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ABSTRACT This paper develops and applies a numerical optimization procedure to compute broadband
noise-adaptive weights for delay and sum beamforming that are conditioned to maximize the deflection
coefficient at the output of a square law detector for a given set of underwater pressure measurements.
The resulting optimal weights mitigate the effects of noise and interferers and maximize signal detection.
Comparison of the optimal weights with minimum variance distortionless response weights show that the
presented algorithm provides higher attenuation of interferers. We also use the noise-adaptive algorithm
to find the optimal sparse array geometry for a given number of sensors and aperture. Comparison of the
resulting optimal array with coprime, nested, and semi-coprime arrays shows that the proposed sparse array
suppresses interferers more than the other sparse arrays.

INDEX TERMS Conventional beamforming, deflection coefficient, delay and sum beamforming, detection
statistic, Gaussian distribution, signal detection.

I. INTRODUCTION
Delay-and-sum beamforming (DSB) is the oldest beam-
forming algorithm and it persists as a preferable and
powerful approach today because of its simplicity and
robustness—other approaches are very sensitive [1]. As its
name states, DSB works by delaying the shaded sensor out-
puts and summing the outputs to reinforce signals from a
desired direction (coherent addition), while averaging out
noise (incoherent addition). The DSB is also referred to as
conventional beamforming (CBF) [2] and we use the terms
DSB and CBF interchangeably in the sequel. The shading
weights, in general, are selected by considering the trade-
off between the mainlobe width and peak sidelobe height
of the beampattern associated with the shading. Since the
parameters of DSB algorithms do not depend on data, they
cannot take advantage of the signal and noise character-
istics. An additional category of beamformers, known as
adaptive beamformers, calculate shading weights based on
the characteristics of the observations. These beamformers
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yield signal detection and estimation performance that exceed
those of DSB algorithms; although they are tuned to spe-
cific observations and thus need to be re-computed for
changes in the observations. The minimum variance distor-
tionless response (MVDR) beamformer is an adaptive beam-
former, which is popular owing to its high resolution and
effectiveness in suppressing noise and interferers [1], [2].
However, the MVDR beamformer requires inversion of the
sample covariance matrix (SCM), which can be challenging
in underwater scenarios that are non-stationary and snapshot-
deficient.

Wettergren et al. developed noise-adaptive delay-and-sum
beamforming (NADSB) that preserves the simplicity of clas-
sical DSB but adapts its parameters to observations without
having to invert an SCM [3]–[5]. The NADSB algorithm
implemented in [3] finds the array weights that maximize the
deflection coefficient at the input of the square-law detec-
tor, while the NADSB algorithm implemented in [4], [5]
maximizes the deflection coefficient at the output of the
square-law detector. In each case, a single set of weights is
computed independent of frequency as opposed to weights
calculated for each narrowband frequency as is typically
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performed. The array weights are functions of either modeled
or observed structural noise and are optimized to mitigate
the effect of noise on weak broadband signal detection. The
algorithmwas previously applied to conformal velocity sonar
data to determine optimal weights for time-domain DSB.

In this work, wemaximized the deflection coefficient at the
output of the square-law detector as the optimality criterion
and applied the NADSB algorithm to array ambient noise
measurements collected off the coast of Hawaii using a linear
array. We also formulated the NADSB algorithm to find
the optimal sensor locations for sparse arrays with a given
aperture and number of sensors. We compared the optimal
sparse arrays with standard sparse arrays such as coprime
arrays, nested arrays, and semi-coprime arrays [6], [7]. Our
specific contributions are:

1) Application of the NADSB algorithm to the underwater
data obtained from a linear array of sensors and com-
parison of the results with MVDR.

2) Derivation of the analytical expression for optimal
shading when the noise measurements are uncorre-
lated.

3) Formulation of the NADSB algorithm to find the opti-
mal sparse array for a given aperture and number of
sensors.

