain area. Another parameter in the GWO algorithm is
EB, which is a vector of random values in the interval [0, 2].
The Pseudo-code of GWO is shown in Algorithm 1.

Through the previous analysis of GWO [87], [93], [94],
we can find that GWO has the characteristics of strong
exploitation ability, but it usually suffers from premature
convergence because the top three individuals in the popu-
lation greatly take effect on other individuals, thus making
the search move toward these three individuals too much.

Algorithm 1 Procedures of GWO
1: Initialization
2: repeat
3: for i = 1 to n do
4: Update the fitness of Xα , Xβ and Xδ
5: if f (xi) < f (Xα) then
6: f (Xα) = f (xi), Xα = xi
7: end if
8: if f (xi) > f (Xα) and f (xi) < f (Xβ ) then
9: f (Xβ ) = f (xi), Xβ = xi

10: end if
11: if f (xi) > f (Xα) and f (xi) > f (Xβ ) and f (xi) < f (Xδ)

then
12: f (Xδ) = f (xi), Xδ = xi
13: end if
14: end for
15: for i = 1 to n do

Calculate EA and EC by Eq. (16)
Calculate EX1, EX2 and EX3 by Eq. (14)
Calculate EX by Eq. (13)

16: end for
17: Evaluate f (x ′i )
18: until Iteration number

IV. CHAOTIC GREY WOLF OPTIMIZATION ALGORITHMS
In this section, the chaotic grey wolf optimization algorithms
will be elaborated. There are generally two methods to incor-
porate chaotic maps into a heuristic algorithm, i.e., using
chaotic sequences to substitute the random numbers in the
algorithm, or using CLS to perform a local search. Recently,
it has been widely accepted that CLS generally perform better
than the sequence substitution method, because the latter is
only implemented as a parameter control manner [35] while
the former can directly search in the landscape [73]. Thus,
in this study we only discuss the CLS scheme to be incorpo-
rated into GWO.

A. CHAOTIC LOCAL SEARCH
The CGWO adds a CLS operator to the GWO to maintain
a high population diversity as well as a strong ability to get

Algorithm 2 Chaotic Local Search
1: Randomly pick up two individuals xr1 and xr2
2: Pick out the best individuals xg in the population
3: Using chaotic map j to generate a random value vj

4: x ′g← xg + vj · (xr2 − xr1)

rid of the local optimum. In this process, random numbers
generated by J chaotic maps are selected as parameters to
adjust the radius of the local search. This operator acts on
the best individual α generated by the GWO. The unified
implementation manner of CLS can be expressed by:

xg′ = xg + vj · (xr2 − xr1), (17)

where xg represents the best individual in current population.
vj is the parameter generated by the chaotic map j (j =
1, 2, . . . , J ), and its range is (0, 1). xg′ is a temporary indi-
vidual generated by the local search operator. If the fitness
value of xg′ is better than xg, xg′ replaces xg, otherwise keep
xg to be survived into the next iteration. Besides, xr1 and xr2
are two individuals randomly selected from the population
of individuals U . In U , we assume the individual with the
greatest fitness as Umax . If the fitness of xg′ is better than that
ofUmax , replaceUmax with xg′ . The conceptual sketch of CLS
is illustrated in Fig. 2.

FIGURE 2. Conceptual sketch of CLS: a two-dimensional multi-model
landscape with multiple local optima is illustrated, where CLS is desired
to enable the algorithm to jump out the local optimum and find the
global optimum eventually.

For CLS, some remarks are given as:
1) The local search acts on the current optimal solution

xg to make a trade-off between search performance and
computational complexity. In this study, xg is the Exα in
each iteration of GWO;

2) Once the generated xg′ exceeds the search boundary,
it will be reset within the search range by a random
feasible value.

Algorithm 2 shows the pseudo-code of CLS.

B. SINGLE CHAOS EMBEDDED CGWO
The CLS that utilizes only single chaotic map is shown as:

xg′ (t) = xg (t)+ v(t) · r · (xr2(t)− xr1(t))

t = 1, 2, . . . ,T (18)
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FIGURE 3. Incorporation scheme of CLS in CGWO.

FIGURE 4. Incorporation scheme of CLS in MCGWO.

where t is the iteration number. r is a scaling parameter of
CLS. Due to the premature convergence of GWO, we assign
r equal to 5 to enlarge the scope of CLS in CGWO and
thereafter maintain the diversity of the population.

In this study, the optimization problems are minimization
ones. After performing CLS in Eq. (18), an update process is
implemented as:

xg(t) =

{
xg′ (t) If f (xg′ (t)) ≤ f (xg(t)),
xg(t) Otherwise

(19)

where f denotes the fitness function of the optimization
problem. If the fitness is improved, the offspring individ-
ual xg′ will replace the current best individual, while other
individuals enter into the next iteration. The different types
of single chaos embedded CGWO using the chaotic map
in Eqs. (1) ∼ (12) are termed as CGWO1 ∼ CGWO12,
respectively. The schematic diagram of CGWO is shown
in Fig. 3.

FIGURE 5. Flowchart of MCGWO.

Algorithm 3 Procedures of CGWOs and MCGWO
1: Initialization
2: repeat
3: for i = 1 to n do
4: Update the fitness of Xα , Xβ and Xδ
5: if f (xi) < f (Xα) then
6: f (Xα) = f (xi), Xα = xi
7: end if
8: if f (xi) > f (Xα) and f (xi) < f (Xβ ) then
9: f (Xβ ) = f (xi), Xβ = xi

10: end if
11: if f (xi) > f (Xα) and f (xi) > f (Xβ ) and f (xi) < f (Xδ)

then
12: f (Xδ) = f (xi), Xδ = xi
13: end if
14: end for
15: CGWOs: implement Eqs. (18)(19)

MCGWO: implement Eqs. (20)∼ (24) and Eq. (19)
16: if f (X ′α) < f (Xα) then

Xα ← X ′α;
17: end if
18: for i = 1 to n do

Calculate EA and EC by Eq. (16)
Calculate EX1, EX2 and EX3 by Eq. (14)
Calculate EX by Eq. (13)

19: end for
20: Evaluate f (x ′i )
21: until Iteration number

C. MULTIPLE CHAOS EMBEDDED CGWO
The core implementation framework of multiple chaos
embedded GWO (MCGWO) is illustrated in Fig. 4, and its
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TABLE 1. IEEE CEC2017 benchmark functions’ definition.

TABLE 2. Parameter settings of the heuristic algorithms.

TABLE 3. Experimental results obtained by CGWOs, MCGWO and GWO on
CEC2017.

flowchart is given in Fig. 5. We use J (J = 12) chaotic
maps in Eqs. (1) ∼ (12) to generate chaotic sequences vj(t)
(j = 1, 2, . . . , J , t = 1, 2, . . .). After that, the following
method is used to perform a multi-chaotic local search:

x jg′ (t) = xg (t)+ vj(t) · r · (xr1(t)− xr2(t))

j = 1, 2, . . . , J ; t = 1, 2, . . . ,T (20)

In order to select the appropriate chaotic map j among
all J chaotic maps, a roulette selection method based on
the accumulated success information is used. As illustrated
in Fig. 4, let ξt,j (its initial value is 0) denotes the difference
of a successful improvement for xg(t) at iteration t using the
j-th chaotic map. Although several chaotic maps are used
in the whole search iterations, CLS uses only one in each
iteration, and its probability of being selected pt,j is calculated
as follows:

pt,j =
St,j∑J

m=1 St,m
(21)

St,j =
ξt,j∑L

n=max(k−L+1,1) ξn,j
+ 1/J (22)

ξt,j =



ξt−1,j+1, if f (x jg′ (t))< f (xg(t))

& t ≤ L

ξt−1,j, if f (x jg′ (t)) ≥ f (xg(t))

& t ≤ L
ξt−1,j+1

−(ξt−L,j−ξt−L−1,j), if f (x jg′ (t))< f (xg(t))

& t > L
ξt−1,j − (ξt−L,j
−ξt−L−1,j), otherwise

(23)

1 = f (xg(t))− f (x
j
g′ (t)) (24)

If x jg′ (t) outperforms xg(t), it means that the chaotic map
in the current iteration succeeded in the local search, and
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TABLE 4. Friedman test results on IEEE CEC2017 with D = 30, 50, 100.