Section II describes the signal model. Section II-B provides
a brief review of the related work. Section III describes
the NADSB algorithm. Section IV provides examples of
numerical evaluation of the optimal weights. Section V finds
optimal sparse array configurations for a given aperture and
number of sensors. Section VI finds optimal shading for
standard sparse arrays. Section VII summarizes the paper’s
contributions.
Notations: Boldfaced lowercase math symbols denote vec-

tors and boldfaced uppercase math symbols denote matrices.
xT denotes transpose of x. x∗ denotes complex conjugate
of x. xH denotes Hermitian (conjugate-transpose) of x.
IL is an L-by-L identity matrix. 1L is an L-by-1 vector of all
ones. 0L is an L-by-1 vector of all zeroes. D{A} denotes the
vector containing the diagonal elements of A. D{a} denotes
the diagonal matrix with the operands a along the diagonal of
the matrix. S{a} denotes the sum of the elements of a. E{a}
denotes the expected value of a andV{a} denotes the variance
of a. a ∼ NL(µ,R) means a is an L-by-1 random vector with
normal distribution with mean µ and covariance matrix R.

II. RECEIVED SIGNAL MODEL
We consider a passive sonar detection problem consisting of a
broadband plane-wave acoustic signal incoming at spherical
angles (θ0, φ0). The signal is propagated to each array sensor
position–which measures the signal as well as ambient acous-
tic noise–and sensor self noise. The composite signal received
by the array of sensors can be regarded as a random signal in
noise [8]. For a detection problem, the suitable model for the
data measured by an array of L sensors is

H1 : y(t) = s(t)+ n(t) (1)

if the signal of interest is present and

H0 : y(t) = n(t) (2)

if it is not, where y(t), s(t), and n(t) are each L-by-1 vectors.
The signal vector s(t) and the noise vector n(t) are samples
of random vectors and they are uncorrelated. Any detection
procedure for such amodel involves a hypothesis test between
the two above models, which has to be based on the statistical
properties of these underlying random vectors [8]. The array
measurements in both hypotheses can be regarded as samples
of Gaussian vectors, owing to the central limit theorem [9]:

H1 : y(t) ∼ NL

(
0L ,Ky = Ks +Kn

)
(3)

and

H0 : y(t) ∼ NL

(
0L ,Ky = Kn

)
, (4)

where thematricesKy,Ks, andKn are the covariances of y(t),
s(t), and n(t), respectively.

The beamforming procedure takes the measured data y(t)
and forms a linear weighted combination to create a beam-
formed output z(t). The output of the DSB or CBF steered
to spherical coordinates (θ, φ) is z(t) = wT ỹ(t), where w =
[w1,w2, . . . ,wL]T is the weight vector that includes the array
amplitude shading, ỹ(t) = y(t−1m) and1m is the time delay
required for themth sensor. Since the beamforming procedure
is a linear transformation from ỹ(t) to z(t), the beamformer
output also has Gaussian distribution, z(t) ∼ N1(0, σ 2

z ).
The detection statistic, x(t), is the square of the beamformer
output x(t) = z2(t), which has a central Chi-square distribu-
tion. The probability density function (PDF) of the detection
statistic is [10]

fX (x(t)) =
1√

2πσ 2
z x(t)

exp
(
−
x(t)
2σ 2

z

)
. (5)

The associated scalar version of the hypothesis testing
problem becomes:

H1 : x(t) = z2(t), where z(t) ∼ N1(0, σ 2
z1) (6)

and

H0 : x(t) = z2(t), where z(t) ∼ N1(0, σ 2
z0). (7)

The covariances σ 2
z1 and σ 2

z0 correspond to alternate and
null hypotheses cases, respectively.

A. DEFLECTION COEFFICIENT
In a binary hypothesis testing problem, where the detection
statistic is x(t), the deflection coefficient is defined as

d =
E{x(t)|H1} − E{x(t)|H0}

√
V{x(t)|H0}

(8)

[8], [11]. When both alternate and null hypotheses are Gaus-
sian distributed with different means but equal variances,
the deflection coefficient completely characterizes the detec-
tion performance. This is because the deflection coefficient
determines the ability of an optimal hypothesis test to make
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a decision as to which Gaussian distribution might have
generated the observed value of x(t) [11], [12]. In other
problems where the two distributions are not simply Gaussian
distributed with different means, the deflection coefficient is
used for approximate detection performance [11], [13], [14].
Therefore, we consider maximizing deflection coefficient to
optimize the detection performance.

B. A REVIEW OF THE RELATED WORK
This section briefly summarizes the prior related work
in [3]–[5].

1) DEFLECTION COEFFICIENT MAXIMIZATION AT THE
OUTPUT OF A CONVENTIONAL BEAMFORMER TO OBTAIN
SHADING WEIGHTS
A numerical approach of optimizing array shading weights
for passive broadband detection was developed in [3] for
acoustic hull arrays. The authors minimized the impact
of modeled and measured noise sources on detection at
a conventional beamformer output, maintaining the array
gain against an unknown signal source. This was accom-
plished by maximizing the deflection coefficient at the
output of a conventional beamformer, which is given by
d1 = (µsN − µN )/σN . The variables µSN and µN represent
the mean values of the beamformer output for alternate and
null hypotheses and σN represents the standard deviation
of the beamformer output for null hypothesis. Denoting the
beamformer output power spectra for the alternate and null
hypotheses by PSN (ω) and PN (ω), respectively, the authors
in [3] show that the deflection coefficient can be simplified to

d1 =
0.5
√
T/π

∫
∞

−∞
PS (ω)dω

[
∫
∞

−∞
P2N (ω)dω]

1
2

, (9)

where T is the system averaging time and PS (ω) = PSN (ω)−
PN (ω). When the array is steered to the incident plane wave’s
direction of arrival, the signal only power spectrum at the

beamformer output becomes PS (ω) = FS (ω)
( M∑
m=1

wm
)2
,

where FS (ω) is the power spectrum of the incident plane
wave. By imposing the constraint

∑M
m=1 wm = 1, the array

gain for the plane wave in the steered direction is fixed.
With this constraint, minimizing the denominator of (9) cor-
responds to maximization of the deflection coefficient at
the output of the beamformer. To demonstrate the utility of
this approach, [3] presents numerical results using modeled
data for an 11-sensor uniform conformal array. Their results
show higher gains compared to uniform shading for simple
modeled noise sources.

2) DEFLECTION COEFFICIENT MAXIMIZATION AT THE
OUTPUT OF A SQUARE-LAW DETECTOR TO OBTAIN
SHADING WEIGHTS
The approach presented in [4], [5] improves upon the method
developed in [3]. The authors in [4], [5] make the argument
that maximizing the deflection coefficient at the output of

the square-law detector is more effective since the overall
goal is to maximize detection performance. The deflection
coefficient at the output of the square-law detector is [5]

d2 =
√
Tβ

∫
∞

−∞
PS (ω)dω∫

∞

−∞
PN (ω)dω

, (10)

where Tβ is the time-bandwidth product. The authors in [4],
[5] maximize (10) by keeping the numerator fixed which
corresponds to holding the signal response fixed in the look
direction. When this method was applied to find the optimal
shading weights for an 80-element conformal velocity sensor
using real data, it resulted in 16 dB SNR improvement com-
pared to uniform shading or Taylor shading.

Both of the DSB shading approaches shown in these sec-
tions (Section II-B1 and II-B2) use measurements of noise
to tune conventional shading weights to improve detection
performance. These have both been shown to lead to better
detection than what is attainable with data-independent shad-
ing. The approach in Section II-B2 has the added advantage of
directly optimizing performance at the output of the detector,
and thus it has improved detection performance in practice.
These approaches lead to identical array weights when the
noise is white [5]. This is because PN (ω) is a constant for
white noise, which makes the denominators of (9) and (10)
equal.