FIGURE 6. Solution distribution of GWO, CGWOs, and MCGWO algorithms on IEEE CEC2017 functions (D = 30).

we add 1 to ξt−1,j. f is the fitness function, and L = 24
is the maximum number of iterations for storing cumula-
tive success information. The above operations make the

chaotic map that is more advantageous in the current search
environment more likely to be selected. Eq. (21) shows the
normalized selection probability pt,j of the jth chaotic map
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FIGURE 7. Convergence characteristics of GWO, CGWOs, and MCGWO algorithms on IEEE CEC2017 functions (D = 30).

at the tth iteration. When t is 0, all pt,j values are equal
to 1/J , which means that all chaotic maps have the same
probability to be selected to perform CLS. Along with the
evolution, the selection probabilities change with the feed-
back from the population, which is manipulated by Eqs. (22)
and (23). Eq. (23) is used to calculate the accumulative suc-
cess value ξ for each chaotic map. The basic idea behind
this calculation is that the chaotic maps which are more
potential to give better solutions are more easily to be selected
in CLS.

Regarding the selection method, more detailed explana-
tions are given as:

(1) When t <= L, if the selected chaotic map j has per-
formed a success evolution, we add 1 to its previous
success value ξt−1,j (i.e., 1st conditional formula in
Eq. (23));

(2) If no improvement of current selected chaotic map j has
been found, the success value ξ keeps the same (i.e., 2nd
conditional formula in Eq. (23));

(3) The longest storage of such success memory is L, once
t > L, we use QUEUE data structure to calculate the
accumulative success value, whichmeans only the infor-
mation of the past L iterations should be accumulated.
Here, we give the illustrative QUEUE data structure with
size of L (first-in-first-out) of the accumulative success
values ξ , as shown in Fig. 4.

After executing CLS, xg(t) is updated according to
Eq. (19). The Pseudo-code of CGWOs and MCGWO is sum-
marized in Algorithm 3.

V. EXPERIMENTS
In this section, we make a comprehensive performance
comparison based on the benchmark functions taken
from IEEE Congress on Evolutionary Computation 2017
(CEC2017) (https://github.com/P-N-Suganthan/CEC2017-
BoundContrained) to verify the performance of proposed
methods. The test suit is summarized in Table 1. The objec-
tives of such comparative study is to find out 1) whether
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FIGURE 8. Search dynamics of CGWOs and GWO on IEEE CEC2017 function F1.

CLS can help GWO perform better and effective enough in
comparison with other state-of-the-art meta-heuristic algo-
rithms, 2) which kind of incorporation method should be
used for GWO (single chaotic map embedded or multiple
chaotic maps embedded), and 3) which chaotic map is the
most suitable one to perform CLS for GWO.

A. EXPERIMENTAL SETUP
In all experiments, the common parameters of all algorithms
are set in the same manner, which is specifically described as
follows: the maximum number of evaluations is set to 104∗D,
where D is the dimension of each benchmark function. For
each function, every algorithm runs 51 times repeatedly for
statistical analysis. The experiments were conducted on a PC
with 3.30 GHz Intel(R) Core(TM) i5 CPU and 8GB RAM
using MATLAB R2018a.

B. PERFORMANCE EVALUATION CRITERIA
The following criteria were used for evaluating the perfor-
mance of all compared algorithms.

(1) Non-parametric statistical test: ‘‘W/T/L ′′ represents
the result of the Wilcoxon rank-sum test. This is a
non-parametric statistical test used to determine the
level of significant difference between algorithms. If the
obtained p-value is less than the significance level 0.05,
the difference between the two algorithms can be recog-
nized. When the control algorithm is significantly better
than its counterpart, it is recorded as ‘‘+′′, otherwise
it is recorded as ‘‘−′′. The sign ‘‘=’’ indicates that the
compared algorithms are tied on the function.