III. NADSB ALGORITHMS FOR A FULL ULA
We find the NADSB weights by maximizing the deflection
coefficient at the output of the square-law detector, following
the approach in Section II-B2. The objective function for
maximization of the deflection coefficient has been derived in
[4], [5]. We repeat the derivation here with slightly different
notations and approach.

The beamformer output for the noise-only case is z(t) =
L∑

m=1

wmnm(t − 1m), where nm(t) is the measured noise

at mth sensor. The Fourier transform of z(t) is Z (ω) =
L∑

m=1

wmNm(ω) exp(−jω1m), where Nm(ω) is the Fourier

transform of nm(t). For each 1m, the product ω1m = ks.xm,
where ks is the wavenumber vector and xm is the mth sensor
location [2, Chapter 2]. The frequency spectrum Z (ω) can be
expressed using matrix notation as

Z (ω) = wTU∗(ω)m(ω), (11)

where U = D{ejks.x1 , ejks.x2 , . . . , ejks.xL } is the steering
matrix for look direction corresponding to ks and m(ω) =
[N1(ω),N2(ω), . . . ,NL(ω)]T . The noise power spectrum at
the output of the beamformer is then given by

PN (ω) = |Z (ω)|2 = wTU∗(ω)m(ω)mH (ω)U(ω)w. (12)

Denoting the L-by-L noise cross-power spectrum matrix
m(ω)mH (ω) asM(ω), we get

PN (ω) = wTU∗(ω)M(ω)U(ω)w. (13)
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The row i, column j element of the cross-power spectrum
matrixM(ω) is the Fourier transform of the cross-correlation
between ni(t) and nj(t). Therefore, for each i and j pair,
we have

Mij(ω) =
∫
∞

−∞

E{ni(t)nj(t + τ )}e−jωτdτ. (14)

Substituting (13) in the denominator of (10), we get the
objective function wT

(∫ ω2
ω1

U∗(ω)M(ω)U(ω)dω
)
w, where

ω1 and ω2 are the minimum and maximum frequencies of
interest. Therefore, maximization of the deflection coefficient
at the output of the square law detector is equivalent to the
following minimization problem

min
w

wT
(∫ ω2

ω1

U∗(ω)M(ω)U(ω)dω
)
w

subject to 6L
m=1wm = 1 and wm ≥ 0 for all m. (15)

For notational convenience, we represent the inner integral
of (15) as

J =
∫ ω2

ω1

U∗(ω)M(ω)U(ω)dω, (16)

which is an L-by-L matrix.
Equations (15) and (16) were formulated in [4], [5] and

solved numerically. In those prior works there were no cases
presented for which an analytical solution was found. How-
ever, an analytical expression for the optimal weights can be
derived when the noise measurements at the different sensors
are uncorrelated, as shown in Section III-A. When the noise
measurements are correlated, there is no analytical solution
for the optimum and numerical optimization techniques must
be used to find the optimal weights.

A. OPTIMAL WEIGHTS FOR UNCORRELATED NOISE
The minimization problem has a closed-form solution when
there is zero correlation between different sensor pairs at
all frequencies. This condition causes the matrix M(ω) to
be diagonal at every frequency and consequently, J is also
a diagonal matrix. When J is a diagonal matrix, its mth

diagonal element is the contribution to the total power by
the mth sensor. Since we are considering a noise-only case
(i.e. H0 model), the diagonal element is the contribution to
the total noise power level. Since the optimization problem is
formulated to suppress the total noise, the optimal weights for
various sensors are inversely proportional to the sensor noise
power levels. The solution of the optimization problem (15)
for uncorrelated noise can be written as

wopt =
D{J−1}
cn

, (17)

where cn is the normalization constant given by the sum of
the diagonal elements of J−1 (i.e., cn = S{D{J−1}}, where
S{.} represents the sum of the elements of the operand). See
Appendix A for full derivation.

When the noise measurements at different sensors are
uncorrelated and the noise powers are equal, the diagonal

TABLE 1. Algorithm 1: Computation of the optimal weights.

elements of J are equal. In this case, the optimal shading in
(17) is given by uniform shading. TheNADSB algorithm, that
applies to both correlated and uncorrelated noise, is summa-
rized in Table 1.

IV. NUMERICAL EVALUATION OF OPTIMAL WEIGHTS
FOR A FULL ULA
In this section, we solve the minimization problem in (15)
numerically using MATLAB-Optimization Toolbox [15].
The dataset used in this work is described in Section IV-A.

A. DATASET DESCRIPTION
A 128-element, tetrahedral hydrophone array (Figure 1) was
deployed offshore of Kona, Hawaii at a depth of 23 m, for
two cycles of continuous sampling. The array includes a
64-element ULA and two orthogonal 32-element ULAs; we
used the 64-element ULA data in this project. Inter-element
spacing was 170 mm, corresponding to an array design fre-
quency of approximately 4.5 kHz (based on λ/2 spacing with
sound speed for nominal water temperature). A 64-element
linear stave and one 32-element orthogonal linear stave were
deployed horizontally on the ocean floor while a second
32-element linear stavewas deployed vertically. In the sequel,
we will refer to the dataset from the 64-element linear array
as the Kona dataset.

B. EVALUATION OF THE NOISE CROSS-POWER
SPECTRUM MATRIX
The cross-power spectrum of noise measurements, M(ω),
were computed using the first 1-second of a dataset rang-
ing from the frequency of 50 Hz to 4050 Hz. Figure 2
depicts the cross-power spectral density estimates among
all pairs of sensors at various equally spaced temporal fre-
quencies and it proves that the dataset contains spatially
colored noise. The purpose of the NADSB algorithm is to
exploit the spatial distribution of the noise field to reduce
the impact of the noise field on weak signal detection over
a broad range of temporal frequencies. Thus, the NADSB
algorithm uses these cross-power spectral density estimates
of the noise to tune the shading weights to the observed noise
environment.
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FIGURE 1. 128-element array deployed in Kona, HI. Array deployment
includes a 64-element uniform line array and two orthogonal uniform
arrays, each with 32 elements.

C. OPTIMAL WEIGHTS FOR A FULL ULA
Figure 3 depicts the optimal weights obtained for 181 dif-
ferent look directions. The look direction ranges from 0◦ to
180◦ in 1◦ increments. The figure demonstrates that there
is minimal variation in the optimal weights with the look
direction. The sensors that are weighted heavily (lightly),
remain heavily (lightly) weighted across the range of look
directions. Figure 4 provides an insight into the algorithm
that optimizes the deflection coefficient at the output of the
square law detector. The algorithm consistently assigns large
weights to sensors 37 and 54 and negligibly small weights
to all other sensors. The noise power levels at the outputs of
sensors 37 and 54 are substantially less than the power levels
at the outputs of the other sensors, as illustrated by Figure 4.
The algorithm determines sensors 37 and 54 as the least noisy
sensors and in an attempt to minimize the total noise power,
assigns most of the weight to the two sensors. Since the
algorithm considers the remaining 62 sensors as much nois-
ier, it assigns approximately zero weights to the 62 sensors.
However, sensors 37 and 54 were actually non-functional
sensors and assigning disproportionately higher weights to

them is misguided. To redirect the algorithm to focus on
the cross-correlation among sensors, and not at the power
levels, we normalized the measurements of each sensor so
that the maximum amplitude of each sensor measurement
is 1. With the normalized dataset, the weights corresponding
to various look directions are as depicted in Figure 5. The
resultant weights show that when the array is steered to
endfire directions, sensor weights are more evenly distributed
across the array. However, at array broadside look directions
the weighting is more sparse. Regular striations are also
visible for sensors 54 to 64, indicating that the broadband
energy is centered at a frequency less than half the array
design frequency (since every other element is underutilized
in the weighting scheme).