(2) Convergence curve graph: The convergence curve illus-
trates the current optimal history at each iteration,
thereby comparing the convergence speed of different
algorithms. The x-axis represents the number of function

evaluations. The y-axis represents the average error
value after being logged.

(3) Box-and-whisker diagrams: The line above the blue
box means the maximum value, and the line below the
box means the minimum value. The upper and lower
edges of the box represent the first and third quartiles,
respectively. The red line represents the median. The
red + indicates extreme values. The longer the distance
between the maximum and minimum, the greater the
fluctuation of the solution and the more unstable the
performance of the algorithm. Furthermore, the lower
the position of the graph in the coordinates means the
better solution.

C. COMPARISON AMONG CGWOs, MCGWO AND GWO
In this section, we compared the results among CGWOs,
MCGWO and GWO on CEC2017 benchmark functions.
Table 2 shows the parameters’ setting of each algorithm.
Among them,N is the population size. The ‘‘W/T/L ′′ among
CGWOs, MCGWO and GWO on CEC2017 test functions
with 30, 50 and 100 dimensions are summarized in Table 3,
while the detailed experimental results are listed in Appendix.

FromTable 3, we can find thatmost CGWOs andMCGWO
can perform significantly better than the original GWO as
the number of won cases (W ) is more than that of lost cases
(L), suggesting that CLS indeed enable GWO to perform
better. An exception is CGWO11, which performs worse than
GWO. This reveals that Sinusoidal map is not a good choice
to perform CLS. The reason might be also observed from
Fig. 1 that Sinusoidal map only generate random numbers in
the interval of [0.5, 0.9], which substantially limits the search
range of CLS.

We also used the Friedman test [95] to rank the com-
pared algorithms. In the Friedman test, the NULL hypothesis
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FIGURE 9. Solution Distribution of CGWO2 and other competitor algorithms on IEEE CEC2017 functions (D = 30).

assumes that mean values among all compared algorithms are
the same, and it gives the average rank that each algorithm
obtained to estimate its performance. The lower the obtained
rank is, the better the algorithm performs. The Friedman test
results are summarized in Table 4. From it, it is clear that
CGWO2 performs the best for optimization functions with
30 dimensions, and CGWO5 performs the best for 50 and
100 dimensions. This result suggests that 1) the PWLCM is
the most suitable candidate chaotic map to perform CLS for
GWO when encountering lower dimensional problems, and
2) Gaussian map is the best choice for higher dimensional
problems.

It is surprised that, in comparison with CGWOs, MCGWO
only ranked 7th, 4th and 2nd among all compared algo-
rithms for 30, 50 and 100 dimensional functions, respectively,
although similar method has shown great potential for gravi-
tational search algorithm [84] and differential evolution algo-
rithm [80]. This valuable finding suggests that the multiple

chaotic maps incorporated GWO can’t significantly improve
the performance of GWO, especially for lower dimensional
problems. Thus, it motivates us to design more sophisticated
incorporation scheme of multiple chaotic maps for CLS as
future work, e.g., by using the maximum Lyapunov exponent
of each chaotic map.

Additionally, Figs. 6 and 7 show box-and-whisker dia-
grams and convergence graphs of CGWOs, MCGWO and
GWO, respectively. It can be seen from Fig. 6 that most of
CGWOs have the lower altitude and shorter distant, which
confirms its better performance and stronger robustness in
comparison with GWO.We can also see from Fig. 7 that most
of the CGWO variants converge much faster than GWO, and
in the later stage of convergence, CGWOs and MCGWO still
maintain a fairly fast convergence trend.

To conclude, the comparative results among CGWOs,
MCGWO, and GWO show that CLS definitely enables
GWO to perform better, and PWLCM and Gaussian map
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FIGURE 10. Convergence characteristics of CGWO2 and other competitor algorithms on IEEE CEC2017 functions (D = 30).

implemented as a singlemap embedding scheme are twomost
suitable chaotic maps for GWO.

D. COMPARISON OF CGWO WITH OTHER
META-HEURISTIC ALGORITHMS
In this section, we compare CGWOswith othermeta-heuristic
algorithms, including PSO [96], sine cosine algorithm
(SCA) [97], andwingsuit flying search algorithm (WFS) [98].
PSO and SCA are population-based meta-heuristic algo-
rithms, among which PSO simulates bird flocking and animal
social behaviors and SCA uses sine and cosine functions
to optimize the problem. WFS proposes a new optimization
method by simulating the decision-making process during the
landing of the glider. The parameters of these algorithms are
presented in Table 5.

On CEC2017 benchmark optimization functions, we com-
pared CGWOwith above meta-heuristic algorithms under the
conditions of 30, 50, and 100 dimensions, respectively. The

TABLE 5. Parameter settings of the heuristic algorithms.

TABLE 6. Experimental results on IEEE CEC2017 with D = 30, 50, 100.

statistical results are shown in Table 6, while the detailed
experimental data are summarized in Appendix. In Table 6,
we only summarize the best-performing variants of CGWOs,
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TABLE 7. Performance comparison among GWO, CGWOs, and MCGWO in terms of solution accuracy on IEEE CEC2017 with D = 30.

TABLE 8. Performance comparison among GWO, CGWOs, and MCGWO in terms of solution accuracy on IEEE CEC2017 with D = 30 (Continued 1).

i.e., CGWO2, CGWO5 and CGWO5, on the 30, 50 and
100 dimensions, respectively. It can be seen from the table
that CGWOs outperform PSO, SCA and WFS on most of
the benchmark functions, which indicates that CGWOs are
more competitive than other classic algorithms after being
incorporated by CLS.

In addition, Figs. 9 and 10 show the box-and-whisker
diagrams and convergence graphs of CGWOs and other
meta-heuristic algorithms, respectively. According to Fig. 9,
the CGWO has the lowest altitude and relatively short dis-
tant than other heuristic algorithms, suggesting that it has
a stronger local optimal jumping ability and better search
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TABLE 9. Performance comparison among GWO, CGWOs, and MCGWO in terms of solution accuracy on IEEE CEC2017 with D = 30 (Continued 2).

TABLE 10. Performance comparison among GWO, CGWOs, and MCGWO in terms of solution accuracy on IEEE CEC2017 with D = 50.

performance. From Fig. 10, it is apparent that CGWO obtains
a faster convergence speed in comparison with its peers.

E. ANALYSIS OF POPULATION DISTRIBUTION
To give more insights into the search dynamics of CLS incor-
porated GWO, the convergence trajectories of both CGWO

andGWOon the benchmark function F1with two dimensions
are illustrated in Fig. 8. In it, the contour map of F1 together
with its global optimal solution is illustrated. Clearly, F1 is
a unimodal function, and it is so simple and illuminating to
depict the search dynamics of GWO and CWGOs. Accord-
ingly, three typical solution distribution states at the early,
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TABLE 11. Performance comparison among GWO, CGWOs, and MCGWO in terms of solution accuracy on IEEE CEC2017 with D = 50 (Continued 1).

TABLE 12. Performance comparison among GWO, CGWOs, and MCGWO in terms of solution accuracy on IEEE CEC2017 with D = 50 (Continued 2).

middle, and later search process are given, to comparatively
indicate the search dynamics of the algorithms.

From it, we can clearly observe that CGWO has two sig-
nificant differences in comparison with GWO:
(1) At the beginning of the iteration (e.g., at the 1000th

number of function evaluation (NFE)), CLS obviously

expanded the population distribution range, proving that
CLS has enabled GWO to possess an improved popu-
lation diversity, and thus to be more capable to escape
from the local region.

(2) In the latter part of the iteration, due to the quick
convergence characteristic of GWO, the population
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TABLE 13. Performance comparison among GWO, CGWOs, and MCGWO in terms of solution accuracy on IEEE CEC2017 with D = 100.

TABLE 14. Performance comparison among GWO, CGWOs, and MCGWO in terms of solution accuracy on IEEE CEC2017 with D = 100 (Continued 1).

of both CGWO and GWO can tend to be dis-
tributed around the global optimum. But more solu-
tions can be generated by CGWO than GWO
around the global optimal one, as observed from
Fig. 8(a3) and (b3). This proves that CLS makes
CGWO’s exploration of the current optimal solution

nearby space more comprehensively, which strengthens
the convergence of the algorithm and achieves a better
balance between exploration and exploitation for the
search.