D. COMPARISON OF NADSB AND MVDR BEAMPATTERNS
Figure 6(A) compares the beampatterns of MVDR and
NADSB for 1 second of real data. The number of snapshots
is 39. The MVDR weights are based on a single temporal
frequency data where the frequency is 4400 Hz. Since the
number of snapshots is less than the number of sensors,
the MVDR degenerates in this case. The NADSB is based
on frequencies ranging from 50 Hz to 4050 Hz. The dotted
black line corresponds to the look direction 117.6132◦ or
u = −0.4635. The gain at u = −0.4635 is −12 dB for
MVDR and−17.5 dB for NADSB.When a discrete interferer
is added at u = −0.4635, the MVDR and NADSB beam-
patterns change to the beampatterns shown in Figure 6(B).
TheMVDR still fails because of the low number of snapshots
while the NADSB adapts to the discrete noise. Note that the
NADSB sidelobe levels decrease by about 10 dB over large
directional swath, which results from the broadband design
of NADSB to account for a broadband interferer. The gain
at u = −0.4635 reduces to −29 dB thereby suppressing
the discrete interferer substantially (by 11.5 dB). Hence,
the NADSB shows the ability to adapt to noise and suppress
it even in a snapshot-deficient scenario. Figure 6(C) com-
pares the beampatterns of MVDR and NADSB for 10 sec-
onds of real data (compare to Figure 6(A)). The number of
snapshots is 390. The MVDR does not demonstrate good
resolution despite the increase in number of snapshots. The
gain at u = −0.4635 is −3 dB for MVDR and −22 dB for
NADSB.When a discrete interferer is added at u = −0.4635,
the MVDR and NADSB beampatterns change to the beam-
patterns shown in Figure 6(D). The MVDR now possesses
high resolution and the ability to suppress the interferer by
providing attenuation of −32 dB at the interferer location.
However, the NADSB still outperforms the MVDR by pro-
viding an attenuation of −40 dB at the interferer location.
Overall, the experimental results presented here demonstrate
the superiority of the NADSB algorithm compared toMVDR.

V. OPTIMAL SENSOR LOCATIONS FOR A SPARSE ARRAY
TheNADSB algorithm is well suited for modifications to find
sensor locations that maximize the deflection coefficient for
fixed aperture, number of sensors, and shading. Consider the
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FIGURE 2. Cross power spectral density estimates among various sensors at 9 equally spaced frequencies. The x- and
y-labels indicate sensor indices.

FIGURE 3. Optimum shadings for a 64-sensor array for 181 different look
directions.

sensor location grid for an L-sensor ULA, where the total
number of sensors spanning the full aperture is N . The refor-
mulated NADSB optimization problem can be expressed as

min
w

wT
(∫ ω2

ω1

U∗(ω)M(ω)U(ω)dω
)
w

subject to 6L
m=1wm = 1,

wm = 0 or 1/N , for m=2, 3, 4, . . . ,L − 1,

w1 = 1/N , and

wL = 1/N . (18)

This is an optimization problem where the objective vari-
ables can only take values from a pre-defined discrete set.
We used a genetic algorithm solver in MATLAB to solve
this problem for L = 57 and N = 21 for the avail-
able dataset. With L = 57 and N = 21, we also form
a coprime array, a nested array, and a semi-coprime array
with subarray parameters as listed in Table 2. The arrays
are depicted in Figure 7. Solving the optimization problem
for 19 different look directions yielded the sensor locations

FIGURE 4. Temporal power spectral density estimate of the measured
data.

FIGURE 5. Optimum shadings for a 64-sensor array for 181 different look
directions.

depicted in Figure 8. The optimal locations are look direction
dependent. None of the 19 arrangements can be construed as
a coprime, nested, or a semi-coprime array. Figure 9 verifies
that the objective function in (15) is minimized by the optimal
geometry obtained from the NADSB algorithm. The objec-
tive function values at all directions ranging from 0◦ to 180◦

are higher for the three sparse array geometries. This suggests
that, from an information theory perspective, existing sparse
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FIGURE 6. Comparison of NADSB and MVDR beampatterns. (A) Using
1 second of real data which resulted in 39 snapshots. (B) Using 1 second
of real data with an injected discrete interferer. (C) Using 10 seconds of
real data which resulted in 390 snapshots. (D) Using 10 second of real
data with an injected discrete interferer.