The above two observations also prove the effectiveness of
CLS on GWO.
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TABLE 15. Performance comparison among GWO, CGWOs, and MCGWO in terms of solution accuracy on IEEE CEC2017 with D = 100 (Continued 2).

TABLE 16. Performance comparison between CGWO2 and other competitor algorithms in terms of solution accuracy on IEEE CEC2017 with D = 30.

F. COMPUTATIONAL COMPLEXITY
The above sections verify the performance of CGWO on the
benchmark functions. In this section, we analysis the time
complexity of CGWOs and MCGWO:

(1) Population initialization requires time complexity O(N )
and N is the population size.

(2) The time complexity of population boundary control
requires O(N ).
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TABLE 17. Performance comparison between CGWO5 and other competitor algorithms in terms of solution accuracy on IEEE CEC2017 with D = 50.

TABLE 18. Performance comparison between CGWO5 and other competitor algorithms in terms of solution accuracy on IEEE CEC2017 with D = 100.

(3) Population evaluation and selection of the Exα , Exβ and Exδ
require time complexity O(N ).

(4) The time complexity of chaotic map selection in
MCGWO is O(J ), where J is the number of chaotic
maps.

(5) The time complexity of CLS boundary control is O(1).
(6) The GWO requires time complexity O(N ) to generate

offspring.

When the algorithm terminates after T iterations, the total
time complexity is shown as follows:

O(N )+ T [O(N )+ O(N )+ O(J )+ O(1)+ O(N )]

= O(N )+ 3T · O(N )+ T · O(J )+ T · O(1)

= (3T + 1) · O(N )+ T · O(J )+ T · O(1) (25)

In this study, J is less than N ; therefore, the total time
complexity of both CGWOs and MCGWO is O(N ).
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VI. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we propose a number of chaotic grey wolf
optimization algorithms (CGWOs). The main feature of the
improvement in the algorithm is the incorporation of chaotic
local search. We have adopted two approaches to perform
CLS: One is to directly use a single chaotic map induced
CLS, and the other is to implement CLS by selectively using
multiple chaotic maps based on the accumulated success
information. Extensive experiments are conducted based on
IEEE CEC2017, and the results show that the use of CLS can
speed up the global convergence of GWO and also give it the
ability to jump out of a local optimum. Additionally, the time
complexity calculated for CGWOs is almost the same as that
for GWO.

This comprehensive comparative study not only proposes
effective CGWOs which have been demonstrated their supe-
riority over some other state-of-the-art meta-heuristic algo-
rithms, but also gives some valuable findings: 1) single
chaoticmap incorporation scheme can perform better than the
multiple chaotic maps incorporation scheme once a suitable
map is chosen; and 2) in CGWOs, PWLCM is the most
promising candidate for lower dimensional problems while
Gaussian map performs better for higher ones.

This study also opens the door to the following researches:
1) More sophisticated incorporation method using multiple
chaotic maps should be designed by not only the interaction
with the tackled problem (as done in this study), but also
the inherent property of the chaotic maps (e.g., its maximum
Lyapunov exponent), and 2) The effectiveness of CGWOs
should also be verified on real-world application problems.

APPENDIX
DETAILED EXPERIMENTAL RESULTS
Tables 7, 8, 9 give the performance comparison results among
GWO, CGWOs, and MCGWO in terms of solution accuracy
on IEEE CEC2017 benchmark functions with D = 30.
Tables 10, 11, 12 give the performance comparison results
among GWO, CGWOs, and MCGWO in terms of solution
accuracy on functions with D = 50. Tables 13, 14, 15 give
the performance comparison results among GWO, CGWOs,
andMCGWO in terms of solution accuracy on functions with
D = 100. Tables 16, 17, 18 give the detailed comparative
results among CGWO and its competitors on functions with
dimensions of 30, 50, and 100, respectively.
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