FIGURE 7. Sparse array geometries.

array designs are not naturally optimized. Further inclusion of
min and product processing into the optimization algorithm
may provide additional insights, which is an area of ongoing
investigation.

Figure 10 further depicts the advantage of the optimal
sensor locations over coprime, nested, and semi-coprime
geometries. The beampatterns steered to u = 0 for the
optimal (black dotted line), coprime (green solid line), nested
(blue dash-dot line), and semi-coprime (purple dashed line)
are depicted in the figure. Note that while the array geome-
tries were optimized using a modification of the NADSB
algorithm, the beampatterns in the figure are generated using
standardDSB. The top panel corresponds to the original Kona
dataset. The beampattern levels at u = 0.5 (corresponding
to θ = 60◦) in the top panel for the optimal, coprime,

TABLE 2. Sparse array design parameters.

FIGURE 8. Optimal locations for a sparse array with 21 sensors on the
grid of a 57-sensor full ULA for look directions 0◦ to 180◦. The filled
circles indicate sensor locations.

FIGURE 9. Objective function evaluated for sparse arrays in Figure 7 and
the optimal array.

nested, and semi-coprime arrays are−14.64 dB,−4.103 dB,
−19.98 dB, and−14.68 dB, respectively. An interferer with a
bearing of u = 0.5was added to theKona dataset. The new set
of sensor locations were found for the case with the interferer.
The corresponding optimal beampattern is depicted in the
bottom panel of the figure. The optimal beampattern value
at u = 0.5 is −30.38 dB whereas the corresponding levels
for the coprime, nested, and semi-coprime arrays are still
−4.103 dB, −19.98 dB, and −14.68 dB, as expected. This
example demonstrates higher capability of the optimal sparse
array to reject interferers compared to the standard sparse
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FIGURE 10. Beampatterns calculated using DSB for steering direction
cosine of u = 0 and using (Top) noise only measurements and (Bottom)
noise plus an injected interferer at u = 0.5. Results are shown using the
optimal (black dotted line), coprime (green solid line), nested (blue
dash-dot line), and semi-coprime (purple dashed line) array geometries.

geometries, confirming the superiority of the optimal geom-
etry over the three other sparse geometries in adapting to
received signals.

VI. OPTIMAL WEIGHTS FOR STANDARD SPARSE ARRAYS
The NADSB algorithm is suitable for computation of optimal
weights for any geometry. We used the NADSB algorithm
to compute the optimal weights for the three sparse array
geometries depicted in Figure 7. The optimal shading can be
applied to these sparse geometries in two ways: (1) While
evaluating these weights, each sparse array can be treated as
a single non-uniform linear array and the NADSB weights
for the sparse array can be found. The results are depicted in
the top panel of Figure 11. (2) The optimal shading can be
obtained for the individual subarrays of these sparse arrays.
Then, product or min processing as described in [18]–[25]
can be applied to these arrays. The beampatterns for product
processing are shown in the bottom panel of Figure 11. The
weights corresponding to all sparse geometries in Figure 11
are adaptive and are optimized to suppress a discrete inter-
ferer at u = 0.5. However, it is evident that the optimal
array’s beampattern (black dotted line) has higher attenuation
at u = 0.5 than the coprime (green solid line), nested
(blue dash-dot line), or the semi-coprime (purple dashed line)
with optimal shadings obtained from the NADSB algorithm.
This is true for both direct CBF of the sparse arrays treat-
ing them as single non-uniform linear arrays and CBFs for

FIGURE 11. Beampatterns generated using NADSB and applied by (Top)
treating each array as a single nonuniform array and by (Bottom) treating
each subarray component separately and using product processing with
the results.

individual subarrays followed by product or min processing.
The examples presented in this section also show that the
sparse arrays obtained using the NADSB algorithm provide
higher suppression of interferers than coprime, nested, and
semi-coprime arrays.

VII. CONCLUSION
In this paper we applied the noise adaptive beamforming
algorithm, NADSB, to an underwater dataset obtained from
a linear array and obtained the optimal shading for CBF.
We compared the NADSB beampattern with MVDR by
adding a discrete interferer to the available dataset and com-
paring the interferer suppression ability of the two algorithms.
Our results showed that the NADSB provides greater attenu-
ation of interferers when there are sufficient number of snap-
shots. Additionally, we showed that in a snapshot-deficient
scenario, when the MVDR degenerated, the NADSB algo-
rithm was still functional and able to suppress an interferer.
Hence, the examples showed the superiority of the NADSB
over MVDR and demonstrated the capability of the NADSB
to work with fewer snapshots.

We also formulated the NADSB algorithm to find the
optimal sparse geometry for a given number of sensors
and aperture. Our results showed that the optimal sparse
geometry and standard sparse geometries have significantly
different beampatterns. The proposed sparse array geome-
try, which is yielded by the NADSB algorithm, provides
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significantly better interferer rejection than coprime, nested,
and semi-coprime arrays with the same number of sensors
and aperture.

APPENDIX A
DERIVATION OF THE OPTIMAL WEIGHTS FOR
UNCORRELATED NOISE
When the noise measurements are uncorrelated across differ-
ent sensors, the matrixM(ω) in (15) is diagonal. SinceU∗(ω)
and U(ω) are also diagonal, the product U∗(ω)M(ω)U(ω)
is an L-by-L diagonal matrix. The mth diagonal elements
of U∗(ω), M(ω) and U(ω) are e−jks.xm , α̃m(ω), and ejks.xm ,
respectively, where α̃m(ω) denotes the noise power at sensor
m and frequency ω. Therefore, the mth diagonal element of
U∗(ω)M(ω)U(ω) is α̃m(ω). The matrix J is given by

J =


∫ ω2
ω1
α̃1(ω)dω 0 0 . . . 0
0

∫ ω2
ω1
α̃2(ω)dω 0 . . . 0

...
...

...
. . .

...

0 0 0 . . .
∫ ω2
ω1
α̃L(ω)dω

 .
(19)

Denoting
∫ ω2
ω1
α̃m(ω)dω by αm, for m = 1, 2, . . .L, we get

J =


α1 0 0 . . . 0
0 α2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . αL

 . (20)

Substituting the diagonal J from (20) in the objective func-
tion in (15), we get

wT Jw =
L∑

m=1

w2
mαm. (21)

Consider the minimization problem

min
w

wT Jw

subject to 6L
m=1wm = 1. (22)

The Lagrangian corresponding to (22) is

wT Jw =
L∑

m=1

w2
mαm +3(6

L
m=1wm − 1), (23)

where 3 is the Lagrange multiplier. Differentiating the
Lagrangianwith respect to the weights and3 and setting each
derivative to 0, we get the following set of equations

2w1α1 +3 = 0

2w2α2 +3 = 0
...

2wLαL +3 = 0

6L
m=1wm = 1. (24)

Therefore, wm = −3/(2αm) for m = 1, 2, . . . ,L.
Substituting wm = −3/(2αm) in 6L

m=1wm = 1, we get∑L
m=1

−3
2αm
= 1. Therefore, the Lagrange multiplier is

3 = −
1∑L

m=1
1

2αm

. (25)

The optimal weight obtained by substituting 3 in (24) is

wk =
1

αk
∑L

m=1
1
αm

, (26)

for k = 1, 2, . . . ,L. Since the vector [ 1
α1
, 1
α2
, . . . , 1

αL
] can be

represented asD{J−1} and cn denotes the sum of the elements
of D{J−1}, we can write the optimal weight vector as

wopt =
D{J−1}
cn

.

Note that the optimization problem in (22) does not include
the constraints wk ≥ 0. However, each weight in (26) is
guaranteed to be greater than or equal to 0 since αk is the
noise power at sensor k and is guaranteed to be non-negative.
